The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy


Cite item

Full Text

Abstract

Background:Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance.

Methods:Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents.

Results:This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy.

Conclusion:The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.

About the authors

Yingjie Cui

Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University

Author for correspondence.
Email: info@benthamscience.net

Jing Zhang

Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University

Email: info@benthamscience.net

Guifang Zhang

Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University

Email: info@benthamscience.net

References

  1. Sambrani, R.; Abdolalizadeh, J.; Kohan, L.; Jafari, B. Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol. Biol. Rep., 2021, 48(1), 951-960. doi: 10.1007/s11033-020-06110-1 PMID: 33389533
  2. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953. doi: 10.1002/ijc.31937 PMID: 30350310
  3. Kovács, D. Szőke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine, 2016, 12(3), 601-610. doi: 10.1016/j.nano.2015.10.015 PMID: 26656631
  4. Cui, Y.J.; Liu, C.; Ma, C.C.; Ji, Y.T.; Yao, Y.L.; Tang, L.Q.; Zhang, C.M.; Wu, J.D.; Liu, Z.P. SAR investigation and discovery of water-soluble 1-methyl-1,4-dihydroindeno1,2-cpyrazoles as potent tubulin polymerization inhibitors. J. Med. Chem., 2020, 63(23), 14840-14866. doi: 10.1021/acs.jmedchem.0c01345 PMID: 33201714
  5. Feng, Z.Q.; Yan, K.; Li, J.; Xu, X.; Yuan, T.; Wang, T.; Zheng, J. Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. Mater. Sci. Eng. C, 2019, 104, 110001. doi: 10.1016/j.msec.2019.110001 PMID: 31500023
  6. García-Galindo, G.; Castro, J.; Matés, J.; Bravo, M.; Ribó, M.; Vilanova, M.; Benito, A. The selectivity for tumor cells of nuclear-directed cytotoxic RNases is mediated by the nuclear/cytoplasmic distribution of p27(KIP1). Molecules, 2021, 26(5), 1319. doi: 10.3390/molecules26051319 PMID: 33801209
  7. Ashaq, A.; Maqbool, M.F.; Maryam, A.; Khan, M.; Shakir, H.A.; Irfan, M.; Qazi, J.I.; Li, Y.; Ma, T. Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytother. Res., 2021, 35(2), 771-789. doi: 10.1002/ptr.6862 PMID: 32945582
  8. Rawat, R.; Verma, S.M. High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of Pf DHODH and Pf Cytbc1 complex to combat drug resistant malaria. J. Biomol. Struct. Dyn., 2021, 39(14), 5148-5159. doi: 10.1080/07391102.2020.1784288 PMID: 32579074
  9. Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300. doi: 10.1016/j.ejmech.2017.10.021 PMID: 29126724
  10. Zhang, X.; Zegar, T.; Weiser, T.; Hamdan, F.H.; Berger, B.T.; Lucas, R.; Balourdas, D.I.I.; Ladigan, S.; Cheung, P.F.; Liffers, S.T.; Trajkovic-Arsic, M.; Scheffler, B.; Joerger, A.C.; Hahn, S.A.; Johnsen, S.A.; Knapp, S.; Siveke, J.T. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int. J. Cancer, 2020, 147(10), 2847-2861. doi: 10.1002/ijc.33137 PMID: 32599645
  11. Ren, Q.; Gao, W. Current status in the discovery of dual BET/HDAC inhibitors. Bioorg. Med. Chem. Lett., 2021, 38, 127829. doi: 10.1016/j.bmcl.2021.127829 PMID: 33685790
  12. Skok, Ž.; Zidar, N.; Kikelj, D.; Ilaš, J. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J. Med. Chem., 2020, 63(3), 884-904. doi: 10.1021/acs.jmedchem.9b00726 PMID: 31592646
  13. Werth, E.G.; Rajbhandari, P.; Stockwell, B.R.; Brown, L.M. Time course of changes in sorafenib-treated hepatocellular carcinoma cells suggests involvement of phospho-regulated signaling in ferroptosis induction. Proteomics, 2020, 20(10), 2000006. doi: 10.1002/pmic.202000006 PMID: 32336023
  14. Du, G.; Rao, S.; Gurbani, D.; Henning, N.J.; Jiang, J.; Che, J.; Yang, A.; Ficarro, S.B.; Marto, J.A.; Aguirre, A.J.; Sorger, P.K.; Westover, K.D.; Zhang, T.; Gray, N.S. Structure-based design of a potent and selective covalent inhibitor for SRC kinase that targets a p-loop cysteine. J. Med. Chem., 2020, 63(4), 1624-1641. doi: 10.1021/acs.jmedchem.9b01502 PMID: 31935084
  15. Conlon, N.T.; Kooijman, J.J.; van Gerwen, S.J.C.; Mulder, W.R.; Zaman, G.J.R.; Diala, I.; Eli, L.D.; Lalani, A.S.; Crown, J.; Collins, D.M. Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. Br. J. Cancer, 2021, 124(7), 1249-1259. doi: 10.1038/s41416-020-01257-x PMID: 33473169
  16. Yang, J.; Li, Y.; Qiu, Q.; Wang, R.; Yan, W.; Yu, Y.; Niu, L.; Pei, H.; Wei, H.; Ouyang, L.; Ye, H.; Xu, D.; Wei, Y.; Chen, Q.; Chen, L. Small molecules promote selective denaturation and degradation of tubulin heterodimers through a low-barrier hydrogen bond. J. Med. Chem., 2022, 65(13), 9159-9173. doi: 10.1021/acs.jmedchem.2c00379 PMID: 35762925
  17. Schummel, P.H.; Gao, M.; Winter, R. Modulation of the polymerization kinetics of α/β-tubulin by osmolytes and macromolecular crowding. ChemPhysChem, 2017, 18(2), 189-197. doi: 10.1002/cphc.201601032 PMID: 27813294
  18. Cantero, M.R.; Perez, P.L.; Scarinci, N.; Cantiello, H.F. Two-dimensional brain microtubule structures behave as memristive devices. Sci. Rep., 2019, 9(1), 12398. doi: 10.1038/s41598-019-48677-1 PMID: 31455820
  19. Janke, C. The tubulin code: Molecular components, readout mechanisms, and functions. J. Cell Biol., 2014, 206(4), 461-472. doi: 10.1083/jcb.201406055 PMID: 25135932
  20. Liang, Y.J.; Yang, W.X. Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway? Gene, 2019, 684, 1-9. doi: 10.1016/j.gene.2018.10.042 PMID: 30342167
  21. Kalous, J.; Tetkova, A.; Kubelka, M.; Susor, A. Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int. J. Mol. Sci., 2018, 19(3), 698. doi: 10.3390/ijms19030698 PMID: 29494492
  22. Laflamme, G.; Sim, S.; Leary, A.; Pascariu, M.; Vogel, J.; D’Amours, D. Interphase microtubules safeguard mitotic progression by suppressing an Aurora B-dependent arrest induced by DNA replication stress. Cell Rep., 2019, 26(11), 2875-2889.e3. doi: 10.1016/j.celrep.2019.02.051 PMID: 30865880
  23. Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792. doi: 10.1016/j.tcb.2018.05.001 PMID: 29871823
  24. Bennett, M.J.; Barakat, K.; Huzil, J.T.; Tuszynski, J.; Schriemer, D.C. Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem. Biol., 2010, 17(7), 725-734. doi: 10.1016/j.chembiol.2010.05.019 PMID: 20659685
  25. Shuai, W.; Li, X.; Li, W.; Xu, F.; Lu, L.; Yao, H.; Yang, L.; Zhu, H.; Xu, S.; Zhu, Z.; Xu, J. Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors. Eur. J. Med. Chem., 2020, 197, 112308. doi: 10.1016/j.ejmech.2020.112308 PMID: 32339853
  26. Lobert, S.; Correia, J.J. Energetics of vinca alkaloid interactions with tubulin. Methods Enzymol., 2000, 323, 77-103. doi: 10.1016/S0076-6879(00)23362-4 PMID: 10944748
  27. Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13817-13821. doi: 10.1073/pnas.1408124111 PMID: 25114240
  28. Prota, A.E.; Setter, J.; Waight, A.B.; Bargsten, K.; Murga, J.; Diaz, J.F.; Steinmetz, M.O. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J. Mol. Biol., 2016, 428(15), 2981-2988. doi: 10.1016/j.jmb.2016.06.023 PMID: 27395016
  29. Canta, A.; Chiorazzi, A.; Cavaletti, G. Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr. Med. Chem., 2009, 16(11), 1315-1324. doi: 10.2174/092986709787846488 PMID: 19355888
  30. Komatsu, M.; Wheeler, H.E.; Chung, S.; Low, S.K.; Wing, C.; Delaney, S.M.; Gorsic, L.K.; Takahashi, A.; Kubo, M.; Kroetz, D.L.; Zhang, W.; Nakamura, Y.; Dolan, M.E. Pharmacoethnicity in paclitaxel-induced sensory peripheral neuropathy. Clin. Cancer Res., 2015, 21(19), 4337-4346. doi: 10.1158/1078-0432.CCR-15-0133 PMID: 26015512
  31. Eckford, P.D.W.; Sharom, F.J. ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev., 2009, 109(7), 2989-3011. doi: 10.1021/cr9000226 PMID: 19583429
  32. Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791. doi: 10.1056/NEJMoa1209124 PMID: 23020162
  33. Schmitt, F.; Gosch, L.; Dittmer, A.; Rothemund, M.; Mueller, T.; Schobert, R.; Biersack, B.; Volkamer, A.; Höpfner, M. Oxazole-bridged combretastatin A-4 derivatives with tethered hydroxamic acids: Structure(-)activity relations of new inhibitors of HDAC and/or tubulin function. Int. J. Mol. Sci., 2019, 20(2), 383. doi: 10.3390/ijms20020383 PMID: 30658435
  34. Wang, B.; Chen, X.; Gao, J.; Su, L.; Zhang, L.; Xu, H.; Luan, Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2638-2645. doi: 10.1016/j.bmcl.2019.07.045 PMID: 31400938
  35. Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244. doi: 10.1016/j.bmc.2013.03.049 PMID: 23602523
  36. Thaler, F. Current trends in the development of histone deacetylase inhibitors: a review of recent patent applications. Pharm. Pat. Anal., 2012, 1(1), 75-90. doi: 10.4155/ppa.11.3 PMID: 24236715
  37. Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135. doi: 10.1016/j.ejmech.2015.03.035 PMID: 25805446
  38. Lee, H.Y.; Lee, J.F.; Kumar, S.; Wu, Y.W. HuangFu, W.C.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Kuo, F.C.; Hsiao, C.J.; Cheng, C.C.; Yang, C.R.; Liou, J.P. 3-Aroylindoles display antitumor activity in vitro and in vivo: Effects of N1-substituents on biological activity. Eur. J. Med. Chem., 2017, 125, 1268-1278. doi: 10.1016/j.ejmech.2016.11.033 PMID: 27886544
  39. Wu, Y.W.; Hsu, K.C.; Lee, H.Y.; Huang, T.C.; Lin, T.E.; Chen, Y.L.; Sung, T.Y.; Liou, J.P.; Hwang-Verslues, W.W.; Pan, S.L. HuangFu, W.C. HuangFu, W.C. A novel dual HDAC6 and tubulin inhibitor, MPT0B451, displays anti-tumor ability in human cancer cells in vitro and in vivo. Front. Pharmacol., 2018, 9, 205. doi: 10.3389/fphar.2018.00205 PMID: 29593536
  40. Lamaa, D.; Lin, H.P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso-combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591. doi: 10.1021/acs.jmedchem.8b00050 PMID: 30004697
  41. Aboeldahab, A.M.A.; Beshr, E.A.M.; Shoman, M.E.; Rabea, S.M.; Aly, O.M. Spirohydantoins and 1,2,4-triazole-3-carboxamide derivatives as inhibitors of histone deacetylase: Design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2018, 146, 79-92. doi: 10.1016/j.ejmech.2018.01.021 PMID: 29396364
  42. Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of alpha-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130. doi: 10.2147/DDDT.S256756 PMID: 32848361
  43. Lai, M.J.; Ojha, R.; Lin, M.H.; Liu, Y.M.; Lee, H.Y.; Lin, T.E.; Hsu, K.C.; Chang, C.Y.; Chen, M.C.; Nepali, K.; Chang, J.Y.; Liou, J.P. 1-arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630. doi: 10.1016/j.ejmech.2018.10.066 PMID: 30476825
  44. Talukdar, S.; Emdad, L.; Das, S.K.; Fisher, P.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv. Cancer Res., 2020, 147, 161-188. doi: 10.1016/bs.acr.2020.04.003 PMID: 32593400
  45. Sun, W.X.; Han, H.W.; Yang, M.K.; Wen, Z.L.; Wang, Y.S.; Fu, J.Y.; Lu, Y.T.; Wang, M.Y.; Bao, J.X.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Lin, H.Y.; Yang, Y.H. Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR. Bioorg. Med. Chem., 2019, 27(23), 115153. doi: 10.1016/j.bmc.2019.115153 PMID: 31648877
  46. Aouad, M.R.; Al-Mohammadi, H.M.; Al-blewi, F.F.; Ihmaid, S.; Elbadawy, H.M.; Althagfan, S.S.; Rezki, N. Introducing of acyclonucleoside analogues tethered 1,2,4-triazole as anticancer agents with dual epidermal growth factor receptor kinase and microtubule inhibitors. Bioorg. Chem., 2020, 94, 103446. doi: 10.1016/j.bioorg.2019.103446 PMID: 31791685
  47. Romagnoli, R.; Prencipe, F.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Schiaffino Ortega, S.; Chayah, M.; Kimatrai Salvador, M.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Bortolozzi, R.; Mariotto, E.; Mattiuzzo, E.; Viola, G. Design, synthesis, and biological evaluation of 6-substituted thieno3,2-dpyrimidine analogues as dual epidermal growth factor receptor kinase and microtubule inhibitors. J. Med. Chem., 2019, 62(3), 1274-1290. doi: 10.1021/acs.jmedchem.8b01391 PMID: 30633509
  48. Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo4,3-a-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48. doi: 10.3390/molecules23010048 PMID: 29280968
  49. Zayed, M.; Rateb, H.; Ahmed, S.; Khaled, O.; Ibrahim, S. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 1699. doi: 10.3390/molecules23071699 PMID: 30002297
  50. Shanbhag, S.; Ambinder, R.F. Hodgkin lymphoma: A review and update on recent progress. CA Cancer J. Clin., 2018, 68(2), 116-132. doi: 10.3322/caac.21438 PMID: 29194581
  51. Nabholtz, J.M.; Riva, A. Taxane/anthracycline combinations: setting a new standard in breast cancer? Oncologist, 2001, 6(S3)(Suppl. 3), 5-12. doi: 10.1634/theoncologist.6-suppl_3-5 PMID: 11346678
  52. Rudolf, E.; Cervinka, M. Topoisomerases and tubulin inhibitors: a promising combination for cancer treatment. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 421-429. doi: 10.2174/1568011033482242 PMID: 14529450
  53. Yi, J.M.; Zhang, X.F.; Huan, X.J.; Song, S.S.; Wang, W.; Tian, Q.T.; Sun, Y.M.; Chen, Y.; Ding, J.; Wang, Y.Q.; Yang, C.H.; Miao, Z.H. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget, 2015, 6(11), 8960-8973. doi: 10.18632/oncotarget.3264 PMID: 25840421
  54. Wang, L.; Fang, K.; Cheng, J.; Li, Y.; Huang, Y.; Chen, S.; Dong, G.; Wu, S.; Sheng, C. Scaffold hopping of natural product evodiamine: Discovery of a novel antitumor scaffold with excellent potency against colon cancer. J. Med. Chem., 2020, 63(2), 696-713. doi: 10.1021/acs.jmedchem.9b01626 PMID: 31880942
  55. Ceramella, J.; Caruso, A.; Occhiuzzi, M.A.; Iacopetta, D.; Barbarossa, A.; Rizzuti, B.; Dallemagne, P.; Rault, S.; El-Kashef, H.; Saturnino, C.; Grande, F.; Sinicropi, M.S. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur. J. Med. Chem., 2019, 181, 111583. doi: 10.1016/j.ejmech.2019.111583 PMID: 31400710
  56. Podolski-Renić A.; Banković J.; Dinić J.; Ríos-Luci, C.; Fernandes, M.X.; Ortega, N.; Kovačević-Grujičić N.; Martín, V.S.; Padrón, J.M.; Pešić M. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Eur. J. Pharm. Sci., 2017, 105, 159-168. doi: 10.1016/j.ejps.2017.05.011 PMID: 28502672
  57. Feng, J.; Zhang, X.; Shan, C.; Xia, J.; Zhang, Z.; Shi, H.; Leng, K.; Wu, Y.; Ji, C.; Zhong, T. Src family kinases involved in the differentiation of human preadipocytes. Mol. Cell. Endocrinol., 2021, 533, 111323. doi: 10.1016/j.mce.2021.111323 PMID: 34000351
  58. Smolinski, M.P.; Bu, Y.; Clements, J.; Gelman, I.H.; Hegab, T.; Cutler, D.L.; Fang, J.W.S.; Fetterly, G.; Kwan, R.; Barnett, A.; Lau, J.Y.N.; Hangauer, D.G. Discovery of novel dual mechanism of action Src signaling and tubulin polymerization inhibitors (KX2-391 and KX2-361). J. Med. Chem., 2018, 61(11), 4704-4719. doi: 10.1021/acs.jmedchem.8b00164 PMID: 29617135
  59. Kim, S.; Min, A.; Lee, K.H.; Yang, Y.; Kim, T.Y.; Lim, J.M.; Park, S.J.; Nam, H.J.; Kim, J.E.; Song, S.H.; Han, S.W.; Oh, D.Y.; Kim, J.H.; Kim, T.Y.; Hangauer, D.; Lau, J.Y.N. Im, K.; Lee, D.S.; Bang, Y.J.; Im, S.A. Im, K.; Lee, D.S.; Bang, Y.J.; Im, S.A. Antitumor effect of KX-01 through inhibiting Src family kinases and mitosis. Cancer Res. Treat., 2017, 49(3), 643-655. doi: 10.4143/crt.2016.168 PMID: 27737538
  60. Ciesielski, M.J.; Bu, Y.; Munich, S.A.; Teegarden, P.; Smolinski, M.P.; Clements, J.L.; Lau, J.Y.N.; Hangauer, D.G.; Fenstermaker, R.A. KX2-361: a novel orally bioavailable small molecule dual Src/tubulin inhibitor that provides long term survival in a murine model of glioblastoma. J. Neurooncol., 2018, 140(3), 519-527. doi: 10.1007/s11060-018-2992-4 PMID: 30238350
  61. Burster, T.; Gärtner, F.; Bulach, C.; Zhanapiya, A.; Gihring, A.; Knippschild, U. Regulation of MHC I molecules in glioblastoma cells and the sensitizing of NK cells. Pharmaceuticals (Basel), 2021, 14(3), 236. doi: 10.3390/ph14030236 PMID: 33800301
  62. Wells, G.; Kennedy, P.T.; Dahal, L.N. Investigating the role of indoleamine 2,3-dioxygenase in acute myeloid leukemia: A systematic review. Front. Immunol., 2021, 12, 651687. doi: 10.3389/fimmu.2021.651687 PMID: 33777052
  63. Moreno, A.C.R.; Clara, R.O.; Coimbra, J.B.; Júlio, A.R.; Albuquerque, R.C.; Oliveira, E.M.; Maria-Engler, S.S.; Campa, A. The expanding roles of 1-methyl-tryptophan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells. FEBS J., 2013, 280(19), 4782-4792. doi: 10.1111/febs.12444 PMID: 23879623
  64. Yue, E.W.; Douty, B.; Wayland, B.; Bower, M.; Liu, X.; Leffet, L.; Wang, Q.; Bowman, K.J.; Hansbury, M.J.; Liu, C.; Wei, M.; Li, Y.; Wynn, R.; Burn, T.C.; Koblish, H.K.; Fridman, J.S.; Metcalf, B.; Scherle, P.A.; Combs, A.P. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J. Med. Chem., 2009, 52(23), 7364-7367. doi: 10.1021/jm900518f PMID: 19507862
  65. Zhai, L.; Spranger, S.; Binder, D.C.; Gritsina, G.; Lauing, K.L.; Giles, F.J.; Wainwright, D.A. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res., 2015, 21(24), 5427-5433. doi: 10.1158/1078-0432.CCR-15-0420 PMID: 26519060
  66. Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Deroose, F.; Feng, J.L.; Gomes, B.; Greasley, S.; Kaiser, S.E.; Kraus, M.; Négrerie, M.; Maegley, K.; Miller, N.; Murray, B.W.; Schneider, M.; Soloweij, J.; Stewart, A.E.; Tumang, J.; Torti, V.R.; Van Den Eynde, B.; Wythes, M. Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J. Med. Chem., 2017, 60(23), 9617-9629. doi: 10.1021/acs.jmedchem.7b00974 PMID: 29111717
  67. Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum, R.R.; Lin, W. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc., 2016, 138(38), 12502-12510. doi: 10.1021/jacs.6b06663 PMID: 27575718
  68. Chen, Y.; Xia, R.; Huang, Y.; Zhao, W.; Li, J.; Zhang, X.; Wang, P.; Venkataramanan, R.; Fan, J.; Xie, W.; Ma, X.; Lu, B.; Li, S. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun., 2016, 7(1), 13443. doi: 10.1038/ncomms13443 PMID: 27819653
  69. Muller, A.J.; DuHadaway, J.B.; Donover, P.S.; Sutanto-Ward, E.; Prendergast, G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med., 2005, 11(3), 312-319. doi: 10.1038/nm1196 PMID: 15711557
  70. Li, M.; Bolduc, A.R.; Hoda, M.; Gamble, D.N.; Dolisca, S.B.; Bolduc, A.K.; Hoang, K.; Ashley, C.; McCall, D.; Rojiani, A.M.; Maria, B.L.; Rixe, O.; MacDonald, T.J.; Heeger, P.S.; Mellor, A.L.; Munn, D.H.; Johnson, T.S. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J. Immunother. Cancer, 2014, 2(1), 21-35. doi: 10.1186/2051-1426-2-21 PMID: 25054064
  71. Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274. doi: 10.1038/nm934 PMID: 14502282
  72. Wang, N.; Wang, Z.; Xu, Z.; Chen, X.; Zhu, G. A cisplatin-loaded immunochemotherapeutic nanohybrid bearing immune checkpoint inhibitors for enhanced cervical cancer therapy. Angew. Chem. Int. Ed., 2018, 57(13), 3426-3430. doi: 10.1002/anie.201800422 PMID: 29405579
  73. Hua, S.; Chen, F.; Wang, X.; Gou, S. Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase. Eur. J. Med. Chem., 2020, 189, 112041. doi: 10.1016/j.ejmech.2020.112041 PMID: 31954880
  74. Darnell, J.E. Jr. STATs and gene regulation. Science, 1997, 277(5332), 1630-1635. doi: 10.1126/science.277.5332.1630 PMID: 9287210
  75. Gelain, A.; Mori, M.; Meneghetti, F.; Villa, S. Signal transducer and activator of transcription protein 3 (STAT3): an update on its direct inhibitors as promising anticancer agents. Curr. Med. Chem., 2019, 26(27), 5165-5206. doi: 10.2174/0929867325666180719122729 PMID: 30027840
  76. Lai, P.S.; Rosa, D.A.; Magdy Ali, A.; Gómez-Biagi, R.F.; Ball, D.P.; Shouksmith, A.E.; Gunning, P.T. A STAT inhibitor patent review: progress since 2011. Expert Opin. Ther. Pat., 2015, 25(12), 1397-1421. doi: 10.1517/13543776.2015.1086749 PMID: 26394986
  77. Zhao, E.; Shen, Y.; Amir, M.; Farris, A.B.; Czaja, M.J. Stathmin 1 induces murine hepatocyte proliferation and increased liver mass. Hepatol. Commun., 2020, 4(1), 38-49. doi: 10.1002/hep4.1447 PMID: 31909354
  78. Morris, E.J.; Kawamura, E.; Gillespie, J.A.; Balgi, A.; Kannan, N.; Muller, W.J.; Roberge, M.; Dedhar, S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat. Commun., 2017, 8(1), 15289. doi: 10.1038/ncomms15289 PMID: 28474672
  79. Zhou, Q.; Zhu, J.; Chen, J.; Ji, P.; Qiao, C. N-arylsulfonylsubstituted-1H indole derivatives as small molecule dual inhibitors of signal transducer and activator of transcription 3 (STAT3) and tubulin. Bioorg. Med. Chem., 2018, 26(1), 96-106. doi: 10.1016/j.bmc.2017.11.023 PMID: 29174507
  80. Glover, D.M.; Leibowitz, M.H.; McLean, D.A.; Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell, 1995, 81(1), 95-105. doi: 10.1016/0092-8674(95)90374-7 PMID: 7720077
  81. Fu, J.; Bian, M.; Jiang, Q.; Zhang, C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res., 2007, 5(1), 1-10. doi: 10.1158/1541-7786.MCR-06-0208 PMID: 17259342
  82. Lin, Y.S.; Su, L.J.; Yu, C.T.R.; Wong, F.H.; Yeh, H.H.; Chen, S.L.; Wu, J.C.; Lin, W.J.; Shiue, Y.L.; Liu, H.S.; Hsu, S.L.; Lai, J.M.; Huang, C.Y.F. Gene expression profiles of the aurora family kinases. Gene Expr., 2006, 13(1), 15-26. doi: 10.3727/000000006783991962 PMID: 16572587
  83. Pollard, J.R.; Mortimore, M. Discovery and development of aurora kinase inhibitors as anticancer agents. J. Med. Chem., 2009, 52(9), 2629-2651. doi: 10.1021/jm8012129 PMID: 19320489
  84. Morioka, M. 3-Cyano-6-(5-methyl-3-pyrazoloamino) pyridines (Part 2): A dual inhibitor of Aurora kinase and tubulin polymerization. Bioorg. Med. Chem. Lett., 2016, 26(24), 5860-5862. doi: 10.1016/j.bmcl.2016.11.020 PMID: 27884697
  85. Devedjiev, Y.; Steussy, C.N.; Vassylyev, D.G. Crystal structure of an asymmetric complex of pyruvate dehydrogenase kinase 3 with lipoyl domain 2 and its biological implications. J. Mol. Biol., 2007, 370(3), 407-416. doi: 10.1016/j.jmb.2007.04.083 PMID: 17532006
  86. Zhou, Z.H.; McCarthy, D.B.; O’Connor, C.M.; Reed, L.J.; Stoops, J.K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 14802-14807. doi: 10.1073/pnas.011597698 PMID: 11752427
  87. Fujiwara, S.; Kawano, Y.; Yuki, H.; Okuno, Y.; Nosaka, K.; Mitsuya, H.; Hata, H. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br. J. Cancer, 2013, 108(1), 170-178. doi: 10.1038/bjc.2012.527 PMID: 23321518
  88. Patel, M.S.; Korotchkina, L.G.; Sidhu, S. Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex. J. Mol. Catal., B Enzym., 2009, 61(1-2), 2-6. doi: 10.1016/j.molcatb.2009.05.001 PMID: 20160912
  89. Zhang, W.; Zhang, S.L.; Hu, X.; Tam, K.Y. Targeting tumor metabolism for cancer treatment: is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int. J. Biol. Sci., 2015, 11(12), 1390-1400. doi: 10.7150/ijbs.13325 PMID: 26681918
  90. Lin, H.Y.; Han, H.W.; Sun, W.X.; Yang, Y.S.; Tang, C.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur. J. Med. Chem., 2018, 144, 137-150. doi: 10.1016/j.ejmech.2017.12.019 PMID: 29268130
  91. Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742. PMID: 32266087
  92. Yang, X.; Cheng, B.; Xiao, Y.; Xue, M.; Liu, T.; Cao, H.; Chen, J. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment. Eur. J. Med. Chem., 2021, 213, 113058. doi: 10.1016/j.ejmech.2020.113058 PMID: 33280898
  93. Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev., 1999, 13(22), 2905-2927. doi: 10.1101/gad.13.22.2905 PMID: 10579998
  94. Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464. doi: 10.1038/sj.onc.1209085 PMID: 16288292
  95. Revathidevi, S.; Munirajan, A.K. Akt in cancer: Mediator and more. Semin. Cancer Biol., 2019, 59, 80-91. doi: 10.1016/j.semcancer.2019.06.002 PMID: 31173856
  96. Krishnegowda, G.; Prakasha Gowda, A.S.; Tagaram, H.R.S.; Carroll, K.F.S.O.; Irby, R.B.; Sharma, A.K.; Amin, S. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg. Med. Chem., 2011, 19(20), 6006-6014. doi: 10.1016/j.bmc.2011.08.044 PMID: 21920762
  97. Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci., 2021, 22(19), 10317. doi: 10.3390/ijms221910317 PMID: 34638658
  98. Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Zhou, H.; Liu, A.; Su, G.; Mu, Q.; Du, Y.; Yan, B. Anti-tumor selectivity of a novel Tubulin and HSP90 dual-targeting inhibitor in non-small cell lung cancer models. Biochem. Pharmacol., 2013, 86(3), 351-360. doi: 10.1016/j.bcp.2013.05.019 PMID: 23743233
  99. Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Jiang, C.; Zhang, C.; Yan, B. P-glycoprotein-evading anti-tumor activity of a novel tubulin and HSP90 dual inhibitor in a non-small-cell lung cancer model. J. Pharmacol. Sci., 2014, 126(1), 66-76. doi: 10.1254/jphs.14050FP PMID: 25185500
  100. Wang, L.; Zhang, J.; Wan, L.; Zhou, X.; Wang, Z.; Wei, W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther., 2015, 151, 141-151. doi: 10.1016/j.pharmthera.2015.04.002 PMID: 25850036
  101. Huang, P.; Le, X.; Huang, F.; Yang, J.; Yang, H.; Ma, J.; Hu, G.; Li, Q.; Chen, Z. Discovery of adual tubulin polymerization and cell division cycle 20 homologue inhibitor via structural modification on apcin. J. Med. Chem., 2020, 63(9), 4685-4700. doi: 10.1021/acs.jmedchem.9b02097 PMID: 32290657
  102. Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev., 2022, 52, 100905. doi: 10.1016/j.blre.2021.100905 PMID: 34774343
  103. Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia, 2019, 33(2), 299-312. doi: 10.1038/s41375-018-0357-9 PMID: 30651634
  104. Malik, H.S.; Bilal, A.; Ullah, R.; Iqbal, M.; Khan, S.; Ahmed, I.; Krohn, K.; Saleem, R.S.Z.; Hussain, H.; Faisal, A. Natural and semisynthetic chalcones as dual FLT3 andmicrotubule polymerization inhibitors. J. Nat. Prod., 2020, 83(10), 3111-3121. doi: 10.1021/acs.jnatprod.0c00699 PMID: 32975953
  105. Pandey, K.; An, H.J.; Kim, S.K.; Lee, S.A.; Kim, S.; Lim, S.M.; Kim, G.M.; Sohn, J.; Moon, Y.W. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review. Int. J. Cancer, 2019, 145(5), 1179-1188. doi: 10.1002/ijc.32020 PMID: 30478914
  106. Sonawane, V.; Mohd Siddique, M.U.; Jadav, S.S.; Sinha, B.N.; Jayaprakash, V.; Chaudhuri, B. Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy. Eur. J. Med. Chem., 2019, 165, 115-132. doi: 10.1016/j.ejmech.2019.01.011 PMID: 30665142
  107. Mahale, S.; Bharate, S.B.; Manda, S.; Joshi, P.; Jenkins, P.R.; Vishwakarma, R.A.; Chaudhuri, B. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis., 2015, 6(5), e1743. doi: 10.1038/cddis.2015.96 PMID: 25950473
  108. Mahale, S.; Bharate, S.B.; Manda, S.; Joshi, P.; Bharate, S.S.; Jenkins, P.R.; Vishwakarma, R.A.; Chaudhuri, B. Biphenyl-4-carboxylic acid 2-(1H-indol-3-yl)-ethyl-methylamide (CA224), a nonplanar analogue of fascaplysin, inhibits Cdk4 and tubulin polymerization: evaluation of in vitro and in vivo anticancer activity. J. Med. Chem., 2014, 57(22), 9658-9672. doi: 10.1021/jm5014743 PMID: 25368960
  109. Mahale, S.; Aubry, C.; Jenkins, P.R.; Maréchal, J.D.; Sutcliffe, M.J.; Chaudhuri, B. Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin. Bioorg. Chem., 2006, 34(5), 287-297. doi: 10.1016/j.bioorg.2006.06.004 PMID: 16904725
  110. Mi, L.; Gan, N.; Cheema, A.; Dakshanamurthy, S.; Wang, X.; Yang, D.C.H.; Chung, F.L. Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. J. Biol. Chem., 2009, 284(25), 17039-17051. doi: 10.1074/jbc.M901789200 PMID: 19339240
  111. Harris, G.; Schaefer, K.L. The microtubule-targeting agent T0070907 induces proteasomal degradation of tubulin. Biochem. Biophys. Res. Commun., 2009, 388(2), 345-349. doi: 10.1016/j.bbrc.2009.08.009 PMID: 19665001
  112. Yang, J.; Li, Y.; Yan, W.; Li, W.; Qiu, Q.; Ye, H.; Chen, L. Covalent modification of Cys-239 in β-tubulin by small molecules as a strategy to promote tubulin heterodimer degradation. J. Biol. Chem., 2019, 294(20), 8161-8170. doi: 10.1074/jbc.RA118.006325 PMID: 30940730
  113. Alhosin, M.; Ibrahim, A.; Boukhari, A.; Sharif, T.; Gies, J.P.; Auger, C.; Schini-Kerth, V.B. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest. New Drugs, 2012, 30(5), 1813-1819. doi: 10.1007/s10637-011-9734-1 PMID: 21881916
  114. Gasic, I.; Groendyke, B.J.; Nowak, R.P.; Yuan, J.C.; Kalabathula, J.; Fischer, E.S.; Gray, N.S.; Mitchison, T.J. Tubulin resists degradation by cereblon-recruiting PROTACs. Cells, 2020, 9(5), 1083. doi: 10.3390/cells9051083 PMID: 32349222

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers