Single-cell Sequencing Data Reveals Aggressive CD68-type Macrophages and Prognostic Models in Bladder Cancer


Cite item

Full Text

Abstract

Background:The highly heterogeneous, complex pathological histology, and clinical phenotype in bladder cancer (BC) plague the prognostic management of BC to the present day.

Methods:This study was conducted using single-cell sequencing data from the gene expression omnibus (GEO) database (GSE135337). A descending, annotated analysis was performed to identify the cell types contributing to BC aggressiveness. BC cell sequencing data from The Cancer Genome Atlas (TCGA) database were then combined with univariate, least absolute shrinkage and selection operator (LASSO), multivariate COX regression analysis to identify biomarkers of BC prognosis to construct a BC. We identified biomarkers of BC prognosis to construct a prognostic risk guidance system for BC. The feedback of patients in different risk strata to immunotherapy was analyzed. Finally, the regulation of prognostic genes on cancer cell activity was verified in vitro by Western blot and cell counting kit-8 (CCK8) assays.

Results:Macrophages specifically expressing CD68 in BC were the cell type with the highest AUCell score, and CD68 was the biomarker of Tumor-associated macrophages (TAMs). CD68 macrophages were potentially the critical cell type in the aggressive BC subtype. Through univariate, LASSO, multivariate COX-based regression analysis. CTSS, GMFG, ANXA5, GSN, SLC2A3, and FTL were authenticated as prognostic biomarkers (p < 0.05) and composed the Risk Score. Patients in the low-risk group showed an excellent survival advantage (p < 0.01) and immunotherapy feedback. Additionally, inhibition of GSN expression decreased EMT activity to inhibit bladder cancer cell viability.

Conclusion:In conclusion, this study provided feedback on the immune cell types associated with aggressiveness in BC. Importantly, a prognostic management system for BC was created based on the genes involved, providing more insight into the aggressive pathological phenotype as well as the prognosis of BC.

About the authors

Chenyu Mao

Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University

Author for correspondence.
Email: info@benthamscience.net

Nong Xu

Department of Medical Oncology, The First Affiliated Hospital, College of Medicine,, Zhejiang University,

Email: info@benthamscience.net

References

  1. Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; Rouanne, M.; Thalmann, G.N.; Veskimäe, E.; Ribal, M.J.; van der Heijden, A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol., 2021, 79(1), 82-104. doi: 10.1016/j.eururo.2020.03.055 PMID: 32360052
  2. Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle- invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423. doi: 10.3322/caac.21631 PMID: 32767764
  3. Jordan, B.; Meeks, J.J. T1 bladder cancer: Current considerations for diagnosis and management. Nat. Rev. Urol., 2019, 16(1), 23-34. doi: 10.1038/s41585-018-0105-y PMID: 30323201
  4. van Rhijn, B.W.G.; Burger, M.; Lotan, Y.; Solsona, E.; Stief, C.G.; Sylvester, R.J.; Witjes, J.A.; Zlotta, A.R. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur. Urol., 2009, 56(3), 430-442. doi: 10.1016/j.eururo.2009.06.028 PMID: 19576682
  5. Yang, Z.; Li, C.; Fan, Z.; Liu, H.; Zhang, X.; Cai, Z.; Xu, L.; Luo, J.; Huang, Y.; He, L.; Liu, C.; Wu, S. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of human bladder cancer stem cells. Eur. Urol., 2017, 71(1), 8-12. doi: 10.1016/j.eururo.2016.06.025 PMID: 27387124
  6. Chen, Z.; Zhou, L.; Liu, L.; Hou, Y.; Xiong, M.; Yang, Y.; Hu, J.; Chen, K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun., 2020, 11(1), 5077. doi: 10.1038/s41467-020-18916-5 PMID: 33033240
  7. Oh, D.Y.; Kwek, S.S.; Raju, S.S.; Li, T.; McCarthy, E.; Chow, E.; Aran, D.; Ilano, A.; Pai, C.C.S.; Rancan, C.; Allaire, K.; Burra, A.; Sun, Y.; Spitzer, M.H.; Mangul, S.; Porten, S.; Meng, M.V.; Friedlander, T.W.; Ye, C.J.; Fong, L. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell, 2020, 181(7), 1612-1625.e13. doi: 10.1016/j.cell.2020.05.017 PMID: 32497499
  8. Lee, H.W.; Chung, W.; Lee, H.O.; Jeong, D.E.; Jo, A.; Lim, J.E.; Hong, J.H.; Nam, D.H.; Jeong, B.C.; Park, S.H.; Joo, K.M.; Park, W.Y. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med., 2020, 12(1), 47. doi: 10.1186/s13073-020-00741-6 PMID: 32460812
  9. Chen, C.; He, W.; Huang, J.; Wang, B.; Li, H.; Cai, Q.; Su, F.; Bi, J.; Liu, H.; Zhang, B.; Jiang, N.; Zhong, G.; Zhao, Y.; Dong, W.; Lin, T. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat. Commun., 2018, 9(1), 3826. doi: 10.1038/s41467-018-06152-x PMID: 30237493
  10. Wang, P.; Nishitani, M.A.; Tanimoto, S.; Kishimoto, T.; Fukumori, T.; Takahashi, M.; Kanayama, H.O. Bladder cancer cell invasion is enhanced by cross-talk with fibroblasts through hepatocyte growth factor. Urology, 2007, 69(4), 780-784. doi: 10.1016/j.urology.2007.01.063 PMID: 17445681
  11. Cao, R.; Yuan, L.; Ma, B.; Wang, G.; Qiu, W.; Tian, Y. An EMT-related gene signature for the prognosis of human bladder cancer. J. Cell. Mol. Med., 2020, 24(1), 605-617. doi: 10.1111/jcmm.14767 PMID: 31657881
  12. Baumgart, E.; Cohen, M.S.; Neto, B.S.; Jacobs, M.A.; Wotkowicz, C.; Rieger-Christ, K.M.; Biolo, A.; Zeheb, R.; Loda, M.; Libertino, J.A.; Summerhayes, I.C. Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin. Cancer Res., 2007, 13(6), 1685-1694. doi: 10.1158/1078-0432.CCR-06-2330 PMID: 17363521
  13. Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36. doi: 10.1002/imt2.36
  14. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell, 2019, 177(7), 1888-1902.e21. doi: 10.1016/j.cell.2019.05.031 PMID: 31178118
  15. Hu, C.; Li, T.; Xu, Y.; Zhang, X.; Li, F.; Bai, J.; Chen, J.; Jiang, W.; Yang, K.; Ou, Q.; Li, X.; Wang, P.; Zhang, Y. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res., 2023, 51(D1), D870-D876. doi: 10.1093/nar/gkac947 PMID: 36300619
  16. Yu, Z.; Liao, J.; Chen, Y.; Zou, C.; Zhang, H.; Cheng, J.; Liu, D.; Li, T.; Zhang, Q.; Li, J.; Yang, X.; Ye, Y.; Huang, Z.; Long, X.; Yang, R.; Mo, Z. Single-cell transcriptomic map of the human and mouse bladders. J. Am. Soc. Nephrol., 2019, 30(11), 2159-2176. doi: 10.1681/ASN.2019040335 PMID: 31462402
  17. Aibar, S.; González-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak, Z.K.; Wouters, J.; Aerts, S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14(11), 1083-1086. doi: 10.1038/nmeth.4463 PMID: 28991892
  18. Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
  19. Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110. doi: 10.1158/0008-5472.CAN-17-0307 PMID: 29092952
  20. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf., 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  21. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  22. Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc, 2015, 128, 28-33.
  23. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw., 2011, 39(5), 1-13. doi: 10.18637/jss.v039.i05 PMID: 27065756
  24. Ripley, B.; Venables, B.; Bates, D.M. Package ‘mass’. Cran R, 2013, 538, 113-120.
  25. Kassambara, A.; Kosinski, M.; Biecek, P. Package ‘survminer’. Drawing Survival Curves using ‘ggplot, 2017.
  26. Tran, A.N.; Dussaq, A.M.; Kennell, T., Jr; Willey, C.D.; Hjelmeland, A.B. HPAanalyze: An R package that facilitates the retrieval and analysis of the Human Protein Atlas data. BMC Bioinf., 2019, 20(1), 463. doi: 10.1186/s12859-019-3059-z PMID: 31500569
  27. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756. doi: 10.1101/gr.239244.118 PMID: 30341162
  28. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  29. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinf., 2013, 14(1), 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
  30. Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558. doi: 10.1038/s41591-018-0136-1 PMID: 30127393
  31. Xu, Y.; Zeng, H.; Jin, K.; Liu, Z.; Zhu, Y.; Xu, L.; Wang, Z.; Chang, Y.; Xu, J. Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer. J. Immunother. Cancer, 2022, 10(3), e003416. doi: 10.1136/jitc-2021-003416 PMID: 35338085
  32. Ngambenjawong, C.; Gustafson, H.H.; Pun, S.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev., 2017, 114, 206-221. doi: 10.1016/j.addr.2017.04.010 PMID: 28449873
  33. Zhang, S.Y.; Song, X.Y.; Li, Y.; Ye, L.L.; Zhou, Q.; Yang, W.B. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Pharmacol. Res., 2020, 161, 105111. doi: 10.1016/j.phrs.2020.105111 PMID: 33065284
  34. Li, B.; Ren, M.; Zhou, X.; Han, Q.; Cheng, L. Targeting tumor-associated macrophages in head and neck squamous cell carcinoma. Oral Oncol., 2020, 106, 104723. doi: 10.1016/j.oraloncology.2020.104723 PMID: 32315971
  35. Lin, F.; Yin, H.B.; Li, X.Y.; Zhu, G.M.; He, W.Y.; Gou, X. Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int. J. Oncol., 2020, 56(1), 151-164. PMID: 31814034
  36. Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(13), 6995. doi: 10.3390/ijms22136995 PMID: 34209703
  37. Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Invest., 2017, 97(1), 4-13. doi: 10.1038/labinvest.2016.116 PMID: 27869795
  38. Alessandrini, F.; Pezzè, L.; Ciribilli, Y. LAMPs: Shedding light on cancer biology. Semin. Oncol., 2017, 44(4), 239-253. doi: 10.1053/j.seminoncol.2017.10.013 PMID: 29526252
  39. Jiang, L.R.; Zhang, N.; Chen, S.T.; He, J.; Liu, Y.H.; Han, Y.Q.; Shi, X.Q.; Yang, J.J.; Mu, D.Y.; Fu, G.H.; Gao, F. PD-1-Positive tumor-associated macrophages define poor clinical outcomes in patients with muscle invasive bladder cancer through potential CD68/PD-1 complex interactions. Front. Oncol., 2021, 11, 679928. doi: 10.3389/fonc.2021.679928 PMID: 34079767
  40. Kremenovic, M.; Chan, A.A.; Feng, B.; Bäriswyl, L.; Robatel, S.; Gruber, T.; Tang, L.; Lee, D.J.; Schenk, M. BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma. J. Immunother. Cancer, 2022, 10(6), e004133. doi: 10.1136/jitc-2021-004133 PMID: 35732347
  41. Aerbajinai, W.; Ghosh, M.C.; Liu, J.; Kumkhaek, C.; Zhu, J.; Chin, K.; Rouault, T.A.; Rodgers, G.P. Glia maturation factor-γ regulates murine macrophage iron metabolism and M2 polarization through mitochondrial ROS. Blood Adv., 2019, 3(8), 1211-1225. doi: 10.1182/bloodadvances.2018026070 PMID: 30971398
  42. Xu, F.; Guo, M.; Huang, W.; Feng, L.; Zhu, J.; Luo, K.; Gao, J.; Zheng, B.; Kong, L.D.; Pang, T.; Wu, X.; Xu, Q. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol., 2020, 36, 101634. doi: 10.1016/j.redox.2020.101634 PMID: 32863213
  43. Wang, H.C.; Chen, C.W.; Yang, C.L.; Tsai, I.M.; Hou, Y.C.; Chen, C.J.; Shan, Y.S. Tumor-associated macrophages promote epigenetic silencing of gelsolin through dna methyltransferase 1 in gastric cancer cells. Cancer Immunol. Res., 2017, 5(10), 885-897. doi: 10.1158/2326-6066.CIR-16-0295 PMID: 28835422
  44. Yao, X.; He, Z.; Qin, C.; Deng, X.; Bai, L.; Li, G.; Shi, J. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int., 2020, 20(1), 503. doi: 10.1186/s12935-020-01599-9 PMID: 33061855
  45. Park, J.E.; Dutta, B.; Tse, S.W.; Gupta, N.; Tan, C.F.; Low, J.K.; Yeoh, K.W.; Kon, O.L.; Tam, J.P.; Sze, S.K. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene, 2019, 38(26), 5158-5173. doi: 10.1038/s41388-019-0782-x PMID: 30872795
  46. Liu, F.; Qiu, H.; Xue, M.; Zhang, S.; Zhang, X.; Xu, J.; Chen, J.; Yang, Y.; Xie, J. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res. Ther., 2019, 10(1), 345. doi: 10.1186/s13287-019-1447-y PMID: 31771622
  47. Du, S.; Qian, J.; Tan, S.; Li, W.; Liu, P.; Zhao, J.; Zeng, Y.; Xu, L.; Wang, Z.; Cai, J. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett., 2022, 529, 168-179. doi: 10.1016/j.canlet.2022.01.005 PMID: 35007697
  48. Park, D.; Lim, G.; Yoon, S.J.; Yi, H.S.; Choi, D.W. The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Rep., 2022, 55(11), 519-527. doi: 10.5483/BMBRep.2022.55.11.128 PMID: 36195564
  49. Hao, X.; Zheng, Z.; Liu, H.; Zhang, Y.; Kang, J.; Kong, X.; Rong, D.; Sun, G.; Sun, G.; Liu, L.; Yu, H.; Tang, W.; Wang, X. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol., 2022, 56, 102463. doi: 10.1016/j.redox.2022.102463 PMID: 36108528

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers