Peptide Amphiphiles for Pharmaceutical Applications
- Authors: Fuertes-Llanos M.1, Gómara M.J.2, Haro I.3, Sánchez-López E.4
-
Affiliations:
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences,, University of Barcelona
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC,
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona,
- Issue: Vol 31, No 11 (2024)
- Pages: 1332-1347
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/644187
- DOI: https://doi.org/10.2174/0929867330666230408203820
- ID: 644187
Cite item
Full Text
Abstract
During the last few decades, several efforts have been made towards developing biocompatible materials. Among them, peptide amphiphiles (PAs) constitute a novel nanotechnological strategy used in the field of biomedicine since they can provide tissue- specific binding and localization. PAs possess several regions combining hydrophobic and hydrophilic areas that are able to self-assemble in aqueous media, forming different tertiary nanostructures able to interact with cellular membranes. Moreover, these molecules can be tuned by incorporating collagen, lipids, or fluorescent markers. In addition, they can also be used as carriers in order to encapsulate active compounds for drug delivery showing promising features in this area. In this review, the self-assembled structures of PAs as well as their pharmacological applications have been summarized. Furthermore, their use as drug delivery systems has been highlighted and the latest advances in this field have been reviewed.
About the authors
Mayra Fuertes-Llanos
Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences,, University of Barcelona
Email: info@benthamscience.net
Maria José Gómara
Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC,
Email: info@benthamscience.net
Isabel Haro
Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC
Email: info@benthamscience.net
Elena Sánchez-López
Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona,
Author for correspondence.
Email: info@benthamscience.net
References
- Kassam, H.A.; Bahnson, E.M.; Cartaya, A.; Jiang, W.; Avram, M.J.; Tsihlis, N.D.; Stupp, S.I.; Kibbe, M.R. Pharmacokinetics and biodistribution of a collagen-targeted peptide amphiphile for cardiovascular applications. Pharmacol. Res. Perspect., 2020, 8(6), e00672. doi: 10.1002/prp2.672 PMID: 33090704
- Chung, E.J.; Mlinar, L.B.; Sugimoto, M.J.; Nord, K.; Roman, B.B.; Tirrell, M. in vivo biodistribution and clearance of peptide amphiphile micelles. Nanomedicine, 2015, 11(2), 479-487. doi: 10.1016/j.nano.2014.08.006 PMID: 25194999
- Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C.A.E.; Zhang, S.; Lu, J.R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev., 2010, 39(9), 3480-3498. doi: 10.1039/b915923c PMID: 20498896
- Meng, Q.; Kou, Y.; Ma, X.; Liang, Y.; Guo, L.; Ni, C.; Liu, K. Tunable self-assembled peptide amphiphile nanostructures. Langmuir, 2012, 28(11), 5017-5022. doi: 10.1021/la3003355 PMID: 22352406
- Xing, H.; Chin, S.M.; Udumula, V.R.; Krishnaiah, M.; Rodrigues de Almeida, N.; Huck-Iriart, C.; Picco, A.S.; Lee, S.R.; Zaldivar, G.; Jackson, K.A.; Tagliazucchi, M.; Stupp, S.I.; Conda-Sheridan, M. Control of peptide amphiphile supramolecular nanostructures by isosteric replacements. Biomacromolecules, 2021, 22(8), 3274-3283. doi: 10.1021/acs.biomac.1c00379 PMID: 34291897
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J., 2017, 474(12), 1935-1963. doi: 10.1042/BCJ20160822 PMID: 28546457
- Hiraoka, K.; Rankin-Turner, S.; Ninomiya, S. Positive and negative cluster ions of amino acids formed by electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS). Int. J. Mass Spectrom., 2022, 480, 116895. doi: 10.1016/j.ijms.2022.116895
- Wang, S.; Li, Y.; Xu, H.; Sun, Y.; Xu, S. Design, structure of amphiphilic peptide and its application from single molecule to nanoparticle. Results in Engineering, 2022, 16(November), 100747. doi: 10.1016/j.rineng.2022.100747
- Chen, H.; Chen, X.; Chen, X.; Lin, S.; Cheng, J.; You, L.; Xiong, C.; Cai, X.; Wang, S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci. Technol., 2022, 129, 49-60. doi: 10.1016/j.tifs.2022.09.004
- Chen, C.; Chen, Y.; Yang, C.; Zeng, P.; Xu, H.; Pan, F.; Lu, J.R. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces, 2015, 7(31), 17346-17355. doi: 10.1021/acsami.5b04547 PMID: 26204061
- Zhang, Q.; Liu, Y.; Xie, T.; Shang-guan, Y.; Tian, M.; Zhang, Q. Sulfate ion-triggered self-assembly transitions of amphiphilic short peptides by force balance adjustment. Colloids Surfaces A Physicochem Eng Asp, 2022, 637, 128252. doi: 10.1016/j.colsurfa.2022.128252
- Zhao, C.; Chen, H.; Wang, F.; Zhang, X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf. B Biointerfaces, 2021, 208(August), 112040. doi: 10.1016/j.colsurfb.2021.112040 PMID: 34425532
- Hendricks, M.P.; Sato, K.; Palmer, L.C.; Stupp, S.I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res., 2017, 50(10), 2440-2448. doi: 10.1021/acs.accounts.7b00297 PMID: 28876055
- Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194. doi: 10.1016/j.ejphar.2009.08.043 PMID: 19835863
- Czupiel, P.P.; Delplace, V.; Shoichet, M.S. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J. Control. Release, 2019, 305(305), 210-219. doi: 10.1016/j.jconrel.2019.04.045 PMID: 31071370
- Peters, D.; Kastantin, M.; Kotamraju, V.R.; Karmali, P.P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci., 2009, 106(24), 9815-9819. doi: 10.1073/pnas.0903369106 PMID: 19487682
- Tarvirdipour, S.; Huang, X.; Mihali, V.; Schoenenberger, C.A.; Palivan, C.G. Peptide-based nanoassemblies in gene therapy and diagnosis: Paving the way for clinical application. Molecules, 2020, 25(15), 3482. doi: 10.3390/molecules25153482 PMID: 32751865
- Characterization, P; Protocols, A. Peptide characterization and application protocols. In: Methods in Molecular Biology; Gregg, B.F. Humana Press: Totowa, NJ, 2007; p. 342.
- Zhang, R.; Leeper, C.N.; Wang, X.; White, T.A.; Ulery, B.D. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater. Sci., 2018, 6(7), 1717-1722. doi: 10.1039/C8BM00466H PMID: 29896593
- Wang, C.; Guo, Y.; Wang, Y.; Xu, H.; Zhang, X. Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chem. Commun., 2009, (36), 5380-5382. doi: 10.1039/b912502g PMID: 19724791
- Kang, Y.; Wang, C.; Liu, K.; Wang, Z.; Zhang, X. Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. Langmuir, 2012, 28(41), 14562-14566. doi: 10.1021/la303271f PMID: 23025557
- Xu, X.; Li, Y.; Li, H.; Liu, R.; Sheng, M.; He, B.; Gu, Z. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small, 2014, 10(6), 1133-1140. doi: 10.1002/smll.201301885 PMID: 24155260
- Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev., 2017, 110-111, 169-187. doi: 10.1016/j.addr.2016.06.013 PMID: 27356149
- Sakurai, Y.; Inada, A.; Hitotsumatsu, M.; Oshima, T. Development of amphiphilic metal-binding short peptides that change the dispersibility of paclitaxel upon complexation with intermediate metal(II) ions. J. Drug Deliv. Sci. Technol., 2020, 59(April), 101882. doi: 10.1016/j.jddst.2020.101882
- Zhang, J.; Zhao, Y.; Han, S.; Chen, C.; Xu, H. Self-assembly of surfactant-like peptides and their applications. Sci. China Chem., 2014, 57(12), 1634-1645. doi: 10.1007/s11426-014-5234-4
- Li, J.; Wang, J.; Zhao, Y.; Zhou, P.; Carter, J.; Li, Z.; Waigh, T.A.; Lu, J.R.; Xu, H. Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord. Chem. Rev., 2020, 421, 213418. doi: 10.1016/j.ccr.2020.213418
- Tang, C; Qiu, F; Zhao, X Molecular design and applications of self-assembling surfactant-like peptides. J Nanomater, 2013, 469261 doi: 10.1155/2013/469261
- Sun, Y.; Qian, Z.; Guo, C.; Wei, G. Amphiphilic peptides A 6 K and V 6 K display distinct oligomeric structures and self-assembly dynamics: A combined all-atom and coarse-grained simulation study. Biomacromolecules, 2015, 16(9), 2940-2949. doi: 10.1021/acs.biomac.5b00850 PMID: 26301845
- von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir, 2003, 19(10), 4332-4337. doi: 10.1021/la026526+
- Zhang, P.; Wang, F.; Wang, Y.; Li, S.; Wen, S.; Wen, S. Self-assembling behavior of ph-responsive peptide A6K without end-capping. Molecules, 2020, 25(9), 2017. doi: 10.3390/molecules25092017 PMID: 32357459
- Mello, L.R.; Aguiar, R.B.; Yamada, R.Y.; Moraes, J.Z.; Hamley, I.W.; Alves, W.A.; Reza, M.; Ruokolainen, J.; Silva, E.R. Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(12), 2495-2507. doi: 10.1039/C9TB02219H PMID: 32108843
- Peng, F.; Chen, Y.; Liu, J.; Xing, Z.; Fan, J.; Zhang, W.; Qiu, F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J. Colloid Interface Sci., 2021, 591, 314-325. doi: 10.1016/j.jcis.2021.02.019 PMID: 33621783
- da Silva, E.R.; Alves, W.A.; Castelletto, V.; Reza, M.; Ruokolainen, J.; Hussain, R.; Hamley, I.W. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem. Commun., 2015, 51(58), 11634-11637. doi: 10.1039/C5CC03640B PMID: 26094619
- Jürgen-Hinrich, F.; Tianyu, W. Bolaamphiphiles. Chem. Rev., 2004, 104, 2901-2937. doi: 10.1021/cr030602b PMID: 15186184
- Zhao, Y.; Hu, X.; Zhang, L.; Wang, D.; King, S.M.; Rogers, S.E.; Wang, J.; Lu, J.R.; Xu, H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J. Colloid Interface Sci., 2021, 583, 553-562. doi: 10.1016/j.jcis.2020.09.023 PMID: 33038605
- Pérez, L.; Pinazo, A.; Pons, R.; Infante, M.R. Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci., 2014, 205, 134-155. doi: 10.1016/j.cis.2013.10.020 PMID: 24238395
- Zhao, W.; Wang, Y. Coacervation with surfactants: From single-chain surfactants to gemini surfactants. Adv. Colloid Interface Sci., 2017, 239, 199-212. doi: 10.1016/j.cis.2016.04.005 PMID: 27260407
- Parikh, K.; Mistry, B.; Jana, S.; Gupta, S.; Devkar, R.V.; Kumar, S. Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 2015, 206, 19-28. doi: 10.1016/j.molliq.2015.01.055
- Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J. Pept. Sci., 2017, 23(2), 82-94. doi: 10.1002/psc.2954 PMID: 28127868
- Castelletto, V.; Kaur, A.; Kowalczyk, R.M.; Hamley, I.W.; Reza, M.; Ruokolainen, J. Supramolecular hydrogel formation in a series of self-assembling lipopeptides with varying lipid chain length. Biomacromolecules, 2017, 18(7), 2013-2023. doi: 10.1021/acs.biomac.7b00057 PMID: 28535062
- Ben Ayed, H.; Hmidet, N.; Béchet, M.; Chollet, M.; Chataigné, G.; Leclère, V.; Jacques, P.; Nasri, M. Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem., 2014, 49(10), 1699-1707. doi: 10.1016/j.procbio.2014.07.001
- Fa, K.; Liu, H.; Li, Z.; Gong, H.; Petkov, J.; Lu, J.R. Acyl chain length tuning improves antimicrobial potency and biocompatibility of short designed lipopeptides. J. Colloid Interface Sci., 2023, 630(Pt B), 911-923. doi: 10.1016/j.jcis.2022.10.114 PMID: 36368131
- Chen, C.; Yang, C.; Chen, Y.; Wang, F.; Mu, Q.; Zhang, J.; Li, Z.; Pan, F.; Xu, H.; Lu, J.R. Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity. ACS Appl. Mater. Interfaces, 2016, 8(40), 26501-26510. doi: 10.1021/acsami.6b08297 PMID: 27644109
- Qiu, F.; Chen, Y.; Tang, C.; Zhao, X. Amphiphilic peptides as novel nanomaterials: Design, self-assembly and application. Int. J. Nanomedicine, 2018, 13, 5003-5022. doi: 10.2147/IJN.S166403 PMID: 30214203
- Hamley, I.W.; Castelletto, V. Self-assembly of peptide bioconjugates: Selected recent research highlights. Bioconjug. Chem., 2017, 28(3), 731-739. doi: 10.1021/acs.bioconjchem.6b00284 PMID: 27348697
- Taylor, P.A.; Jayaraman, A. Molecular modeling and simulations of peptidepolymer conjugates. Annu. Rev. Chem. Biomol. Eng., 2020, 11(1), 257-276. doi: 10.1146/annurev-chembioeng-092319-083243 PMID: 32513082
- Messina, M.S.; Messina, K.M.M.; Bhattacharya, A.; Montgomery, H.R.; Maynard, H.D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci., 2020, 100, 101186. doi: 10.1016/j.progpolymsci.2019.101186 PMID: 32863465
- Gómara, M.J.; Pons, R.; Herrera, C.; Ziprin, P.; Haro, I. Peptide amphiphilic-based supramolecular structures with anti-hiv-1 activity. Bioconjug. Chem., 2021, 32(9), 1999-2013. doi: 10.1021/acs.bioconjchem.1c00292 PMID: 34254794
- Otter, R.; Berac, C.M.; Seiffert, S.; Besenius, P. Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. Eur. Polym. J., 2018, 2019(110), 90-96.
- Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Piras, C.; Cramer, R.; Edwards-Gayle, C.J.C.; Hamley, I.W. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem. Commun., 2020, 56(80), 11977-11980. doi: 10.1039/D0CC04299D PMID: 33033814
- Li, T.; Lu, X.M.; Zhang, M.R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater., 2021, 11(11), 268-282. PMID: 34977431
- Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials, 2015, 52(1), 517-530. doi: 10.1016/j.biomaterials.2015.02.063 PMID: 25818457
- Khakshoor, O.; Nowick, J.S. Artificial β-sheets: Chemical models of β-sheets. Curr. Opin. Chem. Biol., 2008, 12(6), 722-729. doi: 10.1016/j.cbpa.2008.08.009 PMID: 18775794
- Ling Tan, H.; Shamsudeen, H.; Sufian Soaib, M. Effects of electric filed on β-sheet propensity self-assembled amphiphile peptides. Mater. Today Proc., 2018, 5, S143-S148. doi: 10.1016/j.matpr.2018.08.056
- Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf. B Biointerfaces, 2022, 209(Pt 2), 112165. doi: 10.1016/j.colsurfb.2021.112165 PMID: 34715505
- Ong, Z.Y.; Gao, S.J.; Yang, Y.Y. Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv. Funct. Mater., 2013, 23(29), 3682-3692. doi: 10.1002/adfm.201202850
- Wu, H.; Ong, Z.Y.; Liu, S.; Li, Y.; Wiradharma, N.; Yang, Y.Y.; Ying, J.Y. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials, 2015, 43(1), 44-49. doi: 10.1016/j.biomaterials.2014.11.052 PMID: 25591960
- Gunasekaran, K.; Gomathi, L.; Ramakrishnan, C.; Chandrasekhar, J.; Balaram, P. Conformational interconversions in peptide β-turns: Analysis of turns in proteins and computational estimates of barriers 1 1Edited by J. Thornton. J. Mol. Biol., 1998, 284(5), 1505-1516. doi: 10.1006/jmbi.1998.2154 PMID: 9878367
- Bellm, L.; Lehrer, R.I.; Ganz, T. Protegrins: New antibiotics of mammalian origin. Expert Opin. Investig. Drugs, 2000, 9(8), 1731-1742. doi: 10.1517/13543784.9.8.1731 PMID: 11060772
- Giles, F.J.; Rodriguez, R.; Weisdorf, D.; Wingard, J.R.; Martin, P.J.; Fleming, T.R.; Goldberg, S.L.; Anaissie, E.J.; Bolwell, B.J.; Chao, N.J.; Shea, T.C.; Brunvand, M.M.; Vaughan, W.; Petersen, F.; Schubert, M.; Lazarus, H.M.; Maziarz, R.T.; Silverman, M.; Beveridge, R.A.; Redman, R.; Pulliam, J.G.; Devitt-Risse, P.; Fuchs, H.J.; Hurd, D.D. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res., 2004, 28(6), 559-565. doi: 10.1016/j.leukres.2003.10.021 PMID: 15120931
- Xiang, Y.; Zhang, J.; Mao, H.; Yan, Z.; Wang, X.; Bao, C.; Zhu, L. Highly tough, stretchable, and enzymatically degradable hydrogels modulated by bioinspired hydrophobic β-sheet peptides. Biomacromolecules, 2021, 22(11), 4846-4856. doi: 10.1021/acs.biomac.1c01134 PMID: 34706536
- Kumaraswamy, P.; Lakshmanan, R.; Sethuraman, S.; Krishnan, U.M. Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 2011, 7(6), 2744-2754. doi: 10.1039/C0SM00897D PMID: 28090615
- Del Borgo, M.P.; Mechler, A.I.; Traore, D.; Forsyth, C.; Wilce, J.A.; Wilce, M.C.J.; Aguilar, M.I.; Perlmutter, P. Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew. Chem. Int. Ed., 2013, 52(32), 8266-8270. doi: 10.1002/anie.201303175 PMID: 23784963
- Kobori, T.; Iwamoto, S.; Takeyasu, K.; Ohtani, T. Self-assembly of peptide amphiphiles: From molecules to self-assembly of peptide amphip. Biopolymers, 2007, 85(4), 392-406. PMID: 17211885
- Elmsmari, F.; González Sánchez, J.A.; Duran-Sindreu, F.; Belkadi, R.; Espina, M.; García, M.L.; Sánchez-López, E. Calcium hydroxide-loaded PLGA biodegradable nanoparticles as an intracanal medicament. Int. Endod. J., 2021, 54(11), 2086-2098. doi: 10.1111/iej.13603 PMID: 34355406
- Jacoby, G.; Segal Asher, M.; Ehm, T.; Abutbul Ionita, I.; Shinar, H.; Azoulay-Ginsburg, S.; Zemach, I.; Koren, G.; Danino, D.; Kozlov, M.M.; Amir, R.J.; Beck, R. Order from disorder with intrinsically disordered peptide amphiphiles. J. Am. Chem. Soc., 2021, 143(30), 11879-11888. doi: 10.1021/jacs.1c06133 PMID: 34310121
- de Almeida, R.N.; Han, Y.; Perez, J.; Kirkpatrick, S.; Wang, Y.; Sheridan, M.C. Design, synthesis, and nanostructure-dependent antibacterial activity of cationic peptide amphiphiles. ACS Appl. Mater. Interfaces, 2019, 11(3), 2790-2801. doi: 10.1021/acsami.8b17808 PMID: 30588791
- Castelletto, V.; Edwards-Gayle, C.J.C.; Hamley, I.W.; Barrett, G.; Seitsonen, J.; Ruokolainen, J. Peptide-stabilized emulsions and gels from an arginine-rich surfactant-like peptide with antimicrobial activity. ACS Appl. Mater. Interfaces, 2019, 11(10), 9893-9903. doi: 10.1021/acsami.9b00581 PMID: 30785266
- Gong, H.; Zhang, J.; Hu, X.; Li, Z.; Fa, K.; Liu, H.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl. Mater. Interfaces, 2019, 11(38), 34609-34620. doi: 10.1021/acsami.9b10028 PMID: 31448889
- Cirillo, S.; Tomeh, M.A.; Wilkinson, R.N.; Hill, C.; Brown, S.; Zhao, X. Designed antitumor peptide for targeted siRNA delivery into cancer Spheroids. ACS Appl. Mater. Interfaces, 2021, 13(42), 49713-49728. doi: 10.1021/acsami.1c14761 PMID: 34657415
- Gong, Z.; Shi, Y.; Tan, H.; Wang, L.; Gao, Z.; Lian, B.; Wang, G.; Sun, H.; Sun, P.; Zhou, B.; Bai, J. Plasma amine oxidase-induced nanoparticle-to-nanofiber geometric transformation of an amphiphilic peptide for drug encapsulation and enhanced bactericidal activity. ACS Appl. Mater. Interfaces, 2020, 12(4), 4323-4332. doi: 10.1021/acsami.9b21296 PMID: 31899611
- Pelin, J.N.B.D.; Edwards-Gayle, C.J.C.; Castelletto, V.; Aguilar, A.M.; Alves, W.A.; Seitsonen, J.; Ruokolainen, J.; Hamley, I.W. Self-assembly, nematic phase formation, and organocatalytic behavior of a proline-functionalized lipopeptide. ACS Appl. Mater. Interfaces, 2020, 12(12), 13671-13679. doi: 10.1021/acsami.0c00686 PMID: 32134243
- Pan, F.; Li, Y.; Ding, Y.; Lv, S.; You, R.; Hadianamrei, R.; Tomeh, M.A.; Zhao, X. Anticancer effect of rationally designed α-helical amphiphilic peptides. Colloids Surf. B Biointerfaces, 2022, 220(September), 112841. doi: 10.1016/j.colsurfb.2022.112841 PMID: 36174494
- Cieślik-Boczula, K. Alpha-helix to beta-sheet transition in long-chain poly- l -lysine: Formation of alpha-helical fibrils by poly- l -lysine. Biochimie, 2017, 137, 106-114. doi: 10.1016/j.biochi.2017.03.006 PMID: 28315381
- Sun, M.; Wang, C.; Lv, M.; Fan, Z.; Du, J. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J. Am. Chem. Soc., 2022, 144(16), 7337-7345. doi: 10.1021/jacs.2c00697 PMID: 35357824
- Woldemichael, T.; Keswani, R.K.; Rzeczycki, P.M.; Murashov, M.D.; LaLone, V.; Gregorka, B.; Swanson, J.A.; Stringer, K.A.; Rosania, G.R. Reverse engineering the intracellular self-assembly of a functional mechanopharmaceutical device. Sci. Rep., 2018, 8(1), 2934. doi: 10.1038/s41598-018-21271-7 PMID: 29440773
- Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850. doi: 10.3390/ijms20235850 PMID: 31766475
- Luo, J.; Wärmländer, S.K.T.S.; Gräslund, A.; Abrahams, J.P. Alzheimer peptides aggregate into transient nanoglobules that nucleate fibrils. Biochemistry, 2014, 53(40), 6302-6308. doi: 10.1021/bi5003579 PMID: 25198136
- Edwards-Gayle, C.J.C.; Hamley, I.W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org. Biomol. Chem., 2017, 15(28), 5867-5876. doi: 10.1039/C7OB01092C PMID: 28661532
- Zuo, Y.; Xiong, Q.; Li, Q.; Zhao, B.; Xue, F.; Shen, L.; Li, H.; Yuan, Q.; Cao, S. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction. Int. J. Biol. Macromol., 2022, 195(195), 558-564. doi: 10.1016/j.ijbiomac.2021.12.028 PMID: 34920074
- Karavasili, C.; Andreadis, D.A.; Katsamenis, O.L.; Panteris, E.; Anastasiadou, P.; Kakazanis, Z.; Zoumpourlis, V.; Markopoulou, C.K.; Koutsopoulos, S.; Vizirianakis, I.S.; Fatouros, D.G. Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Mol. Pharm., 2019, 16(6), 2326-2341. doi: 10.1021/acs.molpharmaceut.8b01221 PMID: 31026168
- Maude, S; Tai, LR; Davies, RP.; Liu, B; Harris, SA; Kocienski, PJ; Aggeli, A. Peptide Synthesis and Self-Assembly. In: Deming, T. (eds) Peptide-Based Materials. Topics in Current Chemistry, 2011, 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_234
- Dehsorkhi, A.; Castelletto, V.; Hamley, I.W.; Adamcik, J.; Mezzenga, R. The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9(26), 6033-6036. doi: 10.1039/c3sm51029h
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6(6), PMC.S14459. doi: 10.4137/PMC.S14459 PMID: 25232278
- Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials, 2020, 10(3), 560. doi: 10.3390/nano10030560 PMID: 32244858
- Sánchez-López, E.; Gómara, M.J.; Haro, I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides. Curr. Med. Chem., 2021, 28(22), 4356-4379. doi: 10.2174/0929867328666201209095753 PMID: 33297908
- Koczulla, A.R.; Bals, R. Antimicrobial peptides. Drugs, 2003, 63(4), 389-406. doi: 10.2165/00003495-200363040-00005 PMID: 12558461
- Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575. doi: 10.3390/ph6121543 PMID: 24287494
- Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19. doi: 10.1016/j.cub.2015.11.017 PMID: 26766224
- Kundu, R. Cationic amphiphilic peptides: Synthetic antimicrobial agents inspired by nature. ChemMedChem, 2020, 15(20), 1887-1896. doi: 10.1002/cmdc.202000301 PMID: 32767819
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51. doi: 10.1038/nrd3591 PMID: 22173434
- Locock, K.E.S.; Michl, T.D.; Griesser, H.J.; Haeussler, M.; Meagher, L. Structureactivity relationships of guanylated antimicrobial polymethacrylates. Pure Appl. Chem., 2014, 86(8), 1281-1291. doi: 10.1515/pac-2014-0213
- Zha, R.H.; Sur, S.; Stupp, S.I. Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy. Adv. Healthc. Mater., 2013, 2(1), 126-133. doi: 10.1002/adhm.201200118 PMID: 23184589
- Trac, N.; Chen, L.Y.; Zhang, A.; Liao, C.P.; Poon, C.; Wang, J.; Ando, Y.; Joo, J.; Garri, C.; Shen, K.; Kani, K.; Gross, M.E.; Chung, E.J. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J. Control. Release, 2021, 329(329), 614-623. doi: 10.1016/j.jconrel.2020.09.054 PMID: 33011241
- Xu, T.; Liang, C.; Zheng, D.; Yan, X.; Chen, Y.; Chen, Y.; Li, X.; Shi, Y.; Wang, L.; Yang, Z. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12(28), 15275-15282. doi: 10.1039/D0NR00143K PMID: 32644059
- Aronson, M.R.; Dahl, E.S.; Halle, J.A.; Simonson, A.W.; Gogal, R.A.; Glick, A.B.; Aird, K.M.; Medina, S.H. Re-engineering antimicrobial peptides into oncolytics targeting drug-resistant ovarian cancers. Cell. Mol. Bioeng., 2020, 13(5), 447-461. doi: 10.1007/s12195-020-00626-z PMID: 33184577
- Abdullah, T.; Bhatt, K.; Eggermont, L.J.; OHare, N.; Memic, A.; Bencherif, S.A. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Front Chem., 2020, 8, 598160. doi: 10.3389/fchem.2020.598160 PMID: 33195107
- Zhang, R.; Smith, J.D.; Allen, B.N.; Kramer, J.S.; Schauflinger, M.; Ulery, B.D. Peptide amphiphile micelle vaccine size and charge influence the host antibody response. ACS Biomater. Sci. Eng., 2018, 4(7), 2463-2472. doi: 10.1021/acsbiomaterials.8b00511 PMID: 33435110
- Li, S.; Zhang, W.; Xue, H.; Xing, R.; Yan, X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem. Sci., 2020, 11(33), 8644-8656. doi: 10.1039/D0SC02937H PMID: 34123123
- ONeill, C.L.; Shrimali, P.C.; Clapacs, Z.P.; Files, M.A.; Rudra, J.S. Peptide-based supramolecular vaccine systems. Acta Biomater., 2021, 133, 153-167. doi: 10.1016/j.actbio.2021.05.003 PMID: 34010691
- Trent, A.; Ulery, B.D.; Black, M.J.; Barrett, J.C.; Liang, S.; Kostenko, Y.; David, N.A.; Tirrell, M.V. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J., 2015, 17(2), 380-388. doi: 10.1208/s12248-014-9707-3 PMID: 25527256
- Avila, L.A.; Aps, L.R.M.M.; Ploscariu, N.; Sukthankar, P.; Guo, R.; Wilkinson, K.E.; Games, P.; Szoszkiewicz, R.; Alves, R.P.S.; Diniz, M.O.; Fang, Y.; Ferreira, L.C.S.; Tomich, J.M. Gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules. J. Control. Release, 2016, 241, 15-24. doi: 10.1016/j.jconrel.2016.08.042 PMID: 27592740
- Sukthankar, P.; Avila, L.A.; Whitaker, S.K.; Iwamoto, T.; Morgenstern, A.; Apostolidis, C.; Liu, K.; Hanzlik, R.P.; Dadachova, E.; Tomich, J.M. Branched amphiphilic peptide capsules: Cellular uptake and retention of encapsulated solutes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2296-2305. doi: 10.1016/j.bbamem.2014.02.005 PMID: 24565797
- Chen, C.H.; Hsu, E.L.; Stupp, S.I. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone, 2020, 141(July), 115565. doi: 10.1016/j.bone.2020.115565 PMID: 32745692
- Gelain, F.; Luo, Z.; Zhang, S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev., 2020, 120(24), 13434-13460. doi: 10.1021/acs.chemrev.0c00690 PMID: 33216525
- Liu, X.; Ren, H.; Peng, A.; Cheng, H.; Chen, J.; Xia, X.; Liu, T.; Wang, X. The effect of RADA16-I and CDNF on neurogenesis and neuroprotection in brain ischemia-reperfusion injury. Int. J. Mol. Sci., 2022, 23(3), 1436. doi: 10.3390/ijms23031436 PMID: 35163360
- Hosseinkhani, H.; Hosseinkhani, M.; Khademhosseini, A.; Kobayashi, H.; Tabata, Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials, 2006, 27(34), 5836-5844. doi: 10.1016/j.biomaterials.2006.08.003 PMID: 16930687
- Chen, S.; Liu, Y.; Liang, R.; Hong, G.; An, J.; Peng, X.; Zheng, W-H.; Song, F. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chin. Chem. Lett., 2021, 32(12), 3903-3906. doi: 10.1016/j.cclet.2021.06.041
- Son, K.; Takeoka, S.; Ito, Y.; Ueda, M. End-sealing of peptide nanotubes by cationic amphiphilic polypeptides and their salt-responsive accordion-like opening and closing behavior. Biomacromolecules, 2022, 23(7), 2785-2792. doi: 10.1021/acs.biomac.2c00153 PMID: 35700101
- Yao, L.; Xu, J.; Zhang, L.; Zheng, T.; Liu, L.; Zhang, L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem., 2021, 362(May), 130101. doi: 10.1016/j.foodchem.2021.130101 PMID: 34091173
- Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; Furuya, S. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control. Release, 2021, 330(330), 788-796. doi: 10.1016/j.jconrel.2020.11.001 PMID: 33188824
- Chen, T.; Lyu, Y.; Tan, M.; Yang, C.; Li, Y.; Shao, C.; Zhu, Y.; Shan, A. Fabrication of supramolecular antibacterial nanofibers with membrane-disruptive mechanism. J. Med. Chem., 2021, 64(22), 16480-16496. doi: 10.1021/acs.jmedchem.1c00829 PMID: 34783241
- Peng, F.; Liu, J.; Zhang, Y.; Fan, J.; Gong, D.; He, L.; Zhang, W.; Qiu, F. Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomater., 2022, 146, 66-79. doi: 10.1016/j.actbio.2022.05.002 PMID: 35545185
- Liang, J.; Wu, W.L.; Xu, X.D.; Zhuo, R.X.; Zhang, X.Z. pH Responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf. B Biointerfaces, 2014, 114, 398-403. doi: 10.1016/j.colsurfb.2013.10.037 PMID: 24257687
- Chang, C.; Liang, P.; Chen, L.; Liu, J.; Chen, S.; Zheng, G.; Quan, C. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery. J. Biomater. Sci. Polym. Ed., 2017, 28(13), 1338-1350. doi: 10.1080/09205063.2017.1325095 PMID: 28467173
- Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene, 2013, 525(2), 162-169. doi: 10.1016/j.gene.2013.03.137 PMID: 23618815
- Hadianamrei, R.; Wang, J.; Brown, S.; Zhao, X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int. J. Pharm., 2022, 617(February), 121619. doi: 10.1016/j.ijpharm.2022.121619 PMID: 35218898
- Liu, X.Y.; Zhang, X.; Yang, J.B.; Wu, C.Y.; Wang, Q.; Lu, Z.L.; Tang, Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf. B Biointerfaces, 2022, 217(June), 112651. doi: 10.1016/j.colsurfb.2022.112651 PMID: 35759892
- Yuan, X.; Luo, S.Z.; Chen, L. Novel branched amphiphilic peptides for nucleic acids delivery. Int. J. Pharm., 2022, 624(February), 121983. doi: 10.1016/j.ijpharm.2022.121983 PMID: 35803534
- Qian, Y.; Wang, W.; Wang, Z.; Jia, X.; Han, Q.; Rostami, I.; Wang, Y.; Hu, Z. pH-Triggered peptide self-assembly for targeting imaging and therapy toward angiogenesis with enhanced signals. ACS Appl. Mater. Interfaces, 2018, 10(9), 7871-7881. doi: 10.1021/acsami.8b00583 PMID: 29439558
- Tang, W.; Zhao, Z.; Chong, Y.; Wu, C.; Liu, Q.; Yang, J.; Zhou, R.; Lian, Z.X.; Liang, G. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano, 2018, 12(10), 9966-9973. doi: 10.1021/acsnano.8b04143 PMID: 30285414
- Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366. doi: 10.1021/acsami.9b03519 PMID: 30991000
- Yao, L.; Xu, J.; Zhang, L.; Liu, L.; Zhang, L. Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocoll., 2021, 118(March), 106741. doi: 10.1016/j.foodhyd.2021.106741
- Shinga, K.; Iwata, T.; Murata, K.; Daitoku, Y.; Michibata, J.; Arafiles, J.V.V.; Sakamoto, K.; Akishiba, M.; Takatani-Nakase, T.; Mizuno, S.; Sugiyama, F.; Imanishi, M.; Futaki, S. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg. Med. Chem., 2022, 61(February), 116728. doi: 10.1016/j.bmc.2022.116728 PMID: 35395514
- Mohammed, E.H.M.; Lohan, S.; Tiwari, R.K.; Parang, K. Amphiphilic cyclic peptide W4KR5-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur. J. Med. Chem., 2022, 235, 114278. doi: 10.1016/j.ejmech.2022.114278 PMID: 35339840
- Klemm, P.; Solomun, J.I.; Rodewald, M.; Kuchenbrod, M.T.; Hänsch, V.G.; Richter, F.; Popp, J.; Hertweck, C.; Hoeppener, S.; Bonduelle, C.; Lecommandoux, S.; Traeger, A.; Schubert, S. Efficient gene delivery of tailored amphiphilic polypeptides by polyplex surfing. Biomacromolecules, 2022, 23(11), 4718-4733. doi: 10.1021/acs.biomac.2c00919 PMID: 36269943
- Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther., 2009, 17(1), 95-103. doi: 10.1038/mt.2008.215 PMID: 18957965
- Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J. Colloid Interface Sci., 2022, 607(Pt 1), 488-501. doi: 10.1016/j.jcis.2021.08.200 PMID: 34509120
Supplementary files
