SETD1A-mediated Methylation of H3K4me3 Inhibits Ferroptosis in Non-small Cell Lung Cancer by Regulating the WTAPP1/WTAP Axis


Cite item

Full Text

Abstract

Introduction:SETD1A is upregulated in non-small cell lung cancer (NSCLC) tissues. This study investigated the molecular mechanism of the SETD1A/WTAPP1/WTAP axis in NSCLC.

Methods:Ferroptosis is a unique cell death mode driven by iron-reliant phospholipid peroxidation, which is regulated by multiple cellular metabolic pathways, including REDOX homeostasis, iron metabolism, mitochondrial activity and metabolism of amino acids, lipids and sugars. Thus, the levels of ferroptosis markers (MDA, SOD, GSH) were measured in vitro, and NSCLC cell behaviors were assessed. SETD1A-mediated H3K4me3 methylation was analyzed. SETD1A-exerted effects on ferroptosis and tumor growth in vivo were verified in nude mouse models.

Results:SETD1A was highly expressed in NSCLC cells. Silencing SETD1A suppressed NSCLC cell proliferation and migration, inhibited MDA, and enhanced GPX4, SOD, and GSH levels. SETD1A elevated WTAP expression through WTAPP1 upregulation by mediating H3K4me3 methylation in the WTAPP1 promoter region. WTAPP1 overexpression partly averted the promotional effect of silencing SETD1A on NSCLC cell ferroptosis. WTAP interference abrogated the inhibitory effects of WTAPP1 on NSCLC cell ferroptosis. Silencing SETD1A facilitated ferroptosis and accelerated tumor growth in nude mice through the WTAPP1/WTAP axis.

Conclusion:SETD1A amplified WTAP expression through WTAPP1 upregulation by mediating H3K4me3 modification in the WTAPP1 promoter region, thus promoting NSCLC cell proliferation and migration and inhibiting ferroptosis.

About the authors

Dao Wang

Department of Thoracic Surgery, Tongji Medical College of Huazhong University of Science and Technology

Email: info@benthamscience.net

Yukun Zu

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology

Email: info@benthamscience.net

Wei Sun

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology

Email: info@benthamscience.net

Xiaowu Fan

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung cancer. Med. Clin. North Am., 2019, 103(3), 463-473. doi: 10.1016/j.mcna.2018.12.006 PMID: 30955514
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. VanderLaan, P.A.; Roy-Chowdhuri, S. Current and future trends in non–small cell lung cancer biomarker testing: The American experience. Cancer Cytopathol., 2020, 128(9), 629-636. doi: 10.1002/cncy.22313 PMID: 32885913
  4. Duma, N.; Santana-Davila, R.; Molina, J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640. doi: 10.1016/j.mayocp.2019.01.013 PMID: 31378236
  5. Schegoleva, A.A.; Khozyainova, A.A.; Fedorov, A.A.; Gerashchenko, T.S.; Rodionov, E.O.; Topolnitsky, E.B.; Shefer, N.A.; Pankova, O.V.; Durova, A.A.; Zavyalova, M.V.; Perelmuter, V.M.; Denisov, E.V. Prognosis of different types of non-small cell lung cancer progression: Current state and perspectives. Cell. Physiol. Biochem., 2021, 55(S2), 29-48. doi: 10.33594/000000340 PMID: 33687819
  6. Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer. JAMA, 2019, 322(8), 764-774. doi: 10.1001/jama.2019.11058 PMID: 31454018
  7. Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy, 2021, 17(9), 2054-2081. doi: 10.1080/15548627.2020.1810918 PMID: 32804006
  8. Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524, 13-30. doi: 10.1016/j.ab.2016.10.021 PMID: 27789233
  9. Fujii, J.; Homma, T.; Osaki, T. Superoxide radicals in the execution of cell death. Antioxidants, 2022, 11(3), 501. doi: 10.3390/antiox11030501 PMID: 35326151
  10. Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res., 2016, 26(9), 1021-1032. doi: 10.1038/cr.2016.95 PMID: 27514700
  11. Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331. doi: 10.1016/j.cell.2013.12.010 PMID: 24439385
  12. Zhang, Y.; Liu, X.; Zeng, L.; Zhao, X.; Chen, Q.; Pan, Y.; Bai, Y.; Shao, C.; Zhang, J. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br. J. Cancer, 2022, 127(10), 1760-1772. doi: 10.1038/s41416-022-01956-7 PMID: 36050447
  13. Zou, J.; Wang, L.; Tang, H.; Liu, X.; Peng, F.; Peng, C. Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it. Int. J. Mol. Sci., 2021, 22(24), 13335. doi: 10.3390/ijms222413335 PMID: 34948133
  14. Feng, Y.; Xu, J.; Shi, M.; Liu, R.; Zhao, L.; Chen, X.; Li, M.; Zhao, Y.; Chen, J.; Du, W.; Liu, P. COX7A1 enhances the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via regulating mitochondrial metabolism. Cell Death Dis., 2022, 13(11), 988. doi: 10.1038/s41419-022-05430-3 PMID: 36418320
  15. Wang, L.; Fu, H.; Song, L.; Wu, Z.; Yu, J.; Guo, Q.; Chen, C.; Yang, X.; Zhang, J.; Wang, Q.; Duan, Y.; Yang, Y. Overcoming AZD9291 resistance and metastasis of NSCLC via ferroptosis and multitarget interference by nanocatalytic sensitizer plus AHP-DRI-12. Small, 2023, 19(4), 2204133. doi: 10.1002/smll.202204133 PMID: 36420659
  16. Zhao, X.; Cui, L.; Zhang, Y.; Guo, C.; Deng, L.; Wen, Z.; Lu, Z.; Shi, X.; Xing, H.; Liu, Y.; Zhang, Y. Screening for potential therapeutic agents for non-small cell lung cancer by targeting ferroptosis. Front. Mol. Biosci., 2022, 9, 917602. doi: 10.3389/fmolb.2022.917602 PMID: 36203872
  17. Van Den Broeck, A.; Ozenne, P.; Eymin, B.; Gazzeri, S. Lung cancer. Cell Adhes. Migr., 2010, 4(1), 107-113. doi: 10.4161/cam.4.1.10885 PMID: 20139698
  18. Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect., 2006, 114(3), A160-A167. doi: 10.1289/ehp.114-a160 PMID: 16507447
  19. Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348), eaal2380. doi: 10.1126/science.aal2380 PMID: 28729483
  20. Piunti, A.; Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science, 2016, 352(6290), aad9780. doi: 10.1126/science.aad9780 PMID: 27257261
  21. Marques, A.C.; Hughes, J.; Graham, B.; Kowalczyk, M.S.; Higgs, D.R.; Ponting, C.P. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol., 2013, 14(11), R131. doi: 10.1186/gb-2013-14-11-r131 PMID: 24289259
  22. Batie, M.; Rocha, S. Gene transcription and chromatin regulation in hypoxia. Biochem. Soc. Trans., 2020, 48(3), 1121-1128. doi: 10.1042/BST20191106 PMID: 32369557
  23. Shilatifard, A. The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem., 2012, 81(1), 65-95. doi: 10.1146/annurev-biochem-051710-134100 PMID: 22663077
  24. Wang, H.; Fan, Z.; Shliaha, P.V.; Miele, M.; Hendrickson, R.C.; Jiang, X.; Helin, K. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature, 2023, 615(7951), 339-348. doi: 10.1038/s41586-023-05780-8 PMID: 36859550
  25. Lauberth, S.M.; Nakayama, T.; Wu, X.; Ferris, A.L.; Tang, Z.; Hughes, S.H.; Roeder, R.G. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell, 2013, 152(5), 1021-1036. doi: 10.1016/j.cell.2013.01.052 PMID: 23452851
  26. Vermeulen, M.; Eberl, H.C.; Matarese, F.; Marks, H.; Denissov, S.; Butter, F.; Lee, K.K.; Olsen, J.V.; Hyman, A.A.; Stunnenberg, H.G.; Mann, M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 2010, 142(6), 967-980. doi: 10.1016/j.cell.2010.08.020 PMID: 20850016
  27. Wang, R.; Liu, J.; Li, K.; Yang, G.; Chen, S.; Wu, J.; Xie, X.; Ren, H.; Pang, Y. An SETD1A/Wnt/β-catenin feedback loop promotes NSCLC development. J. Exp. Clin. Cancer Res., 2021, 40(1), 318. doi: 10.1186/s13046-021-02119-x PMID: 34645486
  28. Kang, J.Y.; Park, J.W.; Hwang, Y.; Hahm, J.Y.; Park, J.; Park, K.S.; Seo, S.B. The H3K4 methyltransferase SETD1A is required for proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochem. Biophys. Res. Commun., 2021, 561, 120-127. doi: 10.1016/j.bbrc.2021.05.026 PMID: 34023776
  29. Jin, M.L.; Kim, Y.W.; Jin, H.L.; Kang, H.; Lee, E.K.; Stallcup, M.R.; Jeong, K.W. Aberrant expression of SETD1A promotes survival and migration of estrogen receptor α-positive breast cancer cells. Int. J. Cancer, 2018, 143(11), 2871-2883. doi: 10.1002/ijc.31853 PMID: 30191958
  30. Hoshii, T.; Cifani, P.; Feng, Z.; Huang, C.H.; Koche, R.; Chen, C.W.; Delaney, C.D.; Lowe, S.W.; Kentsis, A.; Armstrong, S.A. A non-catalytic function of SETD1A regulates cyclin K and the DNA damage response. Cell, 2018, 172(5), 1007-1021.e17. doi: 10.1016/j.cell.2018.01.032 PMID: 29474905
  31. Salz, T.; Li, G.; Kaye, F.; Zhou, L.; Qiu, Y.; Huang, S. hSETD1A regulates Wnt target genes and controls tumor growth of colorectal cancer cells. Cancer Res., 2014, 74(3), 775-786. doi: 10.1158/0008-5472.CAN-13-1400 PMID: 24247718
  32. Wu, J.; Chai, H.; Xu, X.; Yu, J.; Gu, Y. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Mol. Oncol., 2020, 14(6), 1397-1409. doi: 10.1002/1878-0261.12689 PMID: 32291851
  33. Wang, L.; Ma, L.; Xu, F.; Zhai, W.; Dong, S.; Yin, L.; Liu, J.; Yu, Z. Role of long non-coding RNA in drug resistance in non-small cell lung cancer. Thorac. Cancer, 2018, 9(7), 761-768. doi: 10.1111/1759-7714.12652 PMID: 29726094
  34. Fang, C.; Wang, L.; Gong, C.; Wu, W.; Yao, C.; Zhu, S. Long non-coding RNAs: How to regulate the metastasis of non–small-cell lung cancer. J. Cell. Mol. Med., 2020, 24(6), 3282-3291. doi: 10.1111/jcmm.15054 PMID: 32048814
  35. Herrera-Solorio, A.M.; Peralta-Arrieta, I.; Armas López, L.; Hernández-Cigala, N.; Mendoza Milla, C.; Ortiz Quintero, B.; Catalán Cárdenas, R.; Pineda Villegas, P.; Rodríguez Villanueva, E.; Trejo Iriarte, C.G.; Zúñiga, J.; Arrieta, O.; Ávila-Moreno, F. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol. Oncol., 2021, 15(4), 1110-1129. doi: 10.1002/1878-0261.12875 PMID: 33433063
  36. Zhang, L.; Jin, C.; Yang, G.; Wang, B.; Hua, P.; Zhang, Y. LncRNA WTAPP1 promotes cancer cell invasion and migration in NSCLC by downregulating lncRNA HAND2-AS1. BMC Pulm. Med., 2020, 20(1), 153. doi: 10.1186/s12890-020-01180-0 PMID: 32473628
  37. Weng, L.; Qiu, K.; Gao, W.; Shi, C.; Shu, F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulm. Med., 2020, 20(1), 213. doi: 10.1186/s12890-020-01240-5 PMID: 32787827
  38. Cheng, H.; Wang, S.J.; Li, Z.; Ma, Y.; Song, Y.R. ING2-WTAP is a potential therapeutic target in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2022, 605, 31-38. doi: 10.1016/j.bbrc.2022.02.041 PMID: 35306362
  39. Li, B.Q.; Huang, S.; Shao, Q.Q.; Sun, J.; Zhou, L.; You, L.; Zhang, T.P.; Liao, Q.; Guo, J.C.; Zhao, Y.P. WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma. Oncol. Lett., 2017, 13(4), 2531-2538. doi: 10.3892/ol.2017.5784 PMID: 28454430
  40. Zhang, J.; Tsoi, H.; Li, X.; Wang, H.; Gao, J.; Wang, K.; Go, M.Y.Y.; Ng, S.C.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP–WT1–TBL1 axis. Gut, 2016, 65(9), 1482-1493. doi: 10.1136/gutjnl-2014-308614 PMID: 26071132
  41. Deng, J.; Zhang, J.; Ye, Y.; Liu, K.; Zeng, L.; Huang, J.; Pan, L.; Li, M.; Bai, R.; Zhuang, L.; Huang, X.; Wu, G.; Wei, L.; Zheng, Y.; Su, J.; Zhang, S.; Chen, R.; Lin, D.; Zheng, J. N6 -methyladenosine–Mediated upregulation of WTAPP1 promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Res., 2021, 81(20), 5268-5283. doi: 10.1158/0008-5472.CAN-21-0494 PMID: 34362795
  42. Tong, X.; Su, P.; Yang, H.; Chi, F.; Shen, L.; Feng, X.; Jiang, H.; Zhang, X.; Wang, Z. MicroRNA‑598 inhibits the proliferation and invasion of non‑small cell lung cancer cells by directly targeting ZEB2. Exp. Ther. Med., 2018, 16(6), 5417-5423. doi: 10.3892/etm.2018.6825 PMID: 30542503
  43. Tan, Z.; Wang, W.; Peng, J.; Zhou, Z.; Pan, J.; Peng, A.; Cao, H.; Fan, W. Impact of amarogentin on gastric carcinoma cell multiplication, apoptosis and migration via circKIF4A/miR-152-3p. J. Immunol. Res., 2022, 2022, 1-9. doi: 10.1155/2022/2156204 PMID: 35747689
  44. Sayegh, J.; Cao, J.; Zou, M.R.; Morales, A.; Blair, L.P.; Norcia, M.; Hoyer, D.; Tackett, A.J.; Merkel, J.S.; Yan, Q. Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. J. Biol. Chem., 2013, 288(13), 9408-9417. doi: 10.1074/jbc.M112.419861 PMID: 23408432
  45. Hu, A.; Hong, F.; Li, D.; Jin, Y.; Kon, L.; Xu, Z.; He, H.; Xie, Q. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J. Transl. Med., 2021, 19(1), 95. doi: 10.1186/s12967-020-02682-5 PMID: 33653378
  46. Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579. doi: 10.1158/1055-9965.EPI-19-0221 PMID: 31575553
  47. Bajbouj, K.; Al-Ali, A.; Ramakrishnan, R.K.; Saber-Ayad, M.; Hamid, Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int. J. Mol. Sci., 2021, 22(21), 11701. doi: 10.3390/ijms222111701 PMID: 34769131
  48. Du, M.; Gong, P.; Zhang, Y.; Liu, Y.; Liu, X.; Zhang, F.; Wang, X. Histone methyltransferase SETD1A participates in lung cancer progression. Thorac. Cancer, 2021, 12(16), 2247-2257. doi: 10.1111/1759-7714.14065 PMID: 34219384
  49. Guo, F.; Guo, R.; Zhang, L. Downregulation of lncRNA FOXD2-AS1 confers radiosensitivity to gastric cancer cells via miR-1913/SETD1A axis. Cytogenet. Genome Res., 2022, 162(1-2), 10-27. doi: 10.1159/000522653 PMID: 35354145
  50. Ishii, T.; Akiyama, Y.; Shimada, S.; Kabashima, A.; Asano, D.; Watanabe, S.; Ishikawa, Y.; Ueda, H.; Akahoshi, K.; Ogawa, K.; Ono, H.; Kudo, A.; Tanabe, M.; Tanaka, S. Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer. Cancer Sci., 2022. PMID: 36271761
  51. Matsumura, Y.; Nakaki, R.; Inagaki, T.; Yoshida, A.; Kano, Y.; Kimura, H.; Tanaka, T.; Tsutsumi, S.; Nakao, M.; Doi, T.; Fukami, K.; Osborne, T.F.; Kodama, T.; Aburatani, H.; Sakai, J. H3K4/H3K9me3 Bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell, 2015, 60(4), 584-596. doi: 10.1016/j.molcel.2015.10.025 PMID: 26590716
  52. Yang, X; Mei, C; Raza, SHA; Ma, X; Wang, J; Du, J; Zan, L Interactive regulation of DNA demethylase gene TET1 and m(6)A methyltransferase gene METTL3 in myoblast differentiation. Int J Biol Macromol, 2022, 223(Pt A), 916-930.
  53. Yang, J.; Peng, S.; Zhang, K. ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum. Exp. Toxicol., 2022, 41 doi: 10.1177/09603271221135064 PMID: 36366750
  54. Shi, X.Y.; Lin, J.J.; Ge, X.J.; Shi, Y. LncRNA WTAPP1 promotes proliferation of laryngeal carcinoma cells through regulating microRNA-592. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9532-9540. PMID: 33015795
  55. Li, Q.; Wang, C.; Dong, W.; Su, Y.; Ma, Z. WTAP facilitates progression of endometrial cancer via CAV-1/NF-κB axis. Cell Biol. Int., 2021, 45(6), 1269-1277. doi: 10.1002/cbin.11570 PMID: 33559954
  56. Ni, L.; Bai, R.; Zhou, Q.; Yuan, C.; Zhou, L.T.; Wu, X. The correlation between ferroptosis and m6A methylation in patients with acute kidney injury. Kidney Blood Press. Res., 2022, 47(8), 523-533. doi: 10.1159/000524900 PMID: 35569444
  57. Jin, M.L.; Yang, L.; Jeong, K.W. SETD1A-SOX2 axis is involved in tamoxifen resistance in estrogen receptor α-positive breast cancer cells. Theranostics, 2022, 12(13), 5761-5775. doi: 10.7150/thno.72599 PMID: 35966598
  58. Chen, Y.; Peng, C.; Chen, J.; Chen, D.; Yang, B.; He, B.; Hu, W.; Zhang, Y.; Liu, H.; Dai, L.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer, 2019, 18(1), 127. doi: 10.1186/s12943-019-1053-8 PMID: 31438961

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers