LIMD2 is the Signature of Cell Aging-immune/Inflammation in Acute Myocardial Infarction


Cite item

Full Text

Abstract

Background:Acute myocardial infarction (AMI) is an age-dependent cardiovascular disease in which cell aging, immunity, and inflammatory factors alter the course; however, cell aging-immune/inflammation signatures in AMI have not been investigated.

Methods:Based on the GEO database to obtain microRNA (miRNA) sequencing, mRNA sequencing and single-cell sequencing data, and utilizing the Seurat package to identify AMI-associated cellular subpopulations. Subsequently, differentially expressed miRNAs and mRNAs were screened to establish a network of competing endogenous RNAs (ceRNAs). Senescence and immunity scores were calculated by single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithms, and the Hmisc package was used to screen for genes with the highest correlation with senescence and immunity scores. Finally, protein-protein interaction (PPI) and molecular docking analyses were performed to predict potential therapeutic agents for the treatment of AMI.

Results:Four cell types (Macrophage, Fibroblast, Endothelial cells, CD8 T cells) were identified in AMI, and CD8 T cells exhibited the lowest cell aging activity. A ceRNA network of miRNAs- mNRA interactions was established based on the overlapping genes in differentially expressed miRNAs (DEmiRNAs) target genes and differentially expressed mRNAs (DEmRNAs). Twenty-four marker genes of CD8 T cells were observed. LIMD2 was identified as cell aging- immune/inflammation-related hub gene in AMI. This study also identified a potential therapeutic network of DB03276-LIMD2-AMI, which showed excellent and stable binding status between DB03276-LIMD2.

Conclusion:This study identified LIMD2 as a cell aging-immune/inflammation-related hub gene. The understanding of the pathogenesis and therapeutic mechanisms of AMI was enriched by the ceRNA network and DB03276-LIMD2-LAMI therapeutic network.

About the authors

Ping Tao

, Shenzhen Longhua Maternity and Child Healthcare Hospital

Email: info@benthamscience.net

Xiaoming Chen

Department of Cardiology, The First Affiliated Hospital of Jinan University

Email: info@benthamscience.net

Lei Xu

Department of Cardiology, The First Affiliated Hospital of Jinan University

Email: info@benthamscience.net

Junteng Chen

The Fourth Clinical Medical College,, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Qinqi Nie

The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Mujuan Xu

The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Jianyi Feng

Department of Cardiology, The First Affiliated Hospital of Jinan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hong, G.; Rui, G.; Zhang, D.; Lian, M.; Yang, Y.; Chen, P.; Yang, H.; Guan, Z.; Chen, W.; Wang, Y. A smartphone-assisted pressure-measuring-based diagnosis system for acute myocardial infarction diagnosis. Int. J. Nanomedicine, 2019, 14, 2451-2464. doi: 10.2147/IJN.S197541 PMID: 31040668
  2. Tyrrell, D.J.; Blin, M.G.; Song, J.; Wood, S.C.; Zhang, M.; Beard, D.A.; Goldstein, D.R. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ. Res., 2020, 126(3), 298-314. doi: 10.1161/CIRCRESAHA.119.315644 PMID: 31818196
  3. Van de Werf, F.; Bax, J.; Betriu, A.; Blomstrom-Lundqvist, C.; Crea, F.; Falk, V.; Filippatos, G.; Fox, K.; Huber, K.; Kastrati, A.; Rosengren, A.; Steg, P.G.; Tubaro, M.; Verheugt, F.; Weidinger, F.; Weis, M.; Vahanian, A.; Camm, J.; De Caterina, R.; Dean, V.; Dickstein, K.; Filippatos, G.; Funck-Brentano, C.; Hellemans, I.; Kristensen, S.D.; McGregor, K.; Sechtem, U.; Silber, S.; Tendera, M.; Widimsky, P.; Zamorano, J.L.; Silber, S.; Aguirre, F.V.; Al-Attar, N.; Alegria, E.; Andreotti, F.; Benzer, W.; Breithardt, O.; Danchin, N.; Mario, C.D.; Dudek, D.; Gulba, D.; Halvorsen, S.; Kaufmann, P.; Kornowski, R.; Lip, G.Y.H.; Rutten, F. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation. Eur. Heart J., 2008, 29(23), 2909-2945. doi: 10.1093/eurheartj/ehn416 PMID: 19004841
  4. Cipriani, A.; Dall’Aglio, P-B.; Mazzotta, L.; Sirico, D.; Sarris, G.; Hazekamp, M.; Carrel, T.; Frigiola, A.; Sojak, V.; Rito, M-L.; Horer, J.; Roussin, R.; Cleuziou, J.; Meyns, B.; Fragata, J.; Telles, H.; Polimenakos, A-C.; Francois, K.; Veshti, A.; Salminen, J.; Rocafort, A-G.; Nosal, M.; Protopapas, E.; Tumbarello, R.; Sarto, P.; Pegoraro, C.; Motta, R.; Salvo, G-D.; Corrado, D.; Vida, V-L.; Padalino, M-A. Diagnostic yield of non-invasive testing in patients with anomalous aortic origin of coronary arteries: A multicentric experience. Congenit. Heart Dis., 2022, 17(4), 375-385. doi: 10.32604/chd.2022.019385
  5. Lieder, H.R.; Kleinbongard, P.; Skyschally, A.; Hagelschuer, H.; Chilian, W.M.; Heusch, G. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res., 2018, 123(10), 1152-1163. doi: 10.1161/CIRCRESAHA.118.313859 PMID: 30359199
  6. Bhatia, S.; Arora, S.; Bhatia, S.M.; Al-Hijji, M.; Reddy, Y.N.V.; Patel, P.; Rihal, C.S.; Gersh, B.J.; Deshmukh, A. Non-st-segment-elevation myocardial infarction among patients with chronic kidney disease: A propensity score-matched comparison of percutaneous coronary intervention versus conservative management. J. Am. Heart Assoc., 2018, 7(6), e007920. doi: 10.1161/JAHA.117.007920 PMID: 29525779
  7. Saber Hafez, M.; Roushdy, A.; Ezzeldin, D. Predictors and effects of persistent hypertension after successful treatment of coarctation of the aorta. Congenit. Heart Dis., 2022, 17(3), 325-333. doi: 10.32604/chd.2022.019025
  8. Wang, L.; Zhang, M.; Chen, X.; Pang, Y.; Liu, J.; Xu, Z. Assessment of reversibility in pulmonary hypertension related to congenital heart disease by using biomarkers and clinical features. Congenit. Heart Dis., 2022, 17(1), 87-97. doi: 10.32604/CHD.2022.018452
  9. Alique, M.; Luna, C.; Carracedo, J.; Ramírez, R. LDL biochemical modifications: A link between atherosclerosis and aging. Food Nutr. Res., 2015, 59(1), 29240. doi: 10.3402/fnr.v59.29240 PMID: 26637360
  10. Le Blanc, J.; Lordkipanidzé, M. Platelet function in aging. Front. Cardiovasc. Med., 2019, 6, 109. doi: 10.3389/fcvm.2019.00109 PMID: 31448291
  11. Zhang, Y.; Herbert, B.S.; Rajashekhar, G.; Ingram, D.A.; Yoder, M.C.; Clauss, M.; Rehman, J. Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-α via the p38 mitogen-activated protein kinase pathway. FASEB J., 2009, 23(5), 1358-1365. doi: 10.1096/fj.08-110296 PMID: 19124561
  12. Zeng, J.Y.; Du, J.J.; Pan, Y.; Wu, J.; Bi, H.L.; Cui, B.H.; Zhai, T.Y.; Sun, Y.; Sun, Y.H. Calcium-sensing receptor in human peripheral blood T lymphocytes is involved in the AMI onset and progression through the NF-κB signaling pathway. Int. J. Mol. Sci., 2016, 17(9), 1397. doi: 10.3390/ijms17091397 PMID: 27563892
  13. Minato, N.; Hattori, M.; Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol., 2020, 32(4), 223-231. doi: 10.1093/intimm/dxaa006 PMID: 31967307
  14. Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358. doi: 10.1016/j.cell.2011.07.014 PMID: 21802130
  15. Si, X.; Zheng, H.; Wei, G.; Li, M.; Li, W.; Wang, H.; Guo, H.; Sun, J.; Li, C.; Zhong, S.; Liao, W.; Liao, Y.; Huang, S.; Bin, J. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol. Ther. Nucleic Acids, 2020, 21, 636-655. doi: 10.1016/j.omtn.2020.06.024 PMID: 32736292
  16. Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019, 139(25), 2857-2876. doi: 10.1161/CIRCULATIONAHA.118.038361 PMID: 30947518
  17. Zhang, F.; Zhang, R.; Zhang, X.; Wu, Y.; Li, X.; Zhang, S.; Hou, W.; Ding, Y.; Tian, J.; Sun, L.; Kong, X. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging, 2018, 10(9), 2266-2283. doi: 10.18632/aging.101541 PMID: 30187887
  18. Tagawa, T.; Gao, S.; Koparde, V.N.; Gonzalez, M.; Spouge, J.L.; Serquiña, A.P.; Lurain, K.; Ramaswami, R.; Uldrick, T.S.; Yarchoan, R.; Ziegelbauer, J.M. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc. Natl. Acad. Sci., 2018, 115(50), 12805-12810. doi: 10.1073/pnas.1816183115 PMID: 30455306
  19. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell,, 2019, 177(7), 1888-1902.
  20. Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112. doi: 10.1038/nature08460 PMID: 19847166
  21. Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36. doi: 10.1002/imt2.36
  22. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  23. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  24. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  25. Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
  26. Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
  27. Harrell, F.E.; Harrell, M.F.E. Package ‘hmisc’. CRAN2018, 2019, 2019, 235-236.
  28. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262. doi: 10.1016/j.celrep.2016.12.019 PMID: 28052254
  29. Franceschini, A.; Szklarczyk, M.D. BiocViews Network, B. 2015. Available from:https://www.bioconductor.org/packages/release/BiocViews.html#___ExperimentData
  30. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  31. Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042. doi: 10.1093/bioinformatics/btx350 PMID: 28575181
  32. El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroprot.: Methods Protocol., 2017, 391-403.
  33. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  34. DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 2002, 40(1), 82-92.
  35. Bauer, P.; Hess, B.; Lindahl, E. GROMACS 2022.3 Manual. 2022. Available from:https://zenodo.org/records/7037337
  36. Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; Wei, Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther., 2022, 7(1), 78. doi: 10.1038/s41392-022-00925-z PMID: 35273164
  37. Nadareishvili, Z.G.; Koziol, D.E.; Szekely, B.; Ruetzler, C.; LaBiche, R.; McCarron, R.; DeGraba, T.J. Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke, 2001, 32(9), 1966-1972. doi: 10.1161/hs0901.095633 PMID: 11546882
  38. Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer, 2020, 122(7), 943-952. doi: 10.1038/s41416-019-0721-1 PMID: 32042067
  39. Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; Windheim, J.; Tsoory, M.; Schirmbeck, R.; Amit, I.; Geiger, H.; Krizhanovsky, V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun., 2018, 9(1), 5435. doi: 10.1038/s41467-018-07825-3 PMID: 30575733
  40. Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; Ibañez, B.; Gortazar, A.R.; Fernández-Marcos, P.; Navarro, M.N.; Hernaez, B.; Alcamí, A.; Baixauli, F.; Mittelbrunn, M. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020, 368(6497), 1371-1376. doi: 10.1126/science.aax0860 PMID: 32439659
  41. Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; Schmiechen, Z.C.; Brooks, R.W.; Trussoni, C.E.; Cui, Y.; Angelini, L.; Lee, K.A.; McGowan, S.J.; Burrack, A.L.; Wang, D.; Dong, Q.; Lu, A.; Sano, T.; O’Kelly, R.D.; McGuckian, C.A.; Kato, J.I.; Bank, M.P.; Wade, E.A.; Pillai, S.P.S.; Klug, J.; Ladiges, W.C.; Burd, C.E.; Lewis, S.E.; LaRusso, N.F.; Vo, N.V.; Wang, Y.; Kelley, E.E.; Huard, J.; Stromnes, I.M.; Robbins, P.D.; Niedernhofer, L.J. An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594(7861), 100-105. doi: 10.1038/s41586-021-03547-7 PMID: 33981041
  42. Mogilenko, D.A.; Shpynov, O.; Andhey, P.S.; Arthur, L.; Swain, A.; Esaulova, E.; Brioschi, S.; Shchukina, I.; Kerndl, M.; Bambouskova, M.; Yao, Z.; Laha, A.; Zaitsev, K.; Burdess, S.; Gillfilan, S.; Stewart, S.A.; Colonna, M.; Artyomov, M.N. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity, 2021, 54(1), 99-115.e12. doi: 10.1016/j.immuni.2020.11.005 PMID: 33271118
  43. Chang, N.C.; Yeh, C.T.; Lin, Y.K.; Kuo, K.T.; Fong, I.H.; Kounis, N.G.; Hu, P.; Hung, M.Y. Garcinol attenuates lipoprotein(a)-induced oxidative stress and inflammatory cytokine production in ventricular cardiomyocyte through α7-nicotinic acetylcholine receptor-mediated inhibition of the p38 MAPK and NF-κB signaling pathways. Antioxidants, 2021, 10(3), 461. doi: 10.3390/antiox10030461 PMID: 33809417
  44. Du, L.; Chen, J.; Wu, Y.; Xia, G.; Chen, M.; Zhao, P.; Wang, Y.; Yao, D.; Liu, F.; Zhang, L.; Wang, X.; Yang, Y.; Wang, L. Long Non-coding RNA N1LR protects against myocardial ischemic/reperfusion injury through regulating the TGF-β signaling pathway. Front. Cardiovasc. Med., 2021, 8, 654969. doi: 10.3389/fcvm.2021.654969 PMID: 34485393
  45. Xu, S.; Xia, X.; Liu, Y.; Chen, F.; Gu, R.; Bian, X.; Xu, X.; Jia, C.; Lu, S.; Gu, Y.; Bai, H.; Zhang, H. Remote cyclic compression ameliorates myocardial infarction injury in rats via AMPK-dependent pathway. Microvasc. Res., 2022, 141, 104313. doi: 10.1016/j.mvr.2022.104313 PMID: 35041850
  46. Shah, H.; Hacker, A.; Langburt, D.; Dewar, M.; McFadden, M.J.; Zhang, H.; Kuzmanov, U.; Zhou, Y.Q.; Hussain, B.; Ehsan, F.; Hinz, B.; Gramolini, A.O.; Heximer, S.P. Myocardial infarction induces cardiac fibroblast transformation within injured and noninjured regions of the mouse heart. J. Proteome Res., 2021, 20(5), 2867-2881. doi: 10.1021/acs.jproteome.1c00098 PMID: 33789425
  47. Araldi, R.P.; de Melo, T.C.; Levy, D.; de Souza, D.M.; Maurício, B.; Colozza-Gama, G.A.; Bydlowski, S.P.; Peng, H.; Rauscher, F.J., III; Cerutti, J.M. LIMD2 regulates key steps of metastasis cascade in papillary thyroid cancer cells via MAPK crosstalk. Cells, 2020, 9(11), 2522. doi: 10.3390/cells9112522 PMID: 33238381
  48. Gajula, S.N.R.; Nadimpalli, N.; Sonti, R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab. Rev., 2021, 53(3), 459-477. doi: 10.1080/03602532.2021.1970178 PMID: 34406889

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers