Melatonin as a Promising Agent for Cancer Treatment: Insights into its Effects on the Wnt/beta-catenin Signaling Pathway

  • Authors: Davoodvandi A.1, Asemi R.2, Sharifi M.3, Reiter R.4, Matini S.5, Mirhashemi S.6, Asemi Z.7
  • Affiliations:
    1. Student Research Committee,, Kashan University of Medical Sciences,
    2. Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences
    3. Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences,
    4. Department of Cell Systems and Anatomy, UT Health Long School of Medicine
    5. Department of Pathology, School of Medicine,, Kashan University of Medical Sciences
    6. Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases,, Qazvin University of Medical Sciences,
    7. Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences
  • Issue: Vol 31, No 11 (2024)
  • Pages: 1315-1331
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://permmedjournal.ru/0929-8673/article/view/644184
  • DOI: https://doi.org/10.2174/0929867330666230409141957
  • ID: 644184

Cite item

Full Text

Abstract

In recent years, substantial advances have been made in cancer treatment modalities. Yet, within the last three decades, neither cancer incidence nor the cancer-induced mortality rate has changed. Available anti-cancer chemotherapeutics possess remarkably restricted effectiveness and often have severe adverse effects. Hence, the identification of novel pharmaceutical agents that do not exhibit these major disadvantages is imperative. Melatonin, an important endogenous molecule synthesized and secreted by the pineal gland, is a promising chemical agent that has been comprehensively assessed over the last decades for its anti-inflammatory and anti-cancer properties. Melatonin is reportedly a significant inhibitor of cancer initiation, progression, and metastasis. The anti-- cancer potential of melatonin is principally mediated by reversing the up-regulated amounts of different transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic agents. Also, melatonin often has signifcant inhibitory effects on cancer cell proliferation through either promoting apoptosis or inducing cell cycle arrest. The current review provides an insight into melatonin-induced effects against various human cancers with a particular focus on the regulation of Wnt/β-catenin signaling pathway.

About the authors

Amirhossein Davoodvandi

Student Research Committee,, Kashan University of Medical Sciences,

Email: info@benthamscience.net

Reza Asemi

Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences

Email: info@benthamscience.net

Mehran Sharifi

Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital,, Isfahan University of Medical Sciences,

Email: info@benthamscience.net

Russel Reiter

Department of Cell Systems and Anatomy, UT Health Long School of Medicine

Author for correspondence.
Email: info@benthamscience.net

Seyed Matini

Department of Pathology, School of Medicine,, Kashan University of Medical Sciences

Email: info@benthamscience.net

Seyyed Mirhashemi

Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases,, Qazvin University of Medical Sciences,

Email: info@benthamscience.net

Zatollah Asemi

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Gupta, A.P.; Pandotra, P.; Sharma, R.; Kushwaha, M.; Gupta, S. Marine resource: A promising future for anticancer drugs. Studies in natural products chemistry. Elsevier Inc. , 2013, 229-325.
  3. Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther., 2020, 5(1), 28. doi: 10.1038/s41392-020-0134-x PMID: 32296047
  4. Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848. doi: 10.1038/nrc3397 PMID: 23151603
  5. Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (piplartine) as a lead compound for anticancer agents – Synthesis and properties of analogues: A mini-review. Eur. J. Med. Chem., 2018, 156, 13-20. doi: 10.1016/j.ejmech.2018.06.057 PMID: 30006159
  6. Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers, 2018, 10(12), 483. doi: 10.3390/cancers10120483 PMID: 30518036
  7. Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A multi-action and multi-target Ru II –Pt IV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew. Chem. Int. Ed., 2020, 59(18), 7069-7075. doi: 10.1002/anie.201916400 PMID: 32017379
  8. Ma, Q.; Reiter, R.J.; Chen, Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 2020, 23(2), 91-104. doi: 10.1007/s10456-019-09689-7 PMID: 31650428
  9. Cutando, A.; López-Valverde, A.; Arias-Santiago, S.; DE Vicente, J.; DE Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753. PMID: 22753734
  10. Luchetti, F.; Canonico, B.; Betti, M.; Arcangeletti, M.; Pilolli, F.; Piroddi, M.; Canesi, L.; Papa, S.; Galli, F. Melatonin signaling and cell protection function. FASEB J., 2010, 24(10), 3603-3624. doi: 10.1096/fj.10-154450 PMID: 20534884
  11. Markus, R.P.; Sousa, K.S.; da Silveira Cruz-Machado, S.; Fernandes, P.A.; Ferreira, Z.S. Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first- line defense. Int. J. Mol. Sci., 2021, 22(22), 12143. doi: 10.3390/ijms222212143 PMID: 34830026
  12. Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Alonso-Gonzalez, C.; Reiter, R.J. Melatonin uses in oncology: Breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin. Investig. Drugs, 2012, 21(6), 819-831. doi: 10.1517/13543784.2012.681045 PMID: 22500582
  13. Davoodvandi, A.; Nikfar, B.; Reiter, R.J.; Asemi, Z. Melatonin and cancer suppression: Insights into its effects on DNA methylation. Cell. Mol. Biol. Lett., 2022, 27(1), 73. doi: 10.1186/s11658-022-00375-z PMID: 36064311
  14. Talib, W.H. A ketogenic diet combined with melatonin overcomes cisplatin and vincristine drug resistance in breast carcinoma syngraft. Nutrition, 2020, 72, 110659. doi: 10.1016/j.nut.2019.110659 PMID: 31986320
  15. Talib, W.H.; Odeh, L.H.; Basheti, I. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J. Cancer Res. Ther., 2018, 14(S9), 324. doi: 10.4103/0973-1482.235349 PMID: 29970684
  16. Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie, 2015, 61(2-3), 77-84. doi: 10.1016/j.neuchi.2015.03.002 PMID: 25908646
  17. Boutin, J.A.; Witt-Enderby, P.A.; Sotriffer, C.; Zlotos, D.P. Melatonin receptor ligands: A pharmaco-chemical perspective. J. Pineal Res., 2020, 69(3), e12672. doi: 10.1111/jpi.12672 PMID: 32531076
  18. Salehi, B.; Sharopov, F.; Fokou, P.; Kobylinska, A.; Jonge, L.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.; Martorell, M.; Martins, N.; Iriti, M. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells, 2019, 8(7), 681. doi: 10.3390/cells8070681 PMID: 31284489
  19. Amaral, F.G.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479. doi: 10.20945/2359-3997000000066 PMID: 30304113
  20. Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab., 2008, 19(1), 17-24. doi: 10.1016/j.tem.2007.10.007 PMID: 18155917
  21. Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12(2), 151-180. doi: 10.1210/edrv-12-2-151 PMID: 1649044
  22. Pourhanifeh, M.H.; Mahdavinia, M.; Reiter, R.J.; Asemi, Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J. Cell. Physiol., 2019, 234(8), 12142-12148. doi: 10.1002/jcp.28129 PMID: 30618091
  23. Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725. doi: 10.1111/bph.13536 PMID: 27314810
  24. Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 361-383. doi: 10.1146/annurev-pharmtox-010814-124742 PMID: 26514204
  25. Ng, K.Y.; Leong, M.K.; Liang, H.; Paxinos, G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct. Funct., 2017, 222(7), 2921-2939. doi: 10.1007/s00429-017-1439-6 PMID: 28478550
  26. Stauch, B.; Johansson, L.C.; Cherezov, V. Structural insights into melatonin receptors. FEBS J., 2020, 287(8), 1496-1510. doi: 10.1111/febs.15128 PMID: 31693784
  27. Moloudizargari, M.; Moradkhani, F.; Hekmatirad, S.; Fallah, M.; Asghari, M.H.; Reiter, R.J. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci., 2021, 267, 118934. doi: 10.1016/j.lfs.2020.118934 PMID: 33385405
  28. Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8), 2205. doi: 10.3390/ijms19082205 PMID: 30060531
  29. Menéndez-Menéndez, J; Martínez-Campa, C. Melatonin: An anti-tumor agent in hormone-dependent cancers. Int J Endocrinol., 2018, 2018, 3271948. doi: 10.1155/2018/3271948
  30. Najafi, M.; Salehi, E.; Farhood, B.; Nashtaei, M.S.; Hashemi Goradel, N.; Khanlarkhani, N.; Namjoo, Z.; Mortezaee, K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J. Cell. Physiol., 2019, 234(3), 2356-2372. doi: 10.1002/jcp.27259 PMID: 30192001
  31. Maroufi, N.F.; Ashouri, N.; Mortezania, Z.; Ashoori, Z.; Vahedian, V.; Amirzadeh-Iranaq, M.T.; Fattahi, A.; Kazemzadeh, H.; Bizzarri, M.; Akbarzadeh, M.; Nejabati, H.R.; Faridvand, Y.; Rashidi, M.R.; Nouri, M. The potential therapeutic effects of melatonin on breast cancer: An invasion and metastasis inhibitor. Pathol. Res. Pract., 2020, 216(10), 153226. doi: 10.1016/j.prp.2020.153226 PMID: 32987338
  32. Sadoughi, F.; Maleki Dana, P.; Homayoonfal, M.; Sharifi, M.; Asemi, Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie, 2022, 202, 15-25. doi: 10.1016/j.biochi.2022.05.012 PMID: 35636690
  33. Khorasanchi, A; Mukhopadhyay, N; Pandey, S; Nemani, S; Parker, GL; Urdaneta, A Melatonin supplementation for preventing cancer-related fatigue in patients receiving radiotherapy for early-stage breast cancer: A double-blind placebo-controlled phase III trial. J Clin Oncol, 2022, 40(16), e24079. doi: 10.1200/JCO.2022.40.16_suppl.e24079
  34. Jung, J.H.; Shin, E.A.; Kim, J.H.; Sim, D.Y.; Lee, H.; Park, J.E.; Lee, H.J.; Kim, S.H. NEDD9 inhibition by miR-25-5p activation is critically involved in co-treatment of melatonin-and pterostilbene-induced apoptosis in colorectal cancer cells. Cancers, 2019, 11(11), 1684. doi: 10.3390/cancers11111684 PMID: 31671847
  35. Semenov, MV; Habas, R; MacDonald, BT; He, X SnapShot: Noncanonical Wnt signaling pathways. Cell, 2007, 131(7), 1378. e1-1378. e2. doi: 10.1016/j.cell.2007.12.011
  36. Dijksterhuis, J.P.; Baljinnyam, B.; Stanger, K.; Sercan, H.O.; Ji, Y.; Andres, O.; Rubin, J.S.; Hannoush, R.N.; Schulte, G. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem., 2015, 290(11), 6789-6798. doi: 10.1074/jbc.M114.612648 PMID: 25605717
  37. Voloshanenko, O.; Gmach, P.; Winter, J.; Kranz, D.; Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J., 2017, 31(11), 4832-4844. doi: 10.1096/fj.201700144R PMID: 28733458
  38. Vallée, A.; Vallée, J.N.; Lecarpentier, Y. PPARγ agonists: Potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol. Psychiatry, 2019, 24(5), 643-652. doi: 10.1038/s41380-018-0131-4 PMID: 30104725
  39. MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26. doi: 10.1016/j.devcel.2009.06.016 PMID: 19619488
  40. MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a007880. doi: 10.1101/cshperspect.a007880 PMID: 23209147
  41. Tolwinski, N.S.; Wehrli, M.; Rives, A.; Erdeniz, N.; DiNardo, S.; Wieschaus, E. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev. Cell, 2003, 4(3), 407-418. doi: 10.1016/S1534-5807(03)00063-7 PMID: 12636921
  42. Li, V.S.W.; Ng, S.S.; Boersema, P.J.; Low, T.Y.; Karthaus, W.R.; Gerlach, J.P.; Mohammed, S.; Heck, A.J.R.; Maurice, M.M.; Mahmoudi, T.; Clevers, H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell, 2012, 149(6), 1245-1256. doi: 10.1016/j.cell.2012.05.002 PMID: 22682247
  43. Taelman, V.F.; Dobrowolski, R.; Plouhinec, J.L.; Fuentealba, L.C.; Vorwald, P.P.; Gumper, I.; Sabatini, D.D.; De Robertis, E.M. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 2010, 143(7), 1136-1148. doi: 10.1016/j.cell.2010.11.034 PMID: 21183076
  44. Hendriksen, J.; Jansen, M.; Brown, C.M.; van der Velde, H.; van Ham, M.; Galjart, N.; Offerhaus, G.J.; Fagotto, F.; Fornerod, M. Plasma membrane recruitment of dephosphorylated β-catenin upon activation of the Wnt pathway. J. Cell Sci., 2008, 121(11), 1793-1802. doi: 10.1242/jcs.025536 PMID: 18460581
  45. Daniels, D.L.; Weis, W.I. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol., 2005, 12(4), 364-371. doi: 10.1038/nsmb912 PMID: 15768032
  46. Hao, H.X.; Jiang, X.; Cong, F. Control of Wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers, 2016, 8(6), 54. doi: 10.3390/cancers8060054 PMID: 27338477
  47. Xie, Y.; Zamponi, R.; Charlat, O.; Ramones, M.; Swalley, S.; Jiang, X.; Rivera, D.; Tschantz, W.; Lu, B.; Quinn, L.; Dimitri, C.; Parker, J.; Jeffery, D.; Wilcox, S.K.; Watrobka, M.; LeMotte, P.; Granda, B.; Porter, J.A.; Myer, V.E.; Loew, A.; Cong, F. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep., 2013, 14(12), 1120-1126. doi: 10.1038/embor.2013.167 PMID: 24165923
  48. Wang, D.; Huang, B.; Zhang, S.; Yu, X.; Wu, W.; Wang, X. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev., 2013, 27(12), 1339-1344. doi: 10.1101/gad.219360.113 PMID: 23756652
  49. Park, S.; Wu, L.; Tu, J.; Yu, W.; Toh, Y.; Carmon, K.S.; Liu, Q.J. Unlike LGR4, LGR5 potentiates Wnt–β-catenin signaling without sequestering E3 ligases. Sci. Signal., 2020, 13(660), eaaz4051. doi: 10.1126/scisignal.aaz4051 PMID: 33262293
  50. Vermeulen, L.; De Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; Sprick, M.R.; Kemper, K.; Richel, D.J.; Stassi, G.; Medema, J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol., 2010, 12(5), 468-476. doi: 10.1038/ncb2048 PMID: 20418870
  51. Najdi, R.; Holcombe, R.; Waterman, M. Wnt signaling and colon carcinogenesis: Beyond APC. J. Carcinog., 2011, 10(1), 5. doi: 10.4103/1477-3163.78111 PMID: 21483657
  52. Loregger, A.; Grandl, M.; Mejías-Luque, R.; Allgäuer, M.; Degenhart, K.; Haselmann, V.; Oikonomou, C.; Hatzis, P.; Janssen, K.P.; Nitsche, U.; Gradl, D.; van den Broek, O.; Destree, O.; Ulm, K.; Neumaier, M.; Kalali, B.; Jung, A.; Varela, I.; Schmid, R.M.; Rad, R.; Busch, D.H.; Gerhard, M. The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci. Signal., 2015, 8(393), ra90. doi: 10.1126/scisignal.aac6757 PMID: 26350900
  53. Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; Van Allen, E.M.; Hahn, W.C.; Gabriel, S.B.; Lander, E.S.; Getz, G.; Ogino, S.; Fuchs, C.S.; Garraway, L.A. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet., 2014, 46(12), 1264-1266. doi: 10.1038/ng.3127 PMID: 25344691
  54. Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; Guillory, J.; Ha, C.; Dijkgraaf, G.J.P.; Stinson, J.; Gnad, F.; Huntley, M.A.; Degenhardt, J.D.; Haverty, P.M.; Bourgon, R.; Wang, W.; Koeppen, H.; Gentleman, R.; Starr, T.K.; Zhang, Z.; Largaespada, D.A.; Wu, T.D.; de Sauvage, F.J. Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488(7413), 660-664. doi: 10.1038/nature11282 PMID: 22895193
  55. Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol., 2010, 176(6), 2911-2920. doi: 10.2353/ajpath.2010.091125 PMID: 20395444
  56. Schade, B.; Lesurf, R.; Sanguin-Gendreau, V.; Bui, T.; Deblois, G.; O’Toole, S.A.; Millar, E.K.A.; Zardawi, S.J.; Lopez-Knowles, E.; Sutherland, R.L.; Giguère, V.; Kahn, M.; Hallett, M.; Muller, W.J. β-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res., 2013, 73(14), 4474-4487. doi: 10.1158/0008-5472.CAN-12-3925 PMID: 23720052
  57. Teng, Y.; Wang, X.; Wang, Y.; Ma, D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 2010, 392(3), 373-379. doi: 10.1016/j.bbrc.2010.01.028 PMID: 20074550
  58. Staal, F.J.; Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol., 2008, 38(7), 1788-1794. doi: 10.1002/eji.200738118 PMID: 18581335
  59. Peterson, L.F.; Turbiak, A.J.; Giannola, D.M.; Donato, N.; Showalter, H.H.; Fearon, E.R. Wnt-pathway directed compound targets blast crisis and chronic phase CML leukemia stem progenitors. Am. Soc. Hematol., 2009. doi: 10.1182/blood.V114.22.2168.2168
  60. Nagaraj, A.B.; Joseph, P.; Kovalenko, O.; Singh, S.; Armstrong, A.; Redline, R.; Resnick, K.; Zanotti, K.; Waggoner, S.; DiFeo, A. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget, 2015, 6(27), 23720-23734. doi: 10.18632/oncotarget.4690 PMID: 26125441
  61. Huss, S.; Nehles, J.; Binot, E.; Wardelmann, E.; Mittler, J.; Kleine, M.A.; Künstlinger, H.; Hartmann, W.; Hohenberger, P.; Merkelbach-Bruse, S.; Buettner, R.; Schildhaus, H.U. β-Catenin ( CTNNB1 ) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis. Histopathology, 2013, 62(2), 294-304. doi: 10.1111/j.1365-2559.2012.04355.x PMID: 23020601
  62. Mezni, I.; Galichon, P.; Bacha, M.M.; Sfar, I.; Hertig, A.; Goucha, R.; Xu-Dubois, Y.C.; Abderrahim, E.; Gorgi, Y.; Rondeau, E.; Abdallah, T.B. The epithelial-mesenchymal transition and fibrosis of the renal transplant. Med. Sci., 2015, 31(1), 68-74. doi: 10.1051/medsci/20153101015 PMID: 25658733
  63. Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8. doi: 10.1126/scisignal.2005189 PMID: 25249658
  64. Long, H.; Xiang, T.; Qi, W.; Huang, J.; Chen, J.; He, L.; Liang, Z.; Guo, B.; Li, Y.; Xie, R.; Zhu, B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget, 2015, 6(8), 5846-5859. doi: 10.18632/oncotarget.3462 PMID: 25788271
  65. Park, J.; Yoon, J. Schizandrin inhibits fibrosis and epithelial–mesenchymal transition in transforming growth factor-β1-stimulated AML12 cells. Int. Immunopharmacol., 2015, 25(2), 276-284. doi: 10.1016/j.intimp.2015.02.014 PMID: 25701504
  66. Kim, K.K.; Kugler, M.C.; Wolters, P.J.; Robillard, L.; Galvez, M.G.; Brumwell, A.N.; Sheppard, D.; Chapman, H.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci., 2006, 103(35), 13180-13185. doi: 10.1073/pnas.0605669103 PMID: 16924102
  67. Namba, T.; Tanaka, K-I.; Ito, Y.; Hoshino, T.; Matoyama, M.; Yamakawa, N.; Isohama, Y.; Azuma, A.; Mizushima, T. Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death Differ., 2010, 17(12), 1882-1895. doi: 10.1038/cdd.2010.64 PMID: 20489727
  68. Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol. Med. Rep., 2016, 14(6), 5567-5572. doi: 10.3892/mmr.2016.5950 PMID: 27878256
  69. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
  70. Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024. doi: 10.1016/S0140-6736(15)00055-0 PMID: 26321262
  71. Lai, S-Z; Li, W-F; Chen, L; Luo, W; Chen, Y-Y; Liu, L-Z How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys, 2011, 80(3), 661-668. doi: 10.1016/j.ijrobp.2010.03.024
  72. Chen, S.H.; Kuo, C.C.; Li, C.F.; Cheung, C.H.A.; Tsou, T.C.; Chiang, H.C.; Yang, Y.N.; Chang, S.L.; Lin, L.C.; Pan, H.Y.; Chang, K.Y.; Chang, J.Y. O 6-methylguanine DNA methyltransferase repairs platinum-DNA adducts following cisplatin treatment and predicts prognoses of nasopharyngeal carcinoma. Int. J. Cancer, 2015, 137(6), 1291-1305. doi: 10.1002/ijc.29486 PMID: 25693518
  73. Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36. doi: 10.1016/j.phrs.2016.01.001 PMID: 26804248
  74. Saurin, J.C.; Gutknecht, C.; Napoleon, B.; Chavaillon, A.; Ecochard, R.; Scoazec, J.Y.; Ponchon, T.; Chayvialle, J.A. Surveillance of duodenal adenomas in familial adenomatous polyposis reveals high cumulative risk of advanced disease. J. Clin. Oncol., 2004, 22(3), 493-498. doi: 10.1200/JCO.2004.06.028 PMID: 14752072
  75. Baujat, B; Audry, H; Bourhis, J; Chan, AT; Onat, H; Chua, DT Chemotherapy in locally advanced nasopharyngeal carcinoma: An individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys, 2006, 64(1), 47-56. doi: 10.1016/j.ijrobp.2005.06.037
  76. Proctor, R.N. FDA’s new plan to reduce the nicotine in cigarettes to sub-addictive levels could be a game-changer. Tob Control, 2017, 26(5), 487-488. doi: 10.1136/tobaccocontrol-2017-053978
  77. Lam, W.K.J.; Jiang, P.; Chan, K.C.A.; Peng, W.; Shang, H.; Heung, M.M.S.; Cheng, S.H.; Zhang, H.; Tse, O.Y.O.; Raghupathy, R.; Ma, B.B.Y.; Hui, E.P.; Chan, A.T.C.; Woo, J.K.S.; Chiu, R.W.K.; Lo, Y.M.D. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat. Commun., 2019, 10(1), 3256. doi: 10.1038/s41467-019-11226-5 PMID: 31332191
  78. Liu, R.Y.; Dong, Z.; Liu, J.; Zhou, L.; Huang, W.; Khoo, S.K.; Zhang, Z.; Petillo, D.; Teh, B.T.; Qian, C.N.; Zhang, J.T. Overexpression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells. Mol. Cancer Ther., 2013, 12(10), 2157-2166. doi: 10.1158/1535-7163.MCT-12-1190 PMID: 23956056
  79. Zhang, J.; Xie, T.; Zhong, X.; Jiang, H.L.; Li, R.; Wang, B.Y.; Huang, X.T.; Cen, B.H.; Yuan, Y.W. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging, 2020, 12(6), 5423-5438. doi: 10.18632/aging.102968 PMID: 32203052
  80. Lobo, N.; Afferi, L.; Moschini, M.; Mostafid, H.; Porten, S.; Psutka, S.P.; Gupta, S.; Smith, A.B.; Williams, S.B.; Lotan, Y. Epidemiology, screening, and prevention of bladder cancer. Eur. Urol. Oncol., 2022, 5(6), 628-639. doi: 10.1016/j.euo.2022.10.003 PMID: 36333236
  81. Xu, X.S.; Wang, L.; Abrams, J.; Wang, G. Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer. J. Hematol. Oncol., 2011, 4(1), 17. doi: 10.1186/1756-8722-4-17 PMID: 21507255
  82. Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17022. doi: 10.1038/nrdp.2017.22 PMID: 28406148
  83. Birkenkamp-Demtröder, K.; Christensen, E.; Nordentoft, I.; Knudsen, M.; Taber, A.; Høyer, S.; Lamy, P.; Agerbæk, M.; Jensen, J.B.; Dyrskjøt, L. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur. Urol., 2018, 73(4), 535-540. doi: 10.1016/j.eururo.2017.09.011 PMID: 28958829
  84. Cai, Z.; Zhang, F.; Chen, W.; Zhang, J.; Li, H. miRNAs: A promising target in the chemoresistance of bladder cancer. OncoTargets Ther., 2020, 12, 11805-11816. doi: 10.2147/OTT.S231489 PMID: 32099386
  85. Michaelis, M.; Doerr, H.; Cinatl, J., Jr Valproic acid as anti-cancer drug. Curr. Pharm. Des., 2007, 13(33), 3378-3393. doi: 10.2174/138161207782360528 PMID: 18045192
  86. Liu, S.; Liang, B.; Jia, H.; Jiao, Y.; Pang, Z.; Huang, Y. Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 2017, 7(6), 798-810. doi: 10.1002/2211-5463.12223 PMID: 28593135
  87. Gu, Q.; Luo, Y.; Chen, C.; Jiang, D.; Huang, Q.; Wang, X. GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Exp. Cell Res., 2019, 384(1), 111619. doi: 10.1016/j.yexcr.2019.111619 PMID: 31525341
  88. Mirabello, L.; Troisi, R.J.; Savage, S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer, 2009, 125(1), 229-234. doi: 10.1002/ijc.24320 PMID: 19330840
  89. Li, L.; Wang, X.; Liu, D. MicroRNA-185 inhibits proliferation, migration and invasion in human osteosarcoma MG63 cells by targeting vesicle-associated membrane protein 2. Gene, 2019, 696, 80-87. doi: 10.1016/j.gene.2019.01.034 PMID: 30721745
  90. Zhang, Z.F.; Xu, H.H.; Hu, W.H.; Hu, T.Y.; Wang, X.B. LINC01116 promotes proliferation, invasion and migration of osteosarcoma cells by silencing p53 and EZH2. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 6813-6823. PMID: 31486480
  91. Liu, K.; Hou, Y.; Liu, Y.; Zheng, J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J. Biomed. Sci., 2017, 24(1), 46. doi: 10.1186/s12929-017-0353-9 PMID: 28720111
  92. Chiappetta, C.; Carletti, R.; Della Rocca, C.; Di Cristofano, C. KMT2C modulates migration and invasion processes in osteosarcoma cell lines. Pathol. Res. Pract., 2019, 215(10), 152534. doi: 10.1016/j.prp.2019.152534 PMID: 31337554
  93. Wang, X.; Hu, K.; Chao, Y.; Wang, L. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed. Pharmacother., 2019, 114, 108798. doi: 10.1016/j.biopha.2019.108798 PMID: 30909141
  94. Carina, V.; Costa, V.; Sartori, M.; Bellavia, D.; De Luca, A.; Raimondi, L.; Fini, M.; Giavaresi, G. Adjuvant biophysical therapies in osteosarcoma. Cancers, 2019, 11(3), 348. doi: 10.3390/cancers11030348 PMID: 30871044
  95. Li, Y.; Zou, J.; Li, B.; Du, J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J. Cell. Mol. Med., 2021, 25(20), 9543-9556. doi: 10.1111/jcmm.16894 PMID: 34547170
  96. Ou, T.; Lilly, M.; Jiang, W. The pathologic role of toll-like receptor 4 in prostate cancer. Front. Immunol., 2018, 9, 1188. doi: 10.3389/fimmu.2018.01188 PMID: 29928275
  97. Hsu, R.Y.C.; Chan, C.H.F.; Spicer, J.D.; Rousseau, M.C.; Giannias, B.; Rousseau, S.; Ferri, L.E. LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis. Cancer Res., 2011, 71(5), 1989-1998. doi: 10.1158/0008-5472.CAN-10-2833 PMID: 21363926
  98. Li, J.; Yin, J.; Shen, W.; Gao, R.; Liu, Y.; Chen, Y.; Li, X.; Liu, C.; Xiang, R.; Luo, N. TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat. Rec., 2017, 300(7), 1219-1229. doi: 10.1002/ar.23590 PMID: 28296189
  99. Song, W.; Tiruthani, K.; Wang, Y.; Shen, L.; Hu, M.; Dorosheva, O.; Qiu, K.; Kinghorn, K.A.; Liu, R.; Huang, L. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater., 2018, 30(52), 1805007. doi: 10.1002/adma.201805007 PMID: 30387230
  100. Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13(1), 395-412. doi: 10.1146/annurev-pathol-020117-043854 PMID: 29414248
  101. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196. doi: 10.1038/nrm3758 PMID: 24556840
  102. Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol., 2017, 14(11), 683-696. doi: 10.1038/nrurol.2017.144 PMID: 28895566
  103. Marques, R.B.; Aghai, A.; de Ridder, C.M.A.; Stuurman, D.; Hoeben, S.; Boer, A.; Ellston, R.P.; Barry, S.T.; Davies, B.R.; Trapman, J.; van Weerden, W.M. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur. Urol., 2015, 67(6), 1177-1185. doi: 10.1016/j.eururo.2014.08.053 PMID: 25220373
  104. Barton, B.E.; Karras, J.G.; Murphy, T.F.; Barton, A.; Huang, H.F.S. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther., 2004, 3(1), 11-20. doi: 10.1158/1535-7163.11.3.1 PMID: 14749471
  105. Tian, Q.X.; Zhang, Z.H.; Ye, Q.L.; Xu, S.; Hong, Q.; Xing, W.Y.; Chen, L.; Yu, D.X.; Xu, D.X.; Xie, D.D. Melatonin inhibits migration and invasion in LPS-stimulated and-unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. J. Inflamm. Res., 2021, 14, 2253-2265. doi: 10.2147/JIR.S305450 PMID: 34079331
  106. Reya, T; Morrison, SJ; Clarke, MF; Weissman, IL Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111. doi: 10.1038/35102167
  107. Sokolov, D.; Sharda, N.; Giri, B.; Hassan, M.S.; Singh, D.; Tarasiewicz, A.; Lohr, C.; von Holzen, U.; Kristian, T.; Waddell, J.; Reiter, R.J.; Ahmed, H.; Banerjee, A. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling. J. Pineal Res., 2022, 73(1), e12808. doi: 10.1111/jpi.12808 PMID: 35619550
  108. Shah, M.A. Update on metastatic gastric and esophageal cancers. J. Clin. Oncol., 2015, 33(16), 1760-1769. doi: 10.1200/JCO.2014.60.1799 PMID: 25918288
  109. Yonemura, Y.; Bandou, E.; Kinoshita, K.; Kawamura, T.; Takahashi, S.; Endou, Y.; Sasaki, T. Effective therapy for peritoneal dissemination in gastric cancer. Surg. Oncol. Clin. N. Am., 2003, 12(3), 635-648. doi: 10.1016/S1055-3207(03)00035-8 PMID: 14567022
  110. Kurashige, J.; Mima, K.; Sawada, G.; Takahashi, Y.; Eguchi, H.; Sugimachi, K.; Mori, M.; Yanagihara, K.; Yashiro, M.; Hirakawa, K.; Baba, H.; Mimori, K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis, 2015, 36(1), 133-141. doi: 10.1093/carcin/bgu232 PMID: 25411357
  111. Liu, S.H.; Lee, W.J.; Lai, D.W.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Chiu, C.S.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Pan, H.C.; Sheu, M.L. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol. Oncol., 2015, 9(4), 834-849. doi: 10.1016/j.molonc.2014.12.009 PMID: 25619450
  112. Lai, D.W.; Liu, S.H.; Karlsson, A.I.; Lee, W.J.; Wang, K.B.; Chen, Y.C.; Shen, C.C.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Lan, K.H.; Arbiser, J.L.; Sheu, M.L. The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination. Oncotarget, 2014, 5(17), 7788-7804. doi: 10.18632/oncotarget.2307 PMID: 25226618
  113. Pan, H.C.; Lai, D.W.; Lan, K.H.; Shen, C.C.; Wu, S.M.; Chiu, C.S.; Wang, K.B.; Sheu, M.L. Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis, 2013, 34(11), 2568-2579. doi: 10.1093/carcin/bgt243 PMID: 23828905
  114. Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103. doi: 10.1038/nrc3205 PMID: 22270953
  115. Craene, B.D.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 2013, 13(2), 97-110. doi: 10.1038/nrc3447 PMID: 23344542
  116. Onder, T.T.; Gupta, P.B.; Mani, S.A.; Yang, J.; Lander, E.S.; Weinberg, R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res., 2008, 68(10), 3645-3654. doi: 10.1158/0008-5472.CAN-07-2938 PMID: 18483246
  117. Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in multiple models of breast cancer. Nature, 2019, 573(7774), 439-444. doi: 10.1038/s41586-019-1526-3 PMID: 31485072
  118. Lee, C.C.; Yang, W.H.; Li, C.H.; Cheng, Y.W.; Tsai, C.H.; Kang, J.J. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer Lett., 2016, 376(2), 211-217. doi: 10.1016/j.canlet.2016.03.052 PMID: 27060206
  119. Kanda, M.; Kodera, Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J. Gastroenterol., 2016, 22(30), 6829-6840. doi: 10.3748/wjg.v22.i30.6829 PMID: 27570420
  120. Wu, S.M.; Lin, W.Y.; Shen, C.C.; Pan, H.C.; Keh-Bin, W.; Chen, Y.C.; Jan, Y.J.; Lai, D.W.; Tang, S.C.; Tien, H.R.; Chiu, C.S.; Tsai, T.C.; Lai, Y.L.; Sheu, M.L. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBP β and NF κ B cleavage. J. Pineal Res., 2016, 60(2), 142-154. doi: 10.1111/jpi.12295 PMID: 26514342
  121. Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66. doi: 10.3322/canjclin.57.1.43 PMID: 17237035
  122. Huang, C.Y.; Fong, Y.C.; Lee, C.Y.; Chen, M.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways. Biochem. Pharmacol., 2009, 77(5), 794-803. doi: 10.1016/j.bcp.2008.11.014 PMID: 19073147
  123. Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res., 2019, 11, 943-953. doi: 10.2147/CMAR.S187317 PMID: 30718965
  124. Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One, 2018, 13(7), e0200721. doi: 10.1371/journal.pone.0200721 PMID: 30052644
  125. Esendagli, D.; Gunel-Ozcan, A. From stem cell biology to the treatment of lung diseases. Curr. Stem Cell Res. Ther., 2017, 12(6), 493-505. PMID: 28545380
  126. Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.; Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; Roz, E.; Caserini, R.; Lo Vullo, S.; Camerini, T.; Mariani, L.; Delia, D.; Calabrò, E.; Pastorino, U.; Sozzi, G. Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci., 2009, 106(38), 16281-16286. doi: 10.1073/pnas.0905653106 PMID: 19805294
  127. Doherty, M.; Smigiel, J.; Junk, D.; Jackson, M. Cancer stem cell plasticity drives therapeutic resistance. Cancers, 2016, 8(1), 8. doi: 10.3390/cancers8010008 PMID: 26742077
  128. Alamgeer, M.; Peacock, C.D.; Matsui, W.; Ganju, V.; Watkins, D.N. Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 2013, 18(5), 757-764. doi: 10.1111/resp.12094 PMID: 23586700
  129. Yang, Y.C.; Chiou, P.C.; Chen, P.C.; Liu, P.Y.; Huang, W.C.; Chao, C.C.; Tang, C.H. Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ. Toxicol., 2019, 34(2), 203-209. doi: 10.1002/tox.22674 PMID: 30421542
  130. Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388. doi: 10.1016/S0140-6736(13)62146-7 PMID: 24767708
  131. Huang, T.; Poole, E.M.; Okereke, O.I.; Kubzansky, L.D.; Eliassen, A.H.; Sood, A.K.; Wang, M.; Tworoger, S.S. Depression and risk of epithelial ovarian cancer: Results from two large prospective cohort studies. Gynecol. Oncol., 2015, 139(3), 481-486. doi: 10.1016/j.ygyno.2015.10.004 PMID: 26449316
  132. Krizanova, O.; Babula, P.; Pacak, K. Stress, catecholaminergic system and cancer. Stress, 2016, 19(4), 419-428. doi: 10.1080/10253890.2016.1203415 PMID: 27398826
  133. Lutgendorf, S.K.; Cole, S.; Costanzo, E.; Bradley, S.; Coffin, J.; Jabbari, S.; Rainwater, K.; Ritchie, J.M.; Yang, M.; Sood, A.K. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res., 2003, 9(12), 4514-4521. PMID: 14555525
  134. Choi, M.J.; Cho, K.H.; Lee, S.; Bae, Y.J.; Jeong, K.J.; Rha, S.Y.; Choi, E.J.; Park, J.H.; Kim, J.M.; Lee, J-S.; Mills, G.B.; Lee, H.Y. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene, 2015, 34(26), 3402-3412. doi: 10.1038/onc.2014.270 PMID: 25151968
  135. Kang, Y.; Nagaraja, A.S.; Armaiz-Pena, G.N.; Dorniak, P.L.; Hu, W.; Rupaimoole, R.; Liu, T.; Gharpure, K.M.; Previs, R.A.; Hansen, J.M.; Rodriguez-Aguayo, C.; Ivan, C.; Ram, P.; Sehgal, V.; Lopez-Berestein, G.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer. Clin. Cancer Res., 2016, 22(7), 1713-1724. doi: 10.1158/1078-0432.CCR-15-1275 PMID: 26581245
  136. Armaiz-Pena, G.N.; Cole, S.W.; Lutgendorf, S.K.; Sood, A.K. Neuroendocrine influences on cancer progression. Brain Behav. Immun., 2013, 30(S1), S19-S25. doi: 10.1016/j.bbi.2012.06.005 PMID: 22728325
  137. Jiang, S.H.; Zhang, X.X.; Hu, L.P.; Wang, X.; Li, Q.; Zhang, X.L.; Li, J.; Gu, J.R.; Zhang, Z.G. Systemic regulation of cancer development by neuro-endocrine-immune signaling network at multiple levels. Front. Cell Dev. Biol., 2020, 8, 586757. doi: 10.3389/fcell.2020.586757 PMID: 33117814
  138. Bu, S.; Wang, Q.; Sun, J.; Li, X.; Gu, T.; Lai, D. Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/β-catenin/SLUG axis. Cell Death Dis., 2020, 11(8), 644. doi: 10.1038/s41419-020-02906-y PMID: 32811805

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers