Electrochemical Label-free Methods for Ultrasensitive Multiplex Protein Profiling of Infectious Diseases


Дәйексөз келтіру

Толық мәтін

Аннотация

Electrochemical detection methods are the more appropriate detection methods when it comes to the sensitive and specific determination of biomarkers. Biomarkers are the biological targets for disease diagnosis and monitoring. This review focuses on recent advances in label-free detection of biomarkers for infectious disease diagnosis. The current state of the art for rapid detection of infectious diseases and their clinical applications and challenges were discussed. Label-free electroanalytical methods are probably the most promising means to achieve this. We are currently in the early stages of the emerging technology of using label-free electrochemistry of proteins to develop biosensors. To date, antibody-based biosensors have been intensively developed, although many improvements in reproducibility and sensitivity are still needed. Moreover, there is no doubt that a growing number of aptamers and hopefully label-free biosensors based on nanomaterials will soon be used for disease diagnosis and therapy monitoring. And also here in this review article, we have discussed recent developments in the diagnosis of bacterial and viral infections, as well as the current status of the use of label-free electrochemical methods for monitoring inflammatory diseases.

Авторлар туралы

Sasya Madhurantakam

Department of Bioengineering, The University of Texas at Dallas

Email: info@benthamscience.net

Nathan Churcher

Department of Bioengineering, The University of Texas at Dallas

Email: info@benthamscience.net

Ruchita Kumar

Department of Bioengineering, The University of Texas at Dallas

Email: info@benthamscience.net

Shalini Prasad

Department of Bioengineering, The University of Texas at Dallas

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Shiels, M.S.; Haque, A.T.; Berrington de González, A.; Freedman, N.D. Leading causes of death in the US during the COVID-19 Pandemic, March 2020 to October 2021. JAMA Intern. Med., 2022, 182(8), 883-886. doi: 10.1001/jamainternmed.2022.2476 PMID: 35788262
  2. Kalashgrani, M.Y.; Babapoor, A. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Adv. Appl. NanoBio-Tech., 2022, 2022(1), 22-35. doi: 10.47227/AANBT/3(1)35
  3. Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 4(11), 309-334. doi: 10.1007/s13534-021-00204-w
  4. Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed nanobiosensors: Current trends in early diagnostics. Sensors, 2020, 20(23), 6890. doi: 10.3390/s20236890
  5. Pathogen testing: Immunoassay vs. molecular methods. 2020. Available from: https://www.eurofinsus.com/food-testing/resources/pathogen-testing-immunoassay-vs-molecular-methods/
  6. Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Research, 2020, 2020, 2020/7949037. doi: 10.34133/2020/7949037 PMID: 33123683
  7. Li, H.; Huang, Y.; Hou, G.; Xiao, A.; Chen, P.; Liang, H.; Huang, Y.; Zhao, X.; Liang, L.; Feng, X.; Guan, B-O. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Available from: https://www.science.org
  8. Adeniyi, O.K.; Mashazi, P.N. Stable thin films of human P53 antigen on gold surface for the detection of tumour associated anti-P53 autoantibodies. Electrochim. Acta, 2020, 331, 135272. doi: 10.1016/j.electacta.2019.135272
  9. Gil Rosa, B.; Akingbade, O.E.; Guo, X.; Gonzalez-Macia, L.; Crone, M.A.; Cameron, L.P.; Freemont, P.; Choy, K.L.; Güder, F.; Yeatman, E.; Sharp, D.J.; Li, B. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens. Bioelectron., 2022, 203, 114050. doi: 10.1016/j.bios.2022.114050 PMID: 35134685
  10. Haleem, A.; Javaid, M.; Singh, R. P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors Int., 2021, 2, 100100. doi: 10.1016/j.sintl.2021.100100
  11. Dennis, D.T. The biochemistry of energy utilization in plants; Springer Nature: Switzerland, 1987.
  12. Narayan, R. Encyclopedia of Sensors, and Biosensors, 1st ed.; Elsevier: Amsterdam, 2022.
  13. Sengupta, J.; Hussain, C. M. Decadal journey of CNT-based analytical biosensing platforms in the detection of human viruses. Nanomaterials, 2022, 12(23), 4132. doi: 10.3390/nano12234132
  14. Curulli, A. Electrochemical biosensors in food safety: Challenges and perspectives. Molecules, 2021, 26(10), 2940. doi: 10.3390/molecules26102940 PMID: 34063344
  15. Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100. doi: 10.1042/EBC20150010 PMID: 27365039
  16. Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev., 2008, 108(2), 423-461. doi: 10.1021/cr068105t PMID: 18229952
  17. Cooper, M. A. Optical biosensors in drug discovery. Nat Rev Drug Discov., 2002, 1(7), 515-28. doi: 10.1038/nrd838
  18. Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M. Optical biosensors for label-free detection of small molecules. Sensors, 2018, 18(12), 4126. doi: 10.3390/s18124126 PMID: 30477248
  19. Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst, 2020, 145(5), 1605-1628. doi: 10.1039/C9AN01998G PMID: 31970360
  20. Rezaei, B.; Irannejad, N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors; Elsevier Inc.: Amsterdam, 2019. doi: 10.1016/B978-0-12-816491-4.00002-4
  21. Schöning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst, 2002, 127(9), 1137-1151. doi: 10.1039/B204444G PMID: 12375833
  22. Matsumoto, A.; Miyahara, Y. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 2013, 5(22), 10702-10718. doi: 10.1039/c3nr02703a PMID: 24064964
  23. Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Front Chem., 2018, 6(AUG), 333. doi: 10.3389/fchem.2018.00333 PMID: 30155458
  24. Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.K.; Green, N.G. Field-effect sensors – from pH sensing to biosensing: Sensitivity enhancement using streptavidin–biotin as a model system. Analyst, 2017, 142(22), 4173-4200. doi: 10.1039/C7AN00455A PMID: 29072718
  25. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3), 1400-1458. doi: 10.3390/s80314000 PMID: 27879772
  26. Huang, X.; Zhu, Y.; Kianfar, E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol., 2021, 12, 1649-1672. doi: 10.1016/j.jmrt.2021.03.048
  27. Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit Rev Biotechnol., 2016, 36(3), 465-81. doi: 10.3109/07388551.2014.991270
  28. Andryukov, B. G.; Besednova, N. N.; Romashko, R. V.; Zaporozhets, T. S.; Efimov, T. A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors, 2020, 10(2), 11. doi: 10.3390/bios10020011
  29. Hyun, J.J.; Seo, Y.S.; An, H.; Yim, S.Y.; Seo, M.H.; Kim, H.S.; Kim, C.H.; Kim, J.H.; Keum, B.; Kim, Y.S.; Yim, H.J.; Lee, H.S.; Um, S.H.; Kim, C.D.; Ryu, H.S. Optimal time for repeating the IgM anti-hepatitis A virus antibody test in acute hepatitis A patients with a negative initial test. Korean J. Hepatol., 2012, 18(1), 56-62. doi: 10.3350/kjhep.2012.18.1.56 PMID: 22511904
  30. Skinhøj, P.; Mikkelsen, F.; Hollinger, F.B. Hepatitis ain greenland: Importance of specific antibody testing in epidemiologic surveillance. Am. J. Epidemiol., 1977, 105(2), 140-147. doi: 10.1093/oxfordjournals.aje.a112366 PMID: 189600
  31. Nainan, O.V.; Xia, G.; Vaughan, G.; Margolis, H.S. Diagnosis of hepatitis a virus infection: A molecular approach. Clin. Microbiol. Rev., 2006, 19(1), 63-79. doi: 10.1128/CMR.19.1.63-79.2006 PMID: 16418523
  32. Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A label-free immunosensor based on Graphene Oxide/Fe3O4/Prussian Blue nanocomposites for the electrochemical determination of HBsAg. Biosensors, 2020, 10(3), 24. doi: 10.3390/bios10030024 PMID: 32183297
  33. Vemula, S. V.; Zhao, J.; Liu, J.; Xue, X. W.; Biswas, S.; Hewlett, I. Current approaches for diagnosis of influenza virus infections in humans. Viruses, 2016, 8(4), 96. doi: 10.3390/v8040096
  34. Zhao, Y.; Zhang, Y.H.; Denney, L.; Young, D.; Powell, T.J.; Peng, Y.C.; Li, N.; Yan, H.P.; Wang, D.Y.; Shu, Y.L.; Kendrick, Y.; McMichael, A.J.; Ho, L.P.; Dong, T. High levels of virus-specific CD4+ T cells predict severe pandemic influenza A virus infection. Am. J. Respir. Crit. Care Med., 2012, 186(12), 1292-1297. doi: 10.1164/rccm.201207-1245OC PMID: 23087026
  35. Ingram, P.R.; Inglis, T.; Moxon, D.; Speers, D. Procalcitonin and C-reactive protein in severe 2009 H1N1 influenza infection. Intensive Care Med., 2010, 36(3), 528-532. doi: 10.1007/s00134-009-1746-3 PMID: 20069274
  36. Lin, J.; Wang, R.; Jiao, P.; Li, Y.; Li, Y.; Liao, M.; Yu, Y.; Wang, M. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosens. Bioelectron., 2015, 67, 546-552. doi: 10.1016/j.bios.2014.09.037 PMID: 25263315
  37. Louten, J. Detection and diagnosis of viral infections. Essential Human Virology; Elsevier: Amsterdam, 2016, pp. 111-132. doi: 10.1016/B978-0-12-800947-5.00007-7
  38. Long, L.; Cai, R.; Liu, J.; Wu, X. A novel nanoprobe based on core–shell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front Chem., 2020, 8, 463. doi: 10.3389/fchem.2020.00463 PMID: 32582637
  39. Zhang, L.; Yuan, R.; Huang, X.; Chai, Y.; Tang, D.; Cao, S. A new label-free amperometric immunosenor for rubella vaccine. Anal. Bioanal. Chem., 2005, 381(5), 1036-1040. doi: 10.1007/s00216-004-3021-3 PMID: 15761742
  40. Sadique, M.A.; Yadav, S.; Ranjan, P.; Khan, R.; Khan, F.; Kumar, A.; Biswas, D. Highly sensitive electrochemical immunosensor platforms for dual detection of SARS-CoV-2 antigen and antibody based on gold nanoparticle functionalized graphene oxide nanocomposites. ACS Appl. Bio Mater., 2022, 5(5), 2421-2430. doi: 10.1021/acsabm.2c00301 PMID: 35522141
  41. Soto, D.; Orozco, J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal. Chim. Acta, 2022, 1205, 339739. doi: 10.1016/j.aca.2022.339739 PMID: 35414399
  42. Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: An ultrasensitive and disposable biosensor. New J. Chem., 2022, 46(19), 9172-9183. doi: 10.1039/D2NJ00046F
  43. Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta, 2022, 403, 139581. doi: 10.1016/j.electacta.2021.139581 PMID: 34898691
  44. Shahdeo, D.; Roberts, A.; Archana, G.J.; Shrikrishna, N.S.; Mahari, S.; Nagamani, K.; Gandhi, S. Label free detection of SARS CoV-2 Receptor Binding Domain (RBD) protein by fabrication of gold nanorods deposited on electrochemical immunosensor (GDEI). Biosens. Bioelectron., 2022, 212, 114406. doi: 10.1016/j.bios.2022.114406 PMID: 35635976
  45. Peng, R.; Pan, Y.; Li, Z.; Qin, Z.; Rini, J.M.; Liu, X. SPEEDS: A portable serological testing platform for rapid electrochemical detection of SARS-CoV-2 antibodies. Biosens. Bioelectron., 2022, 197, 113762. doi: 10.1016/j.bios.2021.113762 PMID: 34773750
  46. Deng, Y.; Peng, Y.; Wang, L.; Wang, M.; Zhou, T.; Xiang, L.; Li, J.; Yang, J.; Li, G. Target-triggered cascade signal amplification for sensitive electrochemical detection of SARS-CoV-2 with clinical application. Anal. Chim. Acta, 2022, 1208, 339846. doi: 10.1016/j.aca.2022.339846 PMID: 35525596
  47. Hahm, J.B.; Breneman, J.W., IV; Liu, J.; Rabkina, S.; Zheng, W.; Zhou, S.; Walker, R.P.; Kaul, R. A fully automated multiplex assay for diagnosis of lyme disease with high specificity and improved early sensitivity. J. Clin. Microbiol., 2020, 58(5), e01785-19. doi: 10.1128/JCM.01785-19 PMID: 32132190
  48. Lerner, M.B.; Dailey, J.; Goldsmith, B.R.; Brisson, D.; Charlie Johnson, A.T. Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors. Biosens. Bioelectron., 2013, 45(1), 163-167. doi: 10.1016/j.bios.2013.01.035 PMID: 23475141
  49. Flynn, C.; Ignaszak, A. Lyme disease biosensors: A potential solution to a diagnostic dilemma Biosensors, 2020, 10(10), 197. doi: 10.3390/bios10100137
  50. Dou, M.; Sanchez, J.; Tavakoli, H.; Gonzalez, J.E.; Sun, J.; Dien Bard, J.; Li, X. A low-cost microfluidic platform for rapid and instrument-free detection of whooping cough. Anal. Chim. Acta, 2019, 1065, 71-78. doi: 10.1016/j.aca.2019.03.001 PMID: 31005153
  51. Sun, C.; Xiao, F.; Fu, J.; Huang, X.; Jia, N.; Xu, Z.; Wang, Y.; Cui, X. Loop-mediated isothermal amplification coupled with nanoparticle-based lateral biosensor for rapid, sensitive, and specific detection of Bordetella pertussis. Front. Bioeng. Biotechnol., 2022, 9, 797957. doi: 10.3389/fbioe.2021.797957 PMID: 35211469
  52. Rafique, S.; Idrees, M.; Bokhari, H.; Bhatti, A.S. Ellipsometric-based novel DNA biosensor for label-free, real-time detection of Bordetella parapertussis. J. Biol. Phys., 2019, 45(3), 275-291. doi: 10.1007/s10867-019-09528-2 PMID: 31375953
  53. Bacchu, M.S.; Ali, M.R.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.I.; Rahman, M.M.; Campbell, K.; Khan, M.Z.H. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta, 2022, 1192, 339332. doi: 10.1016/j.aca.2021.339332 PMID: 35057920
  54. Selvaraj, V.; Muthukumar, A.; Nagamony, P.; Chinnuswamy, V. Detection of typhoid fever by diatom-based optical biosensor. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20385-20390. doi: 10.1007/s11356-017-9362-1 PMID: 28577141
  55. Prado, I.C.; Chino, M.E.T.A.; dos Santos, A.L.; Souza, A.L.A.; Pinho, L.G.; Lemos, E.R.S.; De-Simone, S.G. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosens. Bioelectron., 2018, 100, 115-121. doi: 10.1016/j.bios.2017.08.029 PMID: 28886455
  56. Ramos-Sono, D.; Laureano, R.; Rueda, D.; Gilman, R. H.; Rosa, A.; La; Ruiz, J.; León, R.; Sheen, P.; Zimic, M. An electrochemical biosensor for the detection of Mycobacterium tuberculosis dna from sputum and urine samples. PLoS One, 2020, 15(10), e0241067. doi: 10.1371/journal.pone.0241067
  57. Liu, Q.; Lim, B.K.L.; Lim, S.Y.; Tang, W.Y.; Gu, Z.; Chung, J.; Park, M.K.; Barkham, T. Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sens. Actuators B Chem., 2018, 255, 1595-1603. doi: 10.1016/j.snb.2017.08.181
  58. Jagannath, B.; Lin, K.C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A sweat-based wearable enabling technology for real-time monitoring of il-1β and crp as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis., 2020, 26(10), 1533-1542. doi: 10.1093/ibd/izaa191 PMID: 32720974
  59. Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens. Bioelectron., 2021, 171, 112726. doi: 10.1016/j.bios.2020.112726 PMID: 33113386

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024