Melatonin as a Promising Agent for Cancer Treatment: Insights into its Effects on the Wnt/beta-catenin Signaling Pathway
- Authors: Davoodvandi A.1, Asemi R.2, Sharifi M.3, Reiter R.4, Matini S.5, Mirhashemi S.6, Asemi Z.7
-
Affiliations:
- Student Research Committee,, Kashan University of Medical Sciences,
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences,
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine
- Department of Pathology, School of Medicine,, Kashan University of Medical Sciences
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases,, Qazvin University of Medical Sciences,
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
- Issue: Vol 31, No 11 (2024)
- Pages: 1315-1331
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/644184
- DOI: https://doi.org/10.2174/0929867330666230409141957
- ID: 644184
Cite item
Full Text
Abstract
In recent years, substantial advances have been made in cancer treatment modalities. Yet, within the last three decades, neither cancer incidence nor the cancer-induced mortality rate has changed. Available anti-cancer chemotherapeutics possess remarkably restricted effectiveness and often have severe adverse effects. Hence, the identification of novel pharmaceutical agents that do not exhibit these major disadvantages is imperative. Melatonin, an important endogenous molecule synthesized and secreted by the pineal gland, is a promising chemical agent that has been comprehensively assessed over the last decades for its anti-inflammatory and anti-cancer properties. Melatonin is reportedly a significant inhibitor of cancer initiation, progression, and metastasis. The anti-- cancer potential of melatonin is principally mediated by reversing the up-regulated amounts of different transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic agents. Also, melatonin often has signifcant inhibitory effects on cancer cell proliferation through either promoting apoptosis or inducing cell cycle arrest. The current review provides an insight into melatonin-induced effects against various human cancers with a particular focus on the regulation of Wnt/β-catenin signaling pathway.
Keywords
About the authors
Amirhossein Davoodvandi
Student Research Committee,, Kashan University of Medical Sciences,
Email: info@benthamscience.net
Reza Asemi
Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Mehran Sharifi
Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences,
Email: info@benthamscience.net
Russel Reiter
Department of Cell Systems and Anatomy, UT Health Long School of Medicine
Author for correspondence.
Email: info@benthamscience.net
Seyed Matini
Department of Pathology, School of Medicine,, Kashan University of Medical Sciences
Email: info@benthamscience.net
Seyyed Mirhashemi
Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases,, Qazvin University of Medical Sciences,
Email: info@benthamscience.net
Zatollah Asemi
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Gupta, A.P.; Pandotra, P.; Sharma, R.; Kushwaha, M.; Gupta, S. Marine resource: A promising future for anticancer drugs. Studies in natural products chemistry. Elsevier Inc. , 2013, 229-325.
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther., 2020, 5(1), 28. doi: 10.1038/s41392-020-0134-x PMID: 32296047
- Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848. doi: 10.1038/nrc3397 PMID: 23151603
- Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (piplartine) as a lead compound for anticancer agents Synthesis and properties of analogues: A mini-review. Eur. J. Med. Chem., 2018, 156, 13-20. doi: 10.1016/j.ejmech.2018.06.057 PMID: 30006159
- Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers, 2018, 10(12), 483. doi: 10.3390/cancers10120483 PMID: 30518036
- Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A multi-action and multi-target Ru II Pt IV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew. Chem. Int. Ed., 2020, 59(18), 7069-7075. doi: 10.1002/anie.201916400 PMID: 32017379
- Ma, Q.; Reiter, R.J.; Chen, Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 2020, 23(2), 91-104. doi: 10.1007/s10456-019-09689-7 PMID: 31650428
- Cutando, A.; López-Valverde, A.; Arias-Santiago, S.; DE Vicente, J.; DE Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753. PMID: 22753734
- Luchetti, F.; Canonico, B.; Betti, M.; Arcangeletti, M.; Pilolli, F.; Piroddi, M.; Canesi, L.; Papa, S.; Galli, F. Melatonin signaling and cell protection function. FASEB J., 2010, 24(10), 3603-3624. doi: 10.1096/fj.10-154450 PMID: 20534884
- Markus, R.P.; Sousa, K.S.; da Silveira Cruz-Machado, S.; Fernandes, P.A.; Ferreira, Z.S. Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first- line defense. Int. J. Mol. Sci., 2021, 22(22), 12143. doi: 10.3390/ijms222212143 PMID: 34830026
- Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Alonso-Gonzalez, C.; Reiter, R.J. Melatonin uses in oncology: Breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin. Investig. Drugs, 2012, 21(6), 819-831. doi: 10.1517/13543784.2012.681045 PMID: 22500582
- Davoodvandi, A.; Nikfar, B.; Reiter, R.J.; Asemi, Z. Melatonin and cancer suppression: Insights into its effects on DNA methylation. Cell. Mol. Biol. Lett., 2022, 27(1), 73. doi: 10.1186/s11658-022-00375-z PMID: 36064311
- Talib, W.H. A ketogenic diet combined with melatonin overcomes cisplatin and vincristine drug resistance in breast carcinoma syngraft. Nutrition, 2020, 72, 110659. doi: 10.1016/j.nut.2019.110659 PMID: 31986320
- Talib, W.H.; Odeh, L.H.; Basheti, I. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J. Cancer Res. Ther., 2018, 14(S9), 324. doi: 10.4103/0973-1482.235349 PMID: 29970684
- Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie, 2015, 61(2-3), 77-84. doi: 10.1016/j.neuchi.2015.03.002 PMID: 25908646
- Boutin, J.A.; Witt-Enderby, P.A.; Sotriffer, C.; Zlotos, D.P. Melatonin receptor ligands: A pharmaco-chemical perspective. J. Pineal Res., 2020, 69(3), e12672. doi: 10.1111/jpi.12672 PMID: 32531076
- Salehi, B.; Sharopov, F.; Fokou, P.; Kobylinska, A.; Jonge, L.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.; Martorell, M.; Martins, N.; Iriti, M. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells, 2019, 8(7), 681. doi: 10.3390/cells8070681 PMID: 31284489
- Amaral, F.G.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479. doi: 10.20945/2359-3997000000066 PMID: 30304113
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab., 2008, 19(1), 17-24. doi: 10.1016/j.tem.2007.10.007 PMID: 18155917
- Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12(2), 151-180. doi: 10.1210/edrv-12-2-151 PMID: 1649044
- Pourhanifeh, M.H.; Mahdavinia, M.; Reiter, R.J.; Asemi, Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J. Cell. Physiol., 2019, 234(8), 12142-12148. doi: 10.1002/jcp.28129 PMID: 30618091
- Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725. doi: 10.1111/bph.13536 PMID: 27314810
- Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 361-383. doi: 10.1146/annurev-pharmtox-010814-124742 PMID: 26514204
- Ng, K.Y.; Leong, M.K.; Liang, H.; Paxinos, G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct. Funct., 2017, 222(7), 2921-2939. doi: 10.1007/s00429-017-1439-6 PMID: 28478550
- Stauch, B.; Johansson, L.C.; Cherezov, V. Structural insights into melatonin receptors. FEBS J., 2020, 287(8), 1496-1510. doi: 10.1111/febs.15128 PMID: 31693784
- Moloudizargari, M.; Moradkhani, F.; Hekmatirad, S.; Fallah, M.; Asghari, M.H.; Reiter, R.J. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci., 2021, 267, 118934. doi: 10.1016/j.lfs.2020.118934 PMID: 33385405
- Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8), 2205. doi: 10.3390/ijms19082205 PMID: 30060531
- Menéndez-Menéndez, J; Martínez-Campa, C. Melatonin: An anti-tumor agent in hormone-dependent cancers. Int J Endocrinol., 2018, 2018, 3271948. doi: 10.1155/2018/3271948
- Najafi, M.; Salehi, E.; Farhood, B.; Nashtaei, M.S.; Hashemi Goradel, N.; Khanlarkhani, N.; Namjoo, Z.; Mortezaee, K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J. Cell. Physiol., 2019, 234(3), 2356-2372. doi: 10.1002/jcp.27259 PMID: 30192001
- Maroufi, N.F.; Ashouri, N.; Mortezania, Z.; Ashoori, Z.; Vahedian, V.; Amirzadeh-Iranaq, M.T.; Fattahi, A.; Kazemzadeh, H.; Bizzarri, M.; Akbarzadeh, M.; Nejabati, H.R.; Faridvand, Y.; Rashidi, M.R.; Nouri, M. The potential therapeutic effects of melatonin on breast cancer: An invasion and metastasis inhibitor. Pathol. Res. Pract., 2020, 216(10), 153226. doi: 10.1016/j.prp.2020.153226 PMID: 32987338
- Sadoughi, F.; Maleki Dana, P.; Homayoonfal, M.; Sharifi, M.; Asemi, Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie, 2022, 202, 15-25. doi: 10.1016/j.biochi.2022.05.012 PMID: 35636690
- Khorasanchi, A; Mukhopadhyay, N; Pandey, S; Nemani, S; Parker, GL; Urdaneta, A Melatonin supplementation for preventing cancer-related fatigue in patients receiving radiotherapy for early-stage breast cancer: A double-blind placebo-controlled phase III trial. J Clin Oncol, 2022, 40(16), e24079. doi: 10.1200/JCO.2022.40.16_suppl.e24079
- Jung, J.H.; Shin, E.A.; Kim, J.H.; Sim, D.Y.; Lee, H.; Park, J.E.; Lee, H.J.; Kim, S.H. NEDD9 inhibition by miR-25-5p activation is critically involved in co-treatment of melatonin-and pterostilbene-induced apoptosis in colorectal cancer cells. Cancers, 2019, 11(11), 1684. doi: 10.3390/cancers11111684 PMID: 31671847
- Semenov, MV; Habas, R; MacDonald, BT; He, X SnapShot: Noncanonical Wnt signaling pathways. Cell, 2007, 131(7), 1378. e1-1378. e2. doi: 10.1016/j.cell.2007.12.011
- Dijksterhuis, J.P.; Baljinnyam, B.; Stanger, K.; Sercan, H.O.; Ji, Y.; Andres, O.; Rubin, J.S.; Hannoush, R.N.; Schulte, G. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem., 2015, 290(11), 6789-6798. doi: 10.1074/jbc.M114.612648 PMID: 25605717
- Voloshanenko, O.; Gmach, P.; Winter, J.; Kranz, D.; Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J., 2017, 31(11), 4832-4844. doi: 10.1096/fj.201700144R PMID: 28733458
- Vallée, A.; Vallée, J.N.; Lecarpentier, Y. PPARγ agonists: Potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol. Psychiatry, 2019, 24(5), 643-652. doi: 10.1038/s41380-018-0131-4 PMID: 30104725
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26. doi: 10.1016/j.devcel.2009.06.016 PMID: 19619488
- MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a007880. doi: 10.1101/cshperspect.a007880 PMID: 23209147
- Tolwinski, N.S.; Wehrli, M.; Rives, A.; Erdeniz, N.; DiNardo, S.; Wieschaus, E. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev. Cell, 2003, 4(3), 407-418. doi: 10.1016/S1534-5807(03)00063-7 PMID: 12636921
- Li, V.S.W.; Ng, S.S.; Boersema, P.J.; Low, T.Y.; Karthaus, W.R.; Gerlach, J.P.; Mohammed, S.; Heck, A.J.R.; Maurice, M.M.; Mahmoudi, T.; Clevers, H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell, 2012, 149(6), 1245-1256. doi: 10.1016/j.cell.2012.05.002 PMID: 22682247
- Taelman, V.F.; Dobrowolski, R.; Plouhinec, J.L.; Fuentealba, L.C.; Vorwald, P.P.; Gumper, I.; Sabatini, D.D.; De Robertis, E.M. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 2010, 143(7), 1136-1148. doi: 10.1016/j.cell.2010.11.034 PMID: 21183076
- Hendriksen, J.; Jansen, M.; Brown, C.M.; van der Velde, H.; van Ham, M.; Galjart, N.; Offerhaus, G.J.; Fagotto, F.; Fornerod, M. Plasma membrane recruitment of dephosphorylated β-catenin upon activation of the Wnt pathway. J. Cell Sci., 2008, 121(11), 1793-1802. doi: 10.1242/jcs.025536 PMID: 18460581
- Daniels, D.L.; Weis, W.I. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol., 2005, 12(4), 364-371. doi: 10.1038/nsmb912 PMID: 15768032
- Hao, H.X.; Jiang, X.; Cong, F. Control of Wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers, 2016, 8(6), 54. doi: 10.3390/cancers8060054 PMID: 27338477
- Xie, Y.; Zamponi, R.; Charlat, O.; Ramones, M.; Swalley, S.; Jiang, X.; Rivera, D.; Tschantz, W.; Lu, B.; Quinn, L.; Dimitri, C.; Parker, J.; Jeffery, D.; Wilcox, S.K.; Watrobka, M.; LeMotte, P.; Granda, B.; Porter, J.A.; Myer, V.E.; Loew, A.; Cong, F. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep., 2013, 14(12), 1120-1126. doi: 10.1038/embor.2013.167 PMID: 24165923
- Wang, D.; Huang, B.; Zhang, S.; Yu, X.; Wu, W.; Wang, X. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev., 2013, 27(12), 1339-1344. doi: 10.1101/gad.219360.113 PMID: 23756652
- Park, S.; Wu, L.; Tu, J.; Yu, W.; Toh, Y.; Carmon, K.S.; Liu, Q.J. Unlike LGR4, LGR5 potentiates Wntβ-catenin signaling without sequestering E3 ligases. Sci. Signal., 2020, 13(660), eaaz4051. doi: 10.1126/scisignal.aaz4051 PMID: 33262293
- Vermeulen, L.; De Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; Sprick, M.R.; Kemper, K.; Richel, D.J.; Stassi, G.; Medema, J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol., 2010, 12(5), 468-476. doi: 10.1038/ncb2048 PMID: 20418870
- Najdi, R.; Holcombe, R.; Waterman, M. Wnt signaling and colon carcinogenesis: Beyond APC. J. Carcinog., 2011, 10(1), 5. doi: 10.4103/1477-3163.78111 PMID: 21483657
- Loregger, A.; Grandl, M.; Mejías-Luque, R.; Allgäuer, M.; Degenhart, K.; Haselmann, V.; Oikonomou, C.; Hatzis, P.; Janssen, K.P.; Nitsche, U.; Gradl, D.; van den Broek, O.; Destree, O.; Ulm, K.; Neumaier, M.; Kalali, B.; Jung, A.; Varela, I.; Schmid, R.M.; Rad, R.; Busch, D.H.; Gerhard, M. The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci. Signal., 2015, 8(393), ra90. doi: 10.1126/scisignal.aac6757 PMID: 26350900
- Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; Van Allen, E.M.; Hahn, W.C.; Gabriel, S.B.; Lander, E.S.; Getz, G.; Ogino, S.; Fuchs, C.S.; Garraway, L.A. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet., 2014, 46(12), 1264-1266. doi: 10.1038/ng.3127 PMID: 25344691
- Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; Guillory, J.; Ha, C.; Dijkgraaf, G.J.P.; Stinson, J.; Gnad, F.; Huntley, M.A.; Degenhardt, J.D.; Haverty, P.M.; Bourgon, R.; Wang, W.; Koeppen, H.; Gentleman, R.; Starr, T.K.; Zhang, Z.; Largaespada, D.A.; Wu, T.D.; de Sauvage, F.J. Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488(7413), 660-664. doi: 10.1038/nature11282 PMID: 22895193
- Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol., 2010, 176(6), 2911-2920. doi: 10.2353/ajpath.2010.091125 PMID: 20395444
- Schade, B.; Lesurf, R.; Sanguin-Gendreau, V.; Bui, T.; Deblois, G.; OToole, S.A.; Millar, E.K.A.; Zardawi, S.J.; Lopez-Knowles, E.; Sutherland, R.L.; Giguère, V.; Kahn, M.; Hallett, M.; Muller, W.J. β-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res., 2013, 73(14), 4474-4487. doi: 10.1158/0008-5472.CAN-12-3925 PMID: 23720052
- Teng, Y.; Wang, X.; Wang, Y.; Ma, D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 2010, 392(3), 373-379. doi: 10.1016/j.bbrc.2010.01.028 PMID: 20074550
- Staal, F.J.; Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol., 2008, 38(7), 1788-1794. doi: 10.1002/eji.200738118 PMID: 18581335
- Peterson, L.F.; Turbiak, A.J.; Giannola, D.M.; Donato, N.; Showalter, H.H.; Fearon, E.R. Wnt-pathway directed compound targets blast crisis and chronic phase CML leukemia stem progenitors. Am. Soc. Hematol., 2009. doi: 10.1182/blood.V114.22.2168.2168
- Nagaraj, A.B.; Joseph, P.; Kovalenko, O.; Singh, S.; Armstrong, A.; Redline, R.; Resnick, K.; Zanotti, K.; Waggoner, S.; DiFeo, A. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget, 2015, 6(27), 23720-23734. doi: 10.18632/oncotarget.4690 PMID: 26125441
- Huss, S.; Nehles, J.; Binot, E.; Wardelmann, E.; Mittler, J.; Kleine, M.A.; Künstlinger, H.; Hartmann, W.; Hohenberger, P.; Merkelbach-Bruse, S.; Buettner, R.; Schildhaus, H.U. β-Catenin ( CTNNB1 ) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis. Histopathology, 2013, 62(2), 294-304. doi: 10.1111/j.1365-2559.2012.04355.x PMID: 23020601
- Mezni, I.; Galichon, P.; Bacha, M.M.; Sfar, I.; Hertig, A.; Goucha, R.; Xu-Dubois, Y.C.; Abderrahim, E.; Gorgi, Y.; Rondeau, E.; Abdallah, T.B. The epithelial-mesenchymal transition and fibrosis of the renal transplant. Med. Sci., 2015, 31(1), 68-74. doi: 10.1051/medsci/20153101015 PMID: 25658733
- Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8. doi: 10.1126/scisignal.2005189 PMID: 25249658
- Long, H.; Xiang, T.; Qi, W.; Huang, J.; Chen, J.; He, L.; Liang, Z.; Guo, B.; Li, Y.; Xie, R.; Zhu, B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget, 2015, 6(8), 5846-5859. doi: 10.18632/oncotarget.3462 PMID: 25788271
- Park, J.; Yoon, J. Schizandrin inhibits fibrosis and epithelialmesenchymal transition in transforming growth factor-β1-stimulated AML12 cells. Int. Immunopharmacol., 2015, 25(2), 276-284. doi: 10.1016/j.intimp.2015.02.014 PMID: 25701504
- Kim, K.K.; Kugler, M.C.; Wolters, P.J.; Robillard, L.; Galvez, M.G.; Brumwell, A.N.; Sheppard, D.; Chapman, H.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci., 2006, 103(35), 13180-13185. doi: 10.1073/pnas.0605669103 PMID: 16924102
- Namba, T.; Tanaka, K-I.; Ito, Y.; Hoshino, T.; Matoyama, M.; Yamakawa, N.; Isohama, Y.; Azuma, A.; Mizushima, T. Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death Differ., 2010, 17(12), 1882-1895. doi: 10.1038/cdd.2010.64 PMID: 20489727
- Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol. Med. Rep., 2016, 14(6), 5567-5572. doi: 10.3892/mmr.2016.5950 PMID: 27878256
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
- Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024. doi: 10.1016/S0140-6736(15)00055-0 PMID: 26321262
- Lai, S-Z; Li, W-F; Chen, L; Luo, W; Chen, Y-Y; Liu, L-Z How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys, 2011, 80(3), 661-668. doi: 10.1016/j.ijrobp.2010.03.024
- Chen, S.H.; Kuo, C.C.; Li, C.F.; Cheung, C.H.A.; Tsou, T.C.; Chiang, H.C.; Yang, Y.N.; Chang, S.L.; Lin, L.C.; Pan, H.Y.; Chang, K.Y.; Chang, J.Y. O 6-methylguanine DNA methyltransferase repairs platinum-DNA adducts following cisplatin treatment and predicts prognoses of nasopharyngeal carcinoma. Int. J. Cancer, 2015, 137(6), 1291-1305. doi: 10.1002/ijc.29486 PMID: 25693518
- Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36. doi: 10.1016/j.phrs.2016.01.001 PMID: 26804248
- Saurin, J.C.; Gutknecht, C.; Napoleon, B.; Chavaillon, A.; Ecochard, R.; Scoazec, J.Y.; Ponchon, T.; Chayvialle, J.A. Surveillance of duodenal adenomas in familial adenomatous polyposis reveals high cumulative risk of advanced disease. J. Clin. Oncol., 2004, 22(3), 493-498. doi: 10.1200/JCO.2004.06.028 PMID: 14752072
- Baujat, B; Audry, H; Bourhis, J; Chan, AT; Onat, H; Chua, DT Chemotherapy in locally advanced nasopharyngeal carcinoma: An individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys, 2006, 64(1), 47-56. doi: 10.1016/j.ijrobp.2005.06.037
- Proctor, R.N. FDAs new plan to reduce the nicotine in cigarettes to sub-addictive levels could be a game-changer. Tob Control, 2017, 26(5), 487-488. doi: 10.1136/tobaccocontrol-2017-053978
- Lam, W.K.J.; Jiang, P.; Chan, K.C.A.; Peng, W.; Shang, H.; Heung, M.M.S.; Cheng, S.H.; Zhang, H.; Tse, O.Y.O.; Raghupathy, R.; Ma, B.B.Y.; Hui, E.P.; Chan, A.T.C.; Woo, J.K.S.; Chiu, R.W.K.; Lo, Y.M.D. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat. Commun., 2019, 10(1), 3256. doi: 10.1038/s41467-019-11226-5 PMID: 31332191
- Liu, R.Y.; Dong, Z.; Liu, J.; Zhou, L.; Huang, W.; Khoo, S.K.; Zhang, Z.; Petillo, D.; Teh, B.T.; Qian, C.N.; Zhang, J.T. Overexpression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells. Mol. Cancer Ther., 2013, 12(10), 2157-2166. doi: 10.1158/1535-7163.MCT-12-1190 PMID: 23956056
- Zhang, J.; Xie, T.; Zhong, X.; Jiang, H.L.; Li, R.; Wang, B.Y.; Huang, X.T.; Cen, B.H.; Yuan, Y.W. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging, 2020, 12(6), 5423-5438. doi: 10.18632/aging.102968 PMID: 32203052
- Lobo, N.; Afferi, L.; Moschini, M.; Mostafid, H.; Porten, S.; Psutka, S.P.; Gupta, S.; Smith, A.B.; Williams, S.B.; Lotan, Y. Epidemiology, screening, and prevention of bladder cancer. Eur. Urol. Oncol., 2022, 5(6), 628-639. doi: 10.1016/j.euo.2022.10.003 PMID: 36333236
- Xu, X.S.; Wang, L.; Abrams, J.; Wang, G. Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer. J. Hematol. Oncol., 2011, 4(1), 17. doi: 10.1186/1756-8722-4-17 PMID: 21507255
- Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17022. doi: 10.1038/nrdp.2017.22 PMID: 28406148
- Birkenkamp-Demtröder, K.; Christensen, E.; Nordentoft, I.; Knudsen, M.; Taber, A.; Høyer, S.; Lamy, P.; Agerbæk, M.; Jensen, J.B.; Dyrskjøt, L. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur. Urol., 2018, 73(4), 535-540. doi: 10.1016/j.eururo.2017.09.011 PMID: 28958829
- Cai, Z.; Zhang, F.; Chen, W.; Zhang, J.; Li, H. miRNAs: A promising target in the chemoresistance of bladder cancer. OncoTargets Ther., 2020, 12, 11805-11816. doi: 10.2147/OTT.S231489 PMID: 32099386
- Michaelis, M.; Doerr, H.; Cinatl, J., Jr Valproic acid as anti-cancer drug. Curr. Pharm. Des., 2007, 13(33), 3378-3393. doi: 10.2174/138161207782360528 PMID: 18045192
- Liu, S.; Liang, B.; Jia, H.; Jiao, Y.; Pang, Z.; Huang, Y. Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 2017, 7(6), 798-810. doi: 10.1002/2211-5463.12223 PMID: 28593135
- Gu, Q.; Luo, Y.; Chen, C.; Jiang, D.; Huang, Q.; Wang, X. GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Exp. Cell Res., 2019, 384(1), 111619. doi: 10.1016/j.yexcr.2019.111619 PMID: 31525341
- Mirabello, L.; Troisi, R.J.; Savage, S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer, 2009, 125(1), 229-234. doi: 10.1002/ijc.24320 PMID: 19330840
- Li, L.; Wang, X.; Liu, D. MicroRNA-185 inhibits proliferation, migration and invasion in human osteosarcoma MG63 cells by targeting vesicle-associated membrane protein 2. Gene, 2019, 696, 80-87. doi: 10.1016/j.gene.2019.01.034 PMID: 30721745
- Zhang, Z.F.; Xu, H.H.; Hu, W.H.; Hu, T.Y.; Wang, X.B. LINC01116 promotes proliferation, invasion and migration of osteosarcoma cells by silencing p53 and EZH2. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 6813-6823. PMID: 31486480
- Liu, K.; Hou, Y.; Liu, Y.; Zheng, J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J. Biomed. Sci., 2017, 24(1), 46. doi: 10.1186/s12929-017-0353-9 PMID: 28720111
- Chiappetta, C.; Carletti, R.; Della Rocca, C.; Di Cristofano, C. KMT2C modulates migration and invasion processes in osteosarcoma cell lines. Pathol. Res. Pract., 2019, 215(10), 152534. doi: 10.1016/j.prp.2019.152534 PMID: 31337554
- Wang, X.; Hu, K.; Chao, Y.; Wang, L. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed. Pharmacother., 2019, 114, 108798. doi: 10.1016/j.biopha.2019.108798 PMID: 30909141
- Carina, V.; Costa, V.; Sartori, M.; Bellavia, D.; De Luca, A.; Raimondi, L.; Fini, M.; Giavaresi, G. Adjuvant biophysical therapies in osteosarcoma. Cancers, 2019, 11(3), 348. doi: 10.3390/cancers11030348 PMID: 30871044
- Li, Y.; Zou, J.; Li, B.; Du, J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J. Cell. Mol. Med., 2021, 25(20), 9543-9556. doi: 10.1111/jcmm.16894 PMID: 34547170
- Ou, T.; Lilly, M.; Jiang, W. The pathologic role of toll-like receptor 4 in prostate cancer. Front. Immunol., 2018, 9, 1188. doi: 10.3389/fimmu.2018.01188 PMID: 29928275
- Hsu, R.Y.C.; Chan, C.H.F.; Spicer, J.D.; Rousseau, M.C.; Giannias, B.; Rousseau, S.; Ferri, L.E. LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis. Cancer Res., 2011, 71(5), 1989-1998. doi: 10.1158/0008-5472.CAN-10-2833 PMID: 21363926
- Li, J.; Yin, J.; Shen, W.; Gao, R.; Liu, Y.; Chen, Y.; Li, X.; Liu, C.; Xiang, R.; Luo, N. TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat. Rec., 2017, 300(7), 1219-1229. doi: 10.1002/ar.23590 PMID: 28296189
- Song, W.; Tiruthani, K.; Wang, Y.; Shen, L.; Hu, M.; Dorosheva, O.; Qiu, K.; Kinghorn, K.A.; Liu, R.; Huang, L. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater., 2018, 30(52), 1805007. doi: 10.1002/adma.201805007 PMID: 30387230
- Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13(1), 395-412. doi: 10.1146/annurev-pathol-020117-043854 PMID: 29414248
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelialmesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196. doi: 10.1038/nrm3758 PMID: 24556840
- Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol., 2017, 14(11), 683-696. doi: 10.1038/nrurol.2017.144 PMID: 28895566
- Marques, R.B.; Aghai, A.; de Ridder, C.M.A.; Stuurman, D.; Hoeben, S.; Boer, A.; Ellston, R.P.; Barry, S.T.; Davies, B.R.; Trapman, J.; van Weerden, W.M. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur. Urol., 2015, 67(6), 1177-1185. doi: 10.1016/j.eururo.2014.08.053 PMID: 25220373
- Barton, B.E.; Karras, J.G.; Murphy, T.F.; Barton, A.; Huang, H.F.S. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther., 2004, 3(1), 11-20. doi: 10.1158/1535-7163.11.3.1 PMID: 14749471
- Tian, Q.X.; Zhang, Z.H.; Ye, Q.L.; Xu, S.; Hong, Q.; Xing, W.Y.; Chen, L.; Yu, D.X.; Xu, D.X.; Xie, D.D. Melatonin inhibits migration and invasion in LPS-stimulated and-unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. J. Inflamm. Res., 2021, 14, 2253-2265. doi: 10.2147/JIR.S305450 PMID: 34079331
- Reya, T; Morrison, SJ; Clarke, MF; Weissman, IL Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111. doi: 10.1038/35102167
- Sokolov, D.; Sharda, N.; Giri, B.; Hassan, M.S.; Singh, D.; Tarasiewicz, A.; Lohr, C.; von Holzen, U.; Kristian, T.; Waddell, J.; Reiter, R.J.; Ahmed, H.; Banerjee, A. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling. J. Pineal Res., 2022, 73(1), e12808. doi: 10.1111/jpi.12808 PMID: 35619550
- Shah, M.A. Update on metastatic gastric and esophageal cancers. J. Clin. Oncol., 2015, 33(16), 1760-1769. doi: 10.1200/JCO.2014.60.1799 PMID: 25918288
- Yonemura, Y.; Bandou, E.; Kinoshita, K.; Kawamura, T.; Takahashi, S.; Endou, Y.; Sasaki, T. Effective therapy for peritoneal dissemination in gastric cancer. Surg. Oncol. Clin. N. Am., 2003, 12(3), 635-648. doi: 10.1016/S1055-3207(03)00035-8 PMID: 14567022
- Kurashige, J.; Mima, K.; Sawada, G.; Takahashi, Y.; Eguchi, H.; Sugimachi, K.; Mori, M.; Yanagihara, K.; Yashiro, M.; Hirakawa, K.; Baba, H.; Mimori, K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis, 2015, 36(1), 133-141. doi: 10.1093/carcin/bgu232 PMID: 25411357
- Liu, S.H.; Lee, W.J.; Lai, D.W.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Chiu, C.S.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Pan, H.C.; Sheu, M.L. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol. Oncol., 2015, 9(4), 834-849. doi: 10.1016/j.molonc.2014.12.009 PMID: 25619450
- Lai, D.W.; Liu, S.H.; Karlsson, A.I.; Lee, W.J.; Wang, K.B.; Chen, Y.C.; Shen, C.C.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Lan, K.H.; Arbiser, J.L.; Sheu, M.L. The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination. Oncotarget, 2014, 5(17), 7788-7804. doi: 10.18632/oncotarget.2307 PMID: 25226618
- Pan, H.C.; Lai, D.W.; Lan, K.H.; Shen, C.C.; Wu, S.M.; Chiu, C.S.; Wang, K.B.; Sheu, M.L. Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis, 2013, 34(11), 2568-2579. doi: 10.1093/carcin/bgt243 PMID: 23828905
- Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103. doi: 10.1038/nrc3205 PMID: 22270953
- Craene, B.D.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 2013, 13(2), 97-110. doi: 10.1038/nrc3447 PMID: 23344542
- Onder, T.T.; Gupta, P.B.; Mani, S.A.; Yang, J.; Lander, E.S.; Weinberg, R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res., 2008, 68(10), 3645-3654. doi: 10.1158/0008-5472.CAN-07-2938 PMID: 18483246
- Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in multiple models of breast cancer. Nature, 2019, 573(7774), 439-444. doi: 10.1038/s41586-019-1526-3 PMID: 31485072
- Lee, C.C.; Yang, W.H.; Li, C.H.; Cheng, Y.W.; Tsai, C.H.; Kang, J.J. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer Lett., 2016, 376(2), 211-217. doi: 10.1016/j.canlet.2016.03.052 PMID: 27060206
- Kanda, M.; Kodera, Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J. Gastroenterol., 2016, 22(30), 6829-6840. doi: 10.3748/wjg.v22.i30.6829 PMID: 27570420
- Wu, S.M.; Lin, W.Y.; Shen, C.C.; Pan, H.C.; Keh-Bin, W.; Chen, Y.C.; Jan, Y.J.; Lai, D.W.; Tang, S.C.; Tien, H.R.; Chiu, C.S.; Tsai, T.C.; Lai, Y.L.; Sheu, M.L. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBP β and NF κ B cleavage. J. Pineal Res., 2016, 60(2), 142-154. doi: 10.1111/jpi.12295 PMID: 26514342
- Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66. doi: 10.3322/canjclin.57.1.43 PMID: 17237035
- Huang, C.Y.; Fong, Y.C.; Lee, C.Y.; Chen, M.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways. Biochem. Pharmacol., 2009, 77(5), 794-803. doi: 10.1016/j.bcp.2008.11.014 PMID: 19073147
- Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res., 2019, 11, 943-953. doi: 10.2147/CMAR.S187317 PMID: 30718965
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One, 2018, 13(7), e0200721. doi: 10.1371/journal.pone.0200721 PMID: 30052644
- Esendagli, D.; Gunel-Ozcan, A. From stem cell biology to the treatment of lung diseases. Curr. Stem Cell Res. Ther., 2017, 12(6), 493-505. PMID: 28545380
- Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.; Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; Roz, E.; Caserini, R.; Lo Vullo, S.; Camerini, T.; Mariani, L.; Delia, D.; Calabrò, E.; Pastorino, U.; Sozzi, G. Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci., 2009, 106(38), 16281-16286. doi: 10.1073/pnas.0905653106 PMID: 19805294
- Doherty, M.; Smigiel, J.; Junk, D.; Jackson, M. Cancer stem cell plasticity drives therapeutic resistance. Cancers, 2016, 8(1), 8. doi: 10.3390/cancers8010008 PMID: 26742077
- Alamgeer, M.; Peacock, C.D.; Matsui, W.; Ganju, V.; Watkins, D.N. Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 2013, 18(5), 757-764. doi: 10.1111/resp.12094 PMID: 23586700
- Yang, Y.C.; Chiou, P.C.; Chen, P.C.; Liu, P.Y.; Huang, W.C.; Chao, C.C.; Tang, C.H. Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ. Toxicol., 2019, 34(2), 203-209. doi: 10.1002/tox.22674 PMID: 30421542
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388. doi: 10.1016/S0140-6736(13)62146-7 PMID: 24767708
- Huang, T.; Poole, E.M.; Okereke, O.I.; Kubzansky, L.D.; Eliassen, A.H.; Sood, A.K.; Wang, M.; Tworoger, S.S. Depression and risk of epithelial ovarian cancer: Results from two large prospective cohort studies. Gynecol. Oncol., 2015, 139(3), 481-486. doi: 10.1016/j.ygyno.2015.10.004 PMID: 26449316
- Krizanova, O.; Babula, P.; Pacak, K. Stress, catecholaminergic system and cancer. Stress, 2016, 19(4), 419-428. doi: 10.1080/10253890.2016.1203415 PMID: 27398826
- Lutgendorf, S.K.; Cole, S.; Costanzo, E.; Bradley, S.; Coffin, J.; Jabbari, S.; Rainwater, K.; Ritchie, J.M.; Yang, M.; Sood, A.K. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res., 2003, 9(12), 4514-4521. PMID: 14555525
- Choi, M.J.; Cho, K.H.; Lee, S.; Bae, Y.J.; Jeong, K.J.; Rha, S.Y.; Choi, E.J.; Park, J.H.; Kim, J.M.; Lee, J-S.; Mills, G.B.; Lee, H.Y. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene, 2015, 34(26), 3402-3412. doi: 10.1038/onc.2014.270 PMID: 25151968
- Kang, Y.; Nagaraja, A.S.; Armaiz-Pena, G.N.; Dorniak, P.L.; Hu, W.; Rupaimoole, R.; Liu, T.; Gharpure, K.M.; Previs, R.A.; Hansen, J.M.; Rodriguez-Aguayo, C.; Ivan, C.; Ram, P.; Sehgal, V.; Lopez-Berestein, G.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer. Clin. Cancer Res., 2016, 22(7), 1713-1724. doi: 10.1158/1078-0432.CCR-15-1275 PMID: 26581245
- Armaiz-Pena, G.N.; Cole, S.W.; Lutgendorf, S.K.; Sood, A.K. Neuroendocrine influences on cancer progression. Brain Behav. Immun., 2013, 30(S1), S19-S25. doi: 10.1016/j.bbi.2012.06.005 PMID: 22728325
- Jiang, S.H.; Zhang, X.X.; Hu, L.P.; Wang, X.; Li, Q.; Zhang, X.L.; Li, J.; Gu, J.R.; Zhang, Z.G. Systemic regulation of cancer development by neuro-endocrine-immune signaling network at multiple levels. Front. Cell Dev. Biol., 2020, 8, 586757. doi: 10.3389/fcell.2020.586757 PMID: 33117814
- Bu, S.; Wang, Q.; Sun, J.; Li, X.; Gu, T.; Lai, D. Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/β-catenin/SLUG axis. Cell Death Dis., 2020, 11(8), 644. doi: 10.1038/s41419-020-02906-y PMID: 32811805
Supplementary files
