Current Trends in the Development of Electrochemical Biosensor for Detecting Analytes from Sweat


Cite item

Full Text

Abstract

The need for wearable bioelectronics continues to grow, and this technology might significantly alter the medical field. In order to diagnose and treat a patient, conventional medicine takes a "reactive" approach and waits for symptoms to appear first. Therefore, it is preferable to progress toward continuous non-invasive wearable biomonitoring, a preventative strategy that may assist individuals in diagnosing or treating illnesses at the earliest stages, sometimes before any outward symptoms have appeared. Wearable physiological sensors, such as the Apple Watch and FitBit, have arrived on the market as a result of technology advances and have quickly become commonplace. However, few devices currently exist that can report directly on these biomarkers of relevance. This is mostly due to the challenges involved in real-time fluid sampling and generating correct readouts utilising extremely selective and sensitive sensors. Sweat is an excretory fluid that is only allowed to be used in order to reduce invasiveness, but this restriction places additional strain on sensors owing to the diluted concentration of the relevant biomarkers and the changes in pH, salinity, and other biophysical parameters that directly influence the read-out of real-time biosensors. Sweat is favoured amid slightly invasive biofluids due to its low concentration of interfering chemicals and the fact that it may be collected without touching the mucosal layers. This review offers a concise outline of the latest advances in sweat-based wearable sensors, their promise in healthcare monitoring, and the problems faced in analysis based on sweat.

About the authors

Anoop Singh

Department of Physics, University of Jammu

Email: info@benthamscience.net

Asha Sharma

Department of Physics, University of Jammu

Email: info@benthamscience.net

Aman Dubey

Department of Physics, University of Jammu

Email: info@benthamscience.net

Sandeep Arya

Department of Physics, University of Jammu

Author for correspondence.
Email: info@benthamscience.net

References

  1. Huang, X.; Liu, Y.; Chen, K.; Shin, W.J.; Lu, C.J.; Kong, G.W.; Patnaik, D.; Lee, S.H.; Cortes, J.F.; Rogers, J.A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small., 2014, 10(15), 3083-3090.
  2. Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol., 2019, 37(4), 407-419. doi: 10.1038/s41587-019-0040-3 PMID: 30804536
  3. Kim, E.H.; Han, H.; Yu, S.; Park, C.; Kim, G.; Jeong, B.; Lee, S.W.; Kim, J.S.; Lee, S.; Kim, J.; Park, J.U.; Shim, W.; Park, C. Interactive skin display with epidermal stimuli electrode. Adv. Sci., 2019, 6(13), 1802351. doi: 10.1002/advs.201802351 PMID: 31380180
  4. Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T.K.; Li, Z.; Gao, W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol., 2020, 38(2), 217-224. doi: 10.1038/s41587-019-0321-x PMID: 31768044
  5. Cheng, X.; Wang, B.; Zhao, Y.; Hojaiji, H.; Lin, S.; Shih, R.; Lin, H.; Tamayosa, S.; Ham, B.; Stout, P.; Salahi, K.; Wang, Z.; Zhao, C.; Tan, J.; Emaminejad, S. A mediator-free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents’ effects for reliable wearable metabolite and nutrient monitoring. Adv. Funct. Mater., 2020, 30(10), 1908507. doi: 10.1002/adfm.201908507
  6. Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol., 2014, 32(7), 363-371. doi: 10.1016/j.tibtech.2014.04.005 PMID: 24853270
  7. Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K.V. Wearable-based affect recognition-A review. Sensors., 2019, 19(19), 4079. doi: 10.3390/s19194079 PMID: 31547220
  8. Lee, E.K.; Kim, M.K.; Lee, C.H. Skin-mountable biosensors and therapeutics: A review. Annu. Rev. Biomed. Eng., 2019, 21(1), 299-323. doi: 10.1146/annurev-bioeng-060418-052315 PMID: 30883212
  9. Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics., 2015, 9(3), 031301. doi: 10.1063/1.4921039 PMID: 26045728
  10. Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials., 2019, 9(6), 813. doi: 10.3390/nano9060813 PMID: 31146479
  11. Hwang, I.; Kim, H.N.; Seong, M.; Lee, S.H.; Kang, M.; Yi, H.; Bae, W.G.; Kwak, M.K.; Jeong, H.E. Multifunctional smart skin adhesive patches for advanced health care. Adv. Healthc. Mater., 2018, 7(15), 1800275. doi: 10.1002/adhm.201800275 PMID: 29757494
  12. Yao, H.; Shum, A.J.; Cowan, M.; Lähdesmäki, I.; Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron., 2011, 26(7), 3290-3296. doi: 10.1016/j.bios.2010.12.042 PMID: 21257302
  13. Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater., 2016, 28(22), 4373-4395. doi: 10.1002/adma.201504366 PMID: 26867696
  14. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater., 2016, 28(22), 4203-4218. doi: 10.1002/adma.201504150 PMID: 26779680
  15. Turner, A. Biosensors: Then and now. Trends Biotechnol., 2013, 31(3), 119-120. doi: 10.1016/j.tibtech.2012.10.002 PMID: 23122617
  16. Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763. doi: 10.1039/b714449k PMID: 20419217
  17. Kim, D.H.; Lu, N.; Ghaffari, R.; Rogers, J.A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater., 2012, 4(4), e15-e15. doi: 10.1038/am.2012.27
  18. Windmiller, J.R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis, 2013, 25(1), 29-46. doi: 10.1002/elan.201200349
  19. Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valdés-Ramírez, G.; Andrade, F.J.; Schöning, M.J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron., 2014, 54, 603-609. doi: 10.1016/j.bios.2013.11.039 PMID: 24333582
  20. Martín, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; Wang, J. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens., 2017, 2(12), 1860-1868. doi: 10.1021/acssensors.7b00729 PMID: 29152973
  21. Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron., 2018, 109, 75-82. doi: 10.1016/j.bios.2018.02.054 PMID: 29529511
  22. Kang, B.C.; Park, B.S.; Ha, T.J. Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Appl. Surf. Sci., 2019, 470, 13-18. doi: 10.1016/j.apsusc.2018.11.101
  23. Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; Choi, S.H.; Kim, D.H. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 2016, 11(6), 566-572. doi: 10.1038/nnano.2016.38 PMID: 26999482
  24. Sempionatto, J.R.; Khorshed, A.A.; Ahmed, A.; De Loyola e Silva, A.N.; Barfidokht, A.; Yin, L.; Goud, K.Y.; Mohamed, M.A.; Bailey, E.; May, J.; Aebischer, C.; Chatelle, C.; Wang, J. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition. ACS Sens., 2020, 5(6), 1804-1813. doi: 10.1021/acssensors.0c00604 PMID: 32366089
  25. Liu, M.; Wen, Y.; Li, D.; Yue, R.; Xu, J.; He, H. A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)–single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sens. Actuators B Chem., 2011, 159(1), 277-285. doi: 10.1016/j.snb.2011.07.005
  26. Ibarlucea, B.; Pérez Roig, A.; Belyaev, D.; Baraban, L.; Cuniberti, G. Electrochemical detection of ascorbic acid in artificial sweat using a flexible alginate/CuO-modified electrode. Mikrochim. Acta, 2020, 187(9), 520. doi: 10.1007/s00604-020-04510-5 PMID: 32856149
  27. Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068. doi: 10.1016/j.bios.2015.07.039 PMID: 26276541
  28. Liu, Y.L.; Liu, R.; Qin, Y.; Qiu, Q.F.; Chen, Z.; Cheng, S.B.; Huang, W.H. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem., 2018, 90(21), 13081-13087. doi: 10.1021/acs.analchem.8b04223 PMID: 30272442
  29. Kim, S.B.; Koo, J.; Yoon, J.; Hourlier-Fargette, A.; Lee, B.; Chen, S.; Jo, S.; Choi, J.; Oh, Y.S.; Lee, G.; Won, S.M.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; Braun, P.V.; Ghaffari, R.; Park, C.; Rogers, J.A. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab Chip, 2020, 20(1), 84-92. doi: 10.1039/C9LC01045A PMID: 31776526
  30. Tai, L.C.; Gao, W.; Chao, M.; Bariya, M.; Ngo, Q.P.; Shahpar, Z.; Nyein, H.Y.Y.; Park, H.; Sun, J.; Jung, Y.; Wu, E.; Fahad, H.M.; Lien, D.H.; Ota, H.; Cho, G.; Javey, A. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater., 2018, 30(23), 1707442. doi: 10.1002/adma.201707442 PMID: 29663538
  31. Aryal, K.P.; Jeong, H.K. Functionalization of thermally reduced graphite oxide and carbon nanotubes by p-sulfonatocalix4arene and supramolecular recognition of tyrosine. Chem. Phys. Lett., 2019, 714, 69-73. doi: 10.1016/j.cplett.2018.10.074
  32. Beitollahi, H.; Garkani, N.F. Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis, 2016, 28(9), 2237-2244. doi: 10.1002/elan.201600143
  33. Kinnamon, D.; Ghanta, R.; Lin, K.C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep., 2017, 7(1), 13312. doi: 10.1038/s41598-017-13684-7 PMID: 29042582
  34. Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron., 2014, 53, 499-512. doi: 10.1016/j.bios.2013.09.060 PMID: 24212052
  35. Tai, L.C.; Ahn, C.H.; Nyein, H.Y.Y.; Ji, W.; Bariya, M.; Lin, Y.; Li, L.; Javey, A. Nicotine monitoring with a wearable sweat band. ACS Sens., 2020, 5(6), 1831-1837. doi: 10.1021/acssensors.0c00791 PMID: 32429661
  36. Csősz, É.; Emri, G.; Kalló, G.; Tsaprailis, G.; Tőzsér, J. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J. Eur. Acad. Dermatol. Venereol., 2015, 29(10), 2024-2031. doi: 10.1111/jdv.13221 PMID: 26307449
  37. Wilson, M. Microbial inhabitants of humans: their ecology and role in health and disease; Cambridge University Press, 2005.
  38. Okada, T.; Konishi, H.; Ito, M.; Nagura, H.; Asai, J. Identification of secretory immunoglobulin A in human sweat and sweat glands. J. Invest. Dermatol., 1988, 90(5), 648-651. doi: 10.1111/1523-1747.ep12560807 PMID: 3283249
  39. Marques-Deak, A.; Cizza, G.; Eskandari, F.; Torvik, S.; Christie, I.C.; Sternberg, E.M.; Phillips, T.M. Measurement of cytokines in sweat patches and plasma in healthy women: Validation in a controlled study. J. Immunol. Methods, 2006, 315(1-2), 99-109. doi: 10.1016/j.jim.2006.07.011 PMID: 16942779
  40. Choi, D.H.; Kim, J.S.; Cutting, G.R.; Searson, P.C. Wearable potentiometric chloride sweat sensor: The critical role of the salt bridge. Anal. Chem., 2016, 88(24), 12241-12247. doi: 10.1021/acs.analchem.6b03391 PMID: 28193033
  41. Gonzalo-Ruiz, J.; Mas, R.; de Haro, C.; Cabruja, E.; Camero, R.; Alonso-Lomillo, M.A.; Muñoz, F.J. Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens. Bioelectron., 2009, 24(6), 1788-1791. doi: 10.1016/j.bios.2008.07.051 PMID: 18823769
  42. Glennon, T.; O’Quigley, C.; McCaul, M.; Matzeu, G.; Beirne, S.; Wallace, G.G.; Stroiescu, F.; O’Mahoney, N.; White, P.; Diamond, D. ‘SWEATCH’: A wearable platform for harvesting and analysing sweat sodium content. Electroanalysis, 2016, 28(6), 1283-1289. doi: 10.1002/elan.201600106
  43. McCaul, M.; Porter, A.; Barrett, R.; White, P.; Stroiescu, F.; Wallace, G.; Diamond, D. Wearable platform for real-time monitoring of sodium in sweat. ChemPhysChem, 2018, 19(12), 1531-1536. doi: 10.1002/cphc.201701312 PMID: 29573322
  44. Nyein, H.Y.Y.; Tai, L.C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; Javey, A. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens., 2018, 3(5), 944-952. doi: 10.1021/acssensors.7b00961 PMID: 29741360
  45. Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.C.; Ota, H.; Davis, R.W.; Javey, A. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano, 2016, 10(7), 7216-7224. doi: 10.1021/acsnano.6b04005 PMID: 27380446
  46. Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst., 2013, 138(22), 7031-7038. doi: 10.1039/c3an01672b PMID: 24098883
  47. Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.C.; Ota, H.; Wu, E.; Bullock, J.; Zeng, Y.; Lien, D-H.; Javey, A. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens., 2016, 1(7), 866-874. doi: 10.1021/acssensors.6b00287
  48. Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron., 2018, 1(3), 160-171. doi: 10.1038/s41928-018-0043-y
  49. Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst., 2013, 138(1), 123-128. doi: 10.1039/C2AN36422K PMID: 23113321
  50. Choi, J.; Bandodkar, A.J.; Reeder, J.T.; Ray, T.R.; Turnquist, A.; Kim, S.B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J.B.; Aranyosi, A.J.; Xu, S.; Ghaffari, R.; Rogers, J.A. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens., 2019, 4(2), 379-388. doi: 10.1021/acssensors.8b01218 PMID: 30707572
  51. Holmes, N.; Bates, G.; Zhao, Y.; Sherriff, J.; Miller, V. The effect of exercise intensity on sweat rate and sweat sodium and potassium losses in trained endurance athletes. Annals. Sports Med. Res., 2016, 3(2), 1-4.
  52. O’Reilly, J.; Cheng, H.L.; Poon, E.T.C. New insights in professional horse racing; "in-race" heart rate data, elevated fracture risk, hydration, nutritional and lifestyle analysis of elite professional jockeys. J. Sports Sci., 2017, 35(5), 441-448. doi: 10.1080/02640414.2016.1171890 PMID: 27070776
  53. Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther., 2012, 14(5), 398-402. doi: 10.1089/dia.2011.0262 PMID: 22376082
  54. Marvelli, A.; Campi, B.; Mergni, G.; Di Cicco, M.E.; Turini, P.; Scardina, P.; Zucchi, R.; Pifferi, M.; Taccetti, G.; Paolicchi, A.; la Marca, G.; Saba, A. Sweat chloride assay by inductively coupled plasma mass spectrometry: A confirmation test for cystic fibrosis diagnosis. Anal. Bioanal. Chem., 2020, 412(25), 6909-6916. doi: 10.1007/s00216-020-02821-3 PMID: 32691087
  55. Raiszadeh, M.M.; Ross, M.M.; Russo, P.S.; Schaepper, M.A.; Zhou, W.; Deng, J.; Ng, D.; Dickson, A.; Dickson, C.; Strom, M.; Osorio, C.; Soeprono, T.; Wulfkuhle, J.D.; Petricoin, E.F.; Liotta, L.A.; Kirsch, W.M. Proteomic analysis of eccrine sweat: Implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res., 2012, 11(4), 2127-2139. doi: 10.1021/pr2007957 PMID: 22256890
  56. Peterson, R.A.; Gueniche, A.; Adam de Beaumais, S.; Breton, L.; Dalko-Csiba, M.; Packer, N.H. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology., 2016, 26(3), 218-229. PMID: 26582610
  57. Vairo, D.; Bruzzese, L.; Marlinge, M.; Fuster, L.; Adjriou, N.; Kipson, N.; Brunet, P.; Cautela, J.; Jammes, Y.; Mottola, G.; Burtey, S.; Ruf, J.; Guieu, R.; Fenouillet, E. Towards addressing the body electrolyte environment via sweat analysis: Pilocarpine iontophoresis supports assessment of plasma potassium concentration. Sci. Rep., 2017, 7(1), 11801. doi: 10.1038/s41598-017-12211-y PMID: 28924220
  58. Kim, J.; Sempionatto, J.R.; Imani, S.; Hartel, M.C.; Barfidokht, A.; Tang, G.; Campbell, A.S.; Mercier, P.P.; Wang, J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci., 2018, 5(10), 1800880. doi: 10.1002/advs.201800880 PMID: 30356971
  59. Sempionatto, J.R.; Lin, M.; Yin, L.; De la paz, E.; Pei, K.; Sonsa-ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; Xu, S.; Wang, J. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng., 2021, 5(7), 737-748. doi: 10.1038/s41551-021-00685-1 PMID: 33589782
  60. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable sensors: Modalities, challenges, and prospects. Lab. Chip., 2018, 18(2), 217-248. doi: 10.1039/C7LC00914C PMID: 29182185
  61. Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens., 2016, 1(5), 464-482. doi: 10.1021/acssensors.6b00250
  62. Lee, Y.H.; Jang, M.; Lee, M.Y.; Kweon, O.Y.; Oh, J.H. Flexible field-effect transistor-type sensors based on conjugated molecules. Chem, 2017, 3(5), 724-763. doi: 10.1016/j.chempr.2017.10.005
  63. Li, M.Z.; Han, S.T.; Zhou, Y. Recent advances in flexible field-effect transistors toward wearable sensors. Adv. Intell. Syst., 2020, 2(11), 2000113. doi: 10.1002/aisy.202000113
  64. Zheng, Z.; Zhang, H.; Zhai, T.; Xia, F. Overcome debye length limitations for biomolecule sensing based on field effective transistors. Chin. J. Chem., 2021, 39(4), 999-1008. doi: 10.1002/cjoc.202000584
  65. Nagamine, K.; Mano, T.; Nomura, A.; Ichimura, Y.; Izawa, R.; Furusawa, H.; Matsui, H.; Kumaki, D.; Tokito, S. Noninvasive sweat-lactate biosensor emplsoying a hydrogel-based touch pad. Sci. Rep., 2019, 9(1), 10102. doi: 10.1038/s41598-019-46611-z PMID: 31300711
  66. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens., 2020, 5(1), 93-102. doi: 10.1021/acssensors.9b01727 PMID: 31786928
  67. Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng.,, 2020, 3(3), 126-140. doi: 10.1016/j.npe.2020.08.003
  68. Xing, S.; Jiang, J.; Pan, T. Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab Chip, 2013, 13(10), 1937-1947. doi: 10.1039/c3lc41255e PMID: 23536189
  69. Mitsubayashi, K.; Suzuki, M.; Tamiya, E.; Karube, I. Analysis of metabolites in sweat as a measure of physical condition. Anal. Chim. Acta, 1994, 289(1), 27-34. doi: 10.1016/0003-2670(94)80004-9
  70. Bergeron, M.F. Heat cramps: Fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport, 2003, 6(1), 19-27. doi: 10.1016/S1440-2440(03)80005-1 PMID: 12801207
  71. Stern, R.C. The diagnosis of cystic fibrosis. N. Engl. J. Med., 1997, 336(7), 487-491. doi: 10.1056/NEJM199702133360707 PMID: 9017943
  72. Pilardeau, P.; Vaysse, J.; Garnier, M.; Joublin, M.; Valeri, L. Secretion of eccrine sweat glands during exercise. Br. J. Sports Med., 1979, 13(3), 118-121. doi: 10.1136/bjsm.13.3.118 PMID: 486883
  73. Heaney, R.P. Calcium in the prevention and treatment of osteoporosis. J. Intern. Med., 1992, 231(2), 169-180. doi: 10.1111/j.1365-2796.1992.tb00520.x PMID: 1541941
  74. Klesges, R.C.; Ward, K.D.; Shelton, M.L.; Applegate, W.B.; Cantler, E.D.; Palmieri, G.M.; Harmon, K.; Davis, J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA, 1996, 276(3), 226-230. doi: 10.1001/jama.1996.03540030060033 PMID: 8667568
  75. Gamella, M.; Campuzano, S.; Manso, J.; Rivera, G.G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta, 2014, 806, 1-7. doi: 10.1016/j.aca.2013.09.020 PMID: 24331037
  76. Burns, M.; Baselt, R.C. Monitoring drug use with a sweat patch: An experiment with cocaine. J. Anal. Toxicol., 1995, 19(1), 41-48. doi: 10.1093/jat/19.1.41 PMID: 7723301
  77. Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernández-Abedul, M.T.; Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl. Acad. Sci., 2014, 111(33), 11984-11989. doi: 10.1073/pnas.1405679111 PMID: 25092346
  78. Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 2019, 48(6), 1465-1491. doi: 10.1039/C7CS00730B PMID: 29611861
  79. Patterson, M.J.; Galloway, S.D.R.; Nimmo, M.A. Variations in regional sweat composition in normal human males. Exp. Physiol., 2000, 85(6), 869-875. doi: 10.1111/j.1469-445X.2000.02058.x PMID: 11187982
  80. Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv., 2020, 6(40), eaay9842. doi: 10.1126/sciadv.aay9842 PMID: 32998888
  81. Peng, Z.; Song, J.; Gao, Y.; Liu, J.; Lee, C.; Chen, G.; Wang, Z.; Chen, J.; Leung, M.K.H. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy, 2021, 85, 106021. doi: 10.1016/j.nanoen.2021.106021
  82. Zou, Y.; Xu, J.; Chen, K.; Chen, J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol., 2021, 6(3), 2000916. doi: 10.1002/admt.202000916
  83. Xu, J.; Fang, Y.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors., 2021, 11(8), 245. doi: 10.3390/bios11080245 PMID: 34436047
  84. Zhu, X.; Zhai, Q.; Gu, W.; Li, J.; Wang, E. High-sensitivity electrochemiluminescence probe with molybdenum carbides as nanocarriers for α-fetoprotein sensing. Anal. Chem., 2017, 89(22), 12108-12114. doi: 10.1021/acs.analchem.7b02701 PMID: 29072070
  85. Tang, Y.; Ng, K.C.; Chen, Y.; Cheng, W. Lightweight, flexible, nanorod electrode with high electrocatalytic activity. Electrochem. Commun., 2013, 27, 120-123. doi: 10.1016/j.elecom.2012.11.016
  86. Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 2014, 5(1), 3132. doi: 10.1038/ncomms4132 PMID: 24495897
  87. Jason, N.N.; Ho, M.D.; Cheng, W. Resistive electronic skin. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(24), 5845-5866. doi: 10.1039/C7TC01169E
  88. Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating network of ultrathin gold nanowires and silver nanowires toward "invisible" wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater., 2017, 27(25), 1700845. doi: 10.1002/adfm.201700845
  89. Mohan, A.M.V.; Kim, N.; Gu, Y.; Bandodkar, A.J.; You, J.M.; Kumar, R.; Kurniawan, J.F.; Xu, S.; Wang, J. Merging of thin- and thick-film fabrication technologies: Toward soft stretchable "island–bridge" devices. Adv. Mater. Technol., 2017, 2(4), 1600284. doi: 10.1002/admt.201600284
  90. Gong, S.; Cheng, W. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater., 2017, 7(23), 1700648. doi: 10.1002/aenm.201700648
  91. Jeerapan, I.; Sempionatto, J.R.; Pavinatto, A.; You, J.M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(47), 18342-18353. doi: 10.1039/C6TA08358G PMID: 28439415
  92. Bandodkar, A.J.; Nuñez-Flores, R.; Jia, W.; Wang, J. All-printed stretchable electrochemical devices. Adv. Mater., 2015, 27(19), 3060-3065. doi: 10.1002/adma.201500768 PMID: 25856153
  93. Parrilla, M.; Cánovas, R.; Jeerapan, I.; Andrade, F.J.; Wang, J. A textile-based stretchable multi-ion potentiometric sensor. Adv. Healthc. Mater., 2016, 5(9), 996-1001. doi: 10.1002/adhm.201600092 PMID: 26959998
  94. Sempionatto, J.R.; Nakagawa, T.; Pavinatto, A.; Mensah, S.T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip, 2017, 17(10), 1834-1842. doi: 10.1039/C7LC00192D PMID: 28470263
  95. Nyein, H.Y.Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.; Lin, Y.; Happonen, T.; Chao, M.; Liedert, C.; Zhao, Y.; Tai, L.C.; Hiltunen, J.; Javey, A. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv., 2019, 5(8), eaaw9906. doi: 10.1126/sciadv.aaw9906 PMID: 31453333
  96. Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun., 2016, 7(1), 11650. doi: 10.1038/ncomms11650 PMID: 27212140
  97. Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.H.; Brooks, G.A.; Davis, R.W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587), 509-514. doi: 10.1038/nature16521 PMID: 26819044
  98. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev., 2018, 127, 35-45. doi: 10.1016/j.addr.2017.08.009 PMID: 28867296
  99. Bariya, M.; Shahpar, Z.; Park, H.; Sun, J.; Jung, Y.; Gao, W.; Nyein, H.Y.Y.; Liaw, T.S.; Tai, L.C.; Ngo, Q.P.; Chao, M.; Zhao, Y.; Hettick, M.; Cho, G.; Javey, A. Roll- to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS. Nano., 2018, 12(7), 6978-6987. doi: 10.1021/acsnano.8b02505 PMID: 29924589
  100. Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H.M.D.; Rosa, B.; Yang, G.Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron., 2017, 93, 139-145. doi: 10.1016/j.bios.2016.09.038 PMID: 27743863
  101. Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens., 2016, 1(8), 1011-1019. doi: 10.1021/acssensors.6b00356
  102. Raza, T.; Qu, L.; Khokhar, W.A.; Andrews, B.; Ali, A.; Tian, M. Progress of wearable and flexible electrochemical biosensors with the aid of conductive nanomaterials. Front. Bioeng. Biotechnol., 2021, 9, 761020. doi: 10.3389/fbioe.2021.761020 PMID: 34881233
  103. Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC. Adv., 2019, 9(10), 5674-5681. doi: 10.1039/C8RA09157A PMID: 35515907

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers