Role of LncRNA MIAT in Diabetic Complications


Cite item

Full Text

Abstract

Long non-coding RNA (LncRNA) refers to a large class of RNAs with over 200 nucleotides that do not have the function of encoding proteins. In recent years, more and more literature has revealed that lncRNA is involved in manipulating genes related to human health and disease, playing outstanding biological functions, which has attracted widespread attention from researchers. The newly discovered long-stranded non-coding RNA myocardial infarction-related transcript (LncRNA MIAT) is abnormally expressed in a variety of diseases, especially in diabetic complications, and has been proven to have a wide range of effects. This review article aimed to summarize the importance of LncRNA MIAT in diabetic complications, such as diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy, and highlight the latest findings on the pathway and mechanism of its participation in regulating diabetic complications, which may aid in finding new intervention targets for the treatment of diabetic complications. LncRNA MIAT competitively binds microRNAs to regulate gene expression as competitive endogenous RNAs. Thus, this review article has reviewed the biological function and pathogenesis of LncRNA MIAT in diabetic complications and described its role in diabetic complications. This paper will help in finding new therapeutic targets and intervention strategies for diabetes complications.

About the authors

Lijun Wang

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Hailin Wang

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Yiyang Luo

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Wei Wu

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Yibei Gui

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Jiale Zhao

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Ruisi Xiong

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Xueqin Li

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Ding Yuan

College of Medicine and Health Science, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

Chengfu Yuan

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kallapur, A.; Sallam, T. Endothelial cells LEENE on noncoding RNAs in diabetic vasculopathy. J. Clin. Invest., 2023, 133(3), e167047. doi: 10.1172/JCI167047 PMID: 36719373
  2. Da, C.; Gong, C.Y.; Nan, W.; Zhou, K.S.; Wu, Z.L.; Zhang, H.H. The role of long non-coding RNA MIAT in cancers. Biomed. Pharmacother., 2020, 129, 110359. doi: 10.1016/j.biopha.2020.110359 PMID: 32535389
  3. Ishii, N.; Ozaki, K.; Sato, H.; Mizuno, H.; Susumu Saito; Takahashi, A.; Miyamoto, Y.; Ikegawa, S.; Kamatani, N.; Hori, M.; Satoshi, S.; Nakamura, Y.; Tanaka, T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet., 2006, 51(12), 1087-1099. doi: 10.1007/s10038-006-0070-9 PMID: 17066261
  4. Liao, J.; He, Q.; Li, M.; Chen, Y.; Liu, Y.; Wang, J. LncRNA MIAT: Myocardial infarction associated and more. Gene, 2016, 578(2), 158-161. doi: 10.1016/j.gene.2015.12.032 PMID: 26707210
  5. Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.M.V.; Ali, M.K. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care, 2018, 41(7), 1526-1534. doi: 10.2337/dc17-2222 PMID: 29934481
  6. Alfaifi, M.; Ali Beg, M.M.; Alshahrani, M.Y.; Ahmad, I.; Alkhathami, A.G.; Joshi, P.C.; Alshehri, O.M.; Alamri, A.M.; Verma, A.K. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and MIAT expression and their association in type 2 diabetes mellitus. BMJ Open Diabetes Res. Care, 2021, 9(1), e001821. doi: 10.1136/bmjdrc-2020-001821 PMID: 33436407
  7. Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs. J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226. doi: 10.1016/j.jacc.2015.12.051 PMID: 26965544
  8. Li, Y.; Li, J.; Chen, L.; Xu, L. The roles of long non-coding RNA in osteoporosis. Curr. Stem Cell Res. Ther., 2020, 15(7), 639-645. doi: 10.2174/1574888X15666200501235735 PMID: 32357819
  9. Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; Gingeras, T.R.; Guttman, M.; Hirose, T.; Huarte, M.; Johnson, R.; Kanduri, C.; Kapranov, P.; Lawrence, J.B.; Lee, J.T.; Mendell, J.T.; Mercer, T.R.; Moore, K.J.; Nakagawa, S.; Rinn, J.L.; Spector, D.L.; Ulitsky, I.; Wan, Y.; Wilusz, J.E.; Wu, M. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol., 2023, 24(6), 430-447. doi: 10.1038/s41580-022-00566-8 PMID: 36596869
  10. Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Arefian, N. Regulatory role of non-coding RNAs on immune responses during sepsis. Front. Immunol., 2021, 12, 798713. doi: 10.3389/fimmu.2021.798713 PMID: 34956235
  11. Tofigh, R.; Hosseinpourfeizi, M.; Baradaran, B.; Teimourian, S.; Safaralizadeh, R. Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci., 2023, 315, 121367. doi: 10.1016/j.lfs.2023.121367 PMID: 36639050
  12. Kretz, M.; Siprashvili, Z.; Chu, C.; Webster, D.E.; Zehnder, A.; Qu, K.; Lee, C.S.; Flockhart, R.J.; Groff, A.F.; Chow, J.; Johnston, D.; Kim, G.E.; Spitale, R.C.; Flynn, R.A.; Zheng, G.X.Y.; Aiyer, S.; Raj, A.; Rinn, J.L.; Chang, H.Y.; Khavari, P.A. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature., 2013, 493(7431), 231-235. doi: 10.1038/nature11661 PMID: 23201690
  13. Vance, K.W.; Ponting, C.P. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet., 2014, 30(8), 348-355. doi: 10.1016/j.tig.2014.06.001 PMID: 24974018
  14. Yu, B.; Wang, S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics, 2018, 8(13), 3654-3675. doi: 10.7150/thno.26024 PMID: 30026873
  15. Ballantyne, M.D.; McDonald, R.A.; Baker, A.H. lncRNA/MicroRNA interactions in the vasculature. Clin. Pharmacol. Ther., 2016, 99(5), 494-501. doi: 10.1002/cpt.355 PMID: 26910520
  16. Cech, T.R.; Steitz, J.A. The noncoding RNA revolution- trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94. doi: 10.1016/j.cell.2014.03.008 PMID: 24679528
  17. Ahn, Y.H.; Kim, J.S. Long non-coding RNAs as regulators of interactions between cancer-associated fibroblasts and cancer cells in the tumor microenvironment. Int. J. Mol. Sci., 2020, 21(20), 7484. doi: 10.3390/ijms21207484 PMID: 33050576
  18. Paldino, G.; Fierabracci, A. Shedding new light on the role of ERAP1 in Type 1 diabetes: A perspective on disease management. Autoimmun. Rev., 2023, 22(4), 103291. doi: 10.1016/j.autrev.2023.103291 PMID: 36740089
  19. Kim, D.H.; Park, J.S.; Choi, H.I.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. The role of the farnesoid X receptor in kidney health and disease: A potential therapeutic target in kidney diseases. Exp. Mol. Med., 2023, 55(2), 304-312. doi: 10.1038/s12276-023-00932-2 PMID: 36737665
  20. Jiang, S.; Fang, J.; Li, W. Protein restriction for diabetic kidney disease. Cochrane Libr., 2023, 2023(1), CD014906. doi: 10.1002/14651858.CD014906.pub2 PMID: 36594428
  21. Lim, L.L.; Chow, E.; Chan, J.C.N. Cardiorenal diseases in type 2 diabetes mellitus: Clinical trials and real-world practice. Nat. Rev. Endocrinol., 2023, 19(3), 151-163. doi: 10.1038/s41574-022-00776-2 PMID: 36446898
  22. Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98. doi: 10.1038/nrendo.2017.151 PMID: 29219149
  23. Zhao, X.; Ling, F.; Zhang, G.; Yu, N.; Yang, J.; Xin, X. The correlation between MicroRNAs and diabetic retinopathy. Front. Immunol., 2022, 13, 941982. doi: 10.3389/fimmu.2022.941982 PMID: 35958584
  24. Zhu, J.; Han, J.; Liu, L.; Liu, Y.; Xu, W.; Li, X.; Yang, L.; Gu, Y.; Tang, W.; Shi, Y.; Ye, S.; Hua, F.; Xiang, G.; Liu, M.; Sun, Z.; Su, Q.; Li, X.; Li, Y.; Li, Y.; Li, H.; Li, Y.; Yang, T.; Yang, J.; Shi, L.; Yu, X.; Chen, L.; Shao, J.; Liang, J.; Han, X.; Xue, Y.; Ma, J.; Zhu, D.; Mu, Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2023, 197, 110568. doi: 10.1016/j.diabres.2023.110568 PMID: 36738836
  25. Dwivedi, K.K.; Lakhani, P.; Sihota, P.; Tikoo, K.; Kumar, S.; Kumar, N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater., 2022, 158, 324-346. doi: 10.1016/j.actbio.2022.12.037 PMID: 36565785
  26. Liu, M.; Peng, T.; Hu, L.; Wang, M.; Guo, D.; Qi, B.; Ren, G.; Wang, D.; Li, Y.; Song, L.; Hu, J.; Li, Y. N-glycosylation-mediated CD147 accumulation induces cardiac fibrosis in the diabetic heart through ALK5 activation. Int. J. Biol. Sci., 2023, 19(1), 137-155. doi: 10.7150/ijbs.77469 PMID: 36594096
  27. Zhou, X.; Zhang, W.; Jin, M.; Chen, J.; Xu, W.; Kong, X. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis., 2017, 8(7), e2929. doi: 10.1038/cddis.2017.321 PMID: 28703801
  28. Pant, T.; Dhanasekaran, A.; Fang, J.; Bai, X.; Bosnjak, Z.J.; Liang, M.; Ge, Z.D. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc. Disord., 2018, 18(1), 197. doi: 10.1186/s12872-018-0939-5 PMID: 30342478
  29. Sohrabifar, N.; Ghaderian, S.M.H.; Alipour Parsa, S.; Ghaedi, H.; Jafari, H. Variation in the expression level of MALAT1, MIAT and XIST lncRNAs in coronary artery disease patients with and without type 2 diabetes mellitus. Arch. Physiol. Biochem., 2022, 128(5), 1308-1315. doi: 10.1080/13813455.2020.1768410 PMID: 32447981
  30. Yu, Y.; Dong, Y.; Deng, B.; Yang, T. IncRNA MIAT accelerates keloid formation by miR-411-5p/JAG1 axis. Crit. Rev. Eukaryot. Gene Expr., 2023, 33(2), 81-92. doi: 10.1615/CritRevEukaryotGeneExpr.2022044734 PMID: 36734859
  31. Qu, X.; Du, Y.; Shu, Y.; Gao, M.; Sun, F.; Luo, S.; Yang, T.; Zhan, L.; Yuan, Y.; Chu, W.; Pan, Z.; Wang, Z.; Yang, B.; Lu, Y. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci. Rep., 2017, 7(1), 42657. doi: 10.1038/srep42657 PMID: 28198439
  32. Yao, L.; Zhou, B.; You, L.; Hu, H.; Xie, R. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol. Biol. Rep., 2020, 47(4), 2605-2617. doi: 10.1007/s11033-020-05347-0 PMID: 32130618
  33. García-Padilla, C.; Domínguez, J.N.; Aránega, A.E.; Franco, D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(10), 194435. doi: 10.1016/j.bbagrm.2019.194435 PMID: 31678627
  34. Xiao, W.; Zheng, D.; Chen, X.; Yu, B.; Deng, K.; Ma, J.; Wen, X.; Hu, Y.; Hou, J. Long non-coding RNA MIAT is involved in the regulation of pyroptosis in diabetic cardiomyopathy via targeting miR-214-3p. iScience, 2021, 24(12), 103518. doi: 10.1016/j.isci.2021.103518 PMID: 34950859
  35. Tao, P.; Ji, J.; Wang, Q.; Cui, M.; Cao, M.; Xu, Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front. Immunol., 2022, 13, 1080456. doi: 10.3389/fimmu.2022.1080456 PMID: 36601125
  36. Wang, X.; Zhao, J.; Li, Y.; Rao, J.; Xu, G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front. Immunol., 2022, 13, 1090989. doi: 10.3389/fimmu.2022.1090989 PMID: 36618403
  37. Rayego-Mateos, S.; Rodrigues-Diez, R.R.; Fernandez-Fernandez, B.; Mora-Fernández, C.; Marchant, V.; Donate- Correa, J.; Navarro-González, J.F.; Ortiz, A.; Ruiz-Ortega, M. Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int., 2023, 103(2), 282-296. doi: 10.1016/j.kint.2022.10.030 PMID: 36470394
  38. Forst, T.; Mathieu, C.; Giorgino, F.; Wheeler, D.C.; Papanas, N.; Schmieder, R.E.; Halabi, A.; Schnell, O.; Streckbein, M.; Tuttle, K.R. New strategies to improve clinical outcomes for diabetic kidney disease. BMC Med., 2022, 20(1), 337. doi: 10.1186/s12916-022-02539-2 PMID: 36210442
  39. Akhtar, M.; Taha, N.M.; Nauman, A.; Mujeeb, I.B.; Al-Nabet, A.D.M.H. Diabetic kidney disease: Past and present. Adv. Anat. Pathol., 2020, 27(2), 87-97. doi: 10.1097/PAP.0000000000000257 PMID: 31876542
  40. Zhao, Y.; Yan, G.; Mi, J.; Wang, G.; Yu, M.; Jin, D.; Tong, X.; Wang, X. The impact of lncRNA on diabetic kidney disease: Systematic review and in silico analyses. Comput. Intell. Neurosci., 2022, 2022, 1-17. doi: 10.1155/2022/8400106 PMID: 35528328
  41. Ghafouri-Fard, S.; Abak, A.; Talebi, S.F.; Shoorei, H.; Branicki, W.; Taheri, M.; Akbari Dilmaghani, N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed. Pharmacother., 2021, 143, 112132. doi: 10.1016/j.biopha.2021.112132 PMID: 34481379
  42. Wang, Z.; Zhang, B.; Chen, Z.; He, Y.; Ru, F.; Liu, P.; Chen, X. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis. Life Sci., 2020, 241, 117187. doi: 10.1016/j.lfs.2019.117187 PMID: 31863776
  43. Liu, Y.; Xu, Z.; Ma, F.; Jia, Y.; Wang, G. Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway. Biomed. Pharmacother., 2018, 107, 1393-1401. doi: 10.1016/j.biopha.2018.08.134 PMID: 30257355
  44. Zhang, M.; Zhao, S.; Xu, C.; Shen, Y.; Huang, J.; Shen, S.; Li, Y.; Chen, X. Ablation of lncRNA MIAT mitigates high glucose-stimulated inflammation and apoptosis of podocyte via miR-130a-3p/TLR4 signaling axis. Biochem. Biophys. Res. Commun., 2020, 533(3), 429-436. doi: 10.1016/j.bbrc.2020.09.034 PMID: 32972755
  45. Tan, T.E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol., 2023, 13, 1077669. doi: 10.3389/fendo.2022.1077669 PMID: 36699020
  46. Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; Wong, I.Y.; Ting, D.S.W.; Tan, G.S.W.; Jonas, J.B.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology., 2021, 128(11), 1580-1591. doi: 10.1016/j.ophtha.2021.04.027 PMID: 33940045
  47. Cai, C.; Meng, C.; He, S.; Gu, C.; Lhamo, T.; Draga, D.; Luo, D.; Qiu, Q. DNA methylation in diabetic retinopathy: Pathogenetic role and potential therapeutic targets. Cell Biosci., 2022, 12(1), 186. doi: 10.1186/s13578-022-00927-y PMID: 36397159
  48. Elafros, M.A.; Callaghan, B.C.; Skolarus, L.E.; Vileikyte, L.; Lawrenson, J.G.; Feldman, E.L. Patient and health care provider knowledge of diabetes and diabetic microvascular complications: A comprehensive literature review. Rev. Endocr. Metab. Disord., 2022, 24(2), 221-239. doi: 10.1007/s11154-022-09754-5 PMID: 36322296
  49. Yue, T.; Shi, Y.; Luo, S.; Weng, J.; Wu, Y.; Zheng, X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front. Immunol., 2022, 13, 1055087. doi: 10.3389/fimmu.2022.1055087 PMID: 36582230
  50. Kaur, P.; Kotru, S.; Singh, S.; Munshi, A. Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Mol. Neurobiol., 2022, 59(3), 1836-1849. doi: 10.1007/s12035-021-02662-w PMID: 35023058
  51. Alves, C.H.; Fernandes, R.; Santiago, A.R.; Ambrósio, A.F. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration. Cells., 2020, 9(5), 1217. doi: 10.3390/cells9051217 PMID: 32423062
  52. Zhang, J.; Chen, M.; Chen, J.; Lin, S.; Cai, D.; Chen, C.; Chen, Z. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci. Rep., 2017, 37(2), BSR20170036. doi: 10.1042/BSR20170036 PMID: 28246353
  53. Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156. doi: 10.1161/CIRCRESAHA.116.305510 PMID: 25587098
  54. Yu, X.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Kuang, H. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342–3p targeting of CASP1 in diabetic retinopathy. Exp. Eye Res., 2021, 202, 108300. doi: 10.1016/j.exer.2020.108300 PMID: 33065089
  55. Biswas, S.; Coyle, A.; Chen, S.; Gostimir, M.; Gonder, J.; Chakrabarti, S. Expressions of serum lncRNAs in diabetic retinopathy – a potential diagnostic tool. Front. Endocrinol., 2022, 13, 851967. doi: 10.3389/fendo.2022.851967 PMID: 35464068
  56. Cao, W.; Zhang, N.; He, X.; Xing, Y.; Yang, N. Long non- coding RNAs in retinal neovascularization: current research and future directions. Graefes Arch. Clin. Exp. Ophthalmol., 2022. doi: 10.1007/s00417-022-05843-y PMID: 36171459
  57. Zhu, X.; Li, Q.; George, V.; Spanoudis, C.; Gilkes, C.; Shrestha, N.; Liu, B.; Kong, L.; You, L.; Echeverri, C.; Li, L.; Wang, Z.; Chaturvedi, P.; Muniz, G.J.; Egan, J.O.; Rhode, P.R.; Wong, H.C. A novel interleukin-2-based fusion molecule, HCW9302, differentially promotes regulatory T cell expansion to treat atherosclerosis in mice. Front. Immunol., 2023, 14, 1114802. doi: 10.3389/fimmu.2023.1114802 PMID: 36761778
  58. Xu, S.; Pelisek, J.; Jin, Z.G. Atherosclerosis is an epigenetic disease. Trends Endocrinol. Metab., 2018, 29(11), 739-742. doi: 10.1016/j.tem.2018.04.007 PMID: 29753613
  59. Fasolo, F.; Jin, H.; Winski, G.; Chernogubova, E.; Pauli, J.; Winter, H.; Li, D.Y.; Glukha, N.; Bauer, S.; Metschl, S.; Wu, Z.; Koschinsky, M.L.; Reilly, M.; Pelisek, J.; Kempf, W.; Eckstein, H.H.; Soehnlein, O.; Matic, L.; Hedin, U.; Bäcklund, A.; Bergmark, C.; Paloschi, V.; Maegdefessel, L. Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation., 2021, 144(19), 1567-1583. doi: 10.1161/CIRCULATIONAHA.120.052023 PMID: 34647815
  60. Wu, L.; Pei, Y.; Zhu, Y.; Jiang, M.; Wang, C.; Cui, W.; Zhang, D. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis., 2019, 10(12), 909. doi: 10.1038/s41419-019-2152-6 PMID: 31797919
  61. Sun, G.; Li, Y.; Ji, Z. Up-regulation of MIAT aggravates the atherosclerotic damage in atherosclerosis mice through the activation of PI3K/Akt signaling pathway. Drug Deliv., 2019, 26(1), 641-649. doi: 10.1080/10717544.2019.1628116 PMID: 31237148
  62. Zhou, Y.; Ma, W.; Bian, H.; Chen, Y.; Li, T.; Shang, D.; Sun, H. Long non-coding RNA MIAT/miR-148b/PAPPA axis modifies cell proliferation and migration in ox-LDL-induced human aorta vascular smooth muscle cells. Life Sci., 2020, 256, 117852. doi: 10.1016/j.lfs.2020.117852 PMID: 32470448
  63. Han, X.; Cai, L.; Shi, Y.; Hua, Z.; Lu, Y.; Li, D.; Yang, J. Integrated analysis of long non-coding RNA-mRNA profile and validation in diabetic cataract. Curr. Eye Res., 2022, 47(3), 382-390. doi: 10.1080/02713683.2021.1984536 PMID: 35068271
  64. Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett., 2020, 731, 135058. doi: 10.1016/j.neulet.2020.135058 PMID: 32454150
  65. Meydan, C.; Bekenstein, U.; Soreq, H. Molecular regulatory pathways link sepsis with metabolic syndrome: Non- coding RNA elements underlying the sepsis/metabolic cross-talk. Front. Mol. Neurosci., 2018, 11, 189. doi: 10.3389/fnmol.2018.00189 PMID: 29922126
  66. Huo, W.; Hou, Y.; Li, Y.; Li, H. Downregulated lncRNA-MIAT confers protection against erectile dysfunction by downregulating lipoprotein lipase via activation of miR-328a-5p in diabetic rats. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1226-1240. doi: 10.1016/j.bbadis.2019.01.018 PMID: 30660685

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers