Protective Effects of Curcumin and its Analogues via the Nrf2 Pathway in Metabolic Syndrome


Cite item

Full Text

Abstract

Metabolic Syndrome (MetS) refers to a set of medical conditions including insulin resistance, central obesity, atherogenic dyslipidemia, and hypertension. Due to these dysregulations, if not treated, MetS could increase the risk of CVA, CVD, and diabetes. As described by WHO, CVD is the leading cause of mortality in the world which motivates researchers to investigate the management of its risk factors, especially MetS. It is reported that oxidative stress secondary to the abundant generation of free radicals oxygen species (ROS) and the ensuing altered redox status play an important role as a mediator in MetS. As a result, using new antioxidant agents with higher bioavailability has been proposed as an efficient treatment.

:Curcumin (a polyphenol of the diarylheptanoids class), which is used as a traditional medicine for various diseases including cardiovascular diseases and diabetes, is characterized by its antioxidant properties which, at least in part, are mediated via the activation of the Nrf2/ARE signaling pathway. Nrf2 is a transcription factor that plays a key role in regulating internal defense systems and increases antioxidant levels to decrease oxidative damage and cell apoptosis. Nrf2 expression and stability are enhanced by curcumin, leading to a higher rate of Nrf2 migration to the cell nucleus to regulate ARE gene expression, thus protecting cells against oxidative stress. In this article, we provide a comprehensive review of the molecular effect of curcumin and its derivatives via Nrf2 regulation in several conditions, such as diabetes, hypertension, dyslipidemia, and obesity.

About the authors

Shahnaz Rajabi

Student Research Committee, Birjand University of Medical Sciences

Email: info@benthamscience.net

Majid Darroudi

Department of Basic Sciences, Neyshabur University of Medical Sciences

Email: info@benthamscience.net

Kobra Naseri

Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Saeed Samarghandian

Healthy Ageing Research Centre, Neyshabur University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Weinstock, R.S.; Drews, K.L.; Caprio, S.; Leibel, N.I.; McKay, S.V.; Zeitler, P.S. Metabolic syndrome is common and persistent in youth-onset type 2 diabetes: Results from the TODAY clinical trial. Obesity, 2015, 23(7), 1357-1361. doi: 10.1002/oby.21120 PMID: 26047470
  2. Zhou, X.; Song, Y.; Zeng, C.; Zhang, H.; Lv, C.; Shi, M.; Qin, S. Molecular mechanism underlying the regulatory effect of vine tea on metabolic syndrome by targeting redox balance and gut microbiota. Front. Nutr., 2022, 9, 802015. doi: 10.3389/fnut.2022.802015 PMID: 35252293
  3. Luyu, L.; Aixia, L.; Lulu, W.; Lin, X. Epidemiological investigation of metabolic syndrome in the elderly and study on preventive measures. J. Public Health, 2021, 6, 107-110.
  4. Urakawa, H.; Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Morioka, K.; Maruyama, N.; Kitagawa, N.; Tanaka, T.; Hori, Y.; Nakatani, K.; Yano, Y.; Adachi, Y. Oxidative stress is associated with adiposity and insulin resistance in men. J. Clin. Endocrinol. Metab., 2003, 88(10), 4673-4676. doi: 10.1210/jc.2003-030202 PMID: 14557439
  5. Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761. doi: 10.1172/JCI21625 PMID: 15599400
  6. Evans, J.L.; Maddux, B.A.; Goldfine, I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal., 2005, 7(7-8), 1040-1052. doi: 10.1089/ars.2005.7.1040 PMID: 15998259
  7. Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 89-116. doi: 10.1146/annurev.pharmtox.46.120604.141046 PMID: 16968214
  8. Liang, H.; He, K.; Li, T.; Cui, S.; Tang, M.; Kang, S.; Ma, W.; Song, L. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci. Rep., 2020, 10(1), 21416. doi: 10.1038/s41598-020-78379-y PMID: 33293561
  9. Zhang, Z.; Zhang, H.; Chen, S.; Xu, Y.; Yao, A.; Liao, Q.; Han, L.; Zou, Z.; Zhang, X. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutr. Res., 2017, 38, 27-33. doi: 10.1016/j.nutres.2017.01.003 PMID: 28381351
  10. Chen, Y.; Luo, H.Q.; Sun, L.L.; Xu, M.T.; Yu, J.; Liu, L.L.; Zhang, J.Y.; Wang, Y.Q.; Wang, H.X.; Bao, X.F.; Meng, G.L. Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. Int. J. Mol. Sci., 2018, 19(9), 2592. doi: 10.3390/ijms19092592 PMID: 30200365
  11. Liu, T.T.; Zeng, Y.; Tang, K.; Chen, X.; Zhang, W.; Xu, X.L. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis, 2017, 262, 39-50. doi: 10.1016/j.atherosclerosis.2017.05.003 PMID: 28500865
  12. He, J.; Zhang, J.; Dong, L.; Dang, X.; Wang, L.; Cheng, L.; Huang, Y. Dihydromyricetin attenuates metabolic syndrome and improves insulin sensitivity by upregulating insulin receptor substrate-1 (Y612) tyrosine phosphorylation in db/db mice. Diabetes Metab. Syndr. Obes., 2019, 12, 2237-2249. doi: 10.2147/DMSO.S218487 PMID: 31802924
  13. Yang, L.; Zheng, C. Optimization of the technology of extracting dihydromyricetin from ampelopsis by orthogonal experimental design. Adv. Mat. Res., 2012, 550-553, 1709-1714. doi: 10.4028/ href='www.scientific.net/AMR.550-553.1709' target='_blank'>www.scientific.net/AMR.550-553.1709
  14. Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature, 2006, 444(7121), 881-887. doi: 10.1038/nature05488 PMID: 17167477
  15. Després, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1039-1049. doi: 10.1161/ATVBAHA.107.159228 PMID: 18356555
  16. Alkhulaifi, F.; Darkoh, C. Meal timing, meal frequency and metabolic syndrome. Nutrients, 2022, 14(9), 1719. doi: 10.3390/nu14091719 PMID: 35565686
  17. Fathi Dizaji, B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab. Syndr., 2018, 12(5), 783-789. doi: 10.1016/j.dsx.2018.04.009 PMID: 29673926
  18. Matsuzawa, Y.; Funahashi, T.; Nakamura, T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb., 2011, 18(8), 629-639. doi: 10.5551/jat.7922 PMID: 21737960
  19. The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients. Metab. Syndr. Relat. Disord., 2019, 17(5), 296-302. doi: 10.1089/met.2019.0005 PMID: 30932744
  20. Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci., 2022, 23(2), 786. doi: 10.3390/ijms23020786 PMID: 35054972
  21. Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223. doi: 10.1152/physrev.00063.2017 PMID: 30067154
  22. Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia, 2003, 46(1), 3-19. doi: 10.1007/s00125-002-1009-0 PMID: 12637977
  23. Griffin, M.E.; Marcucci, M.J.; Cline, G.W.; Bell, K.; Barucci, N.; Lee, D.; Goodyear, L.J.; Kraegen, E.W.; White, M.F.; Shulman, G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 1999, 48(6), 1270-1274. doi: 10.2337/diabetes.48.6.1270 PMID: 10342815
  24. Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest., 2002, 32(S3), 14-23. doi: 10.1046/j.1365-2362.32.s3.3.x PMID: 12028371
  25. Fröjdö, S.; Vidal, H.; Pirola, L. Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(2), 83-92. doi: 10.1016/j.bbadis.2008.10.019 PMID: 19041393
  26. Lewis, G.F.; Carpentier, A.C.; Pereira, S.; Hahn, M.; Giacca, A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab., 2021, 33(4), 709-720. doi: 10.1016/j.cmet.2021.03.007 PMID: 33765416
  27. Patel, P.; Abate, N. Body fat distribution and insulin resistance. Nutrients, 2013, 5(6), 2019-2027. doi: 10.3390/nu5062019 PMID: 23739143
  28. Murakami, T.; Michelagnoli, S.; Longhi, R.; Gianfranceschi, G.; Pazzucconi, F.; Calabresi, L.; Sirtori, C.R.; Franceschini, G. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler. Thromb. Vasc. Biol., 1995, 15(11), 1819-1828. doi: 10.1161/01.ATV.15.11.1819 PMID: 7583561
  29. Sekizkardes, H.; Chung, S.T.; Chacko, S.; Haymond, M.W.; Startzell, M.; Walter, M.; Walter, P.J.; Lightbourne, M.; Brown, R.J. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J. Clin. Invest., 2020, 130(7), 3592-3602. doi: 10.1172/JCI135431 PMID: 32191645
  30. Schillaci, G.; Pirro, M.; Vaudo, G.; Gemelli, F.; Marchesi, S.; Porcellati, C.; Mannarino, E. Prognostic value of the metabolic syndrome in essential hypertension. J. Am. Coll. Cardiol., 2004, 43(10), 1817-1822. doi: 10.1016/j.jacc.2003.12.049 PMID: 15145106
  31. Pannier, B.; Thomas, F.; Bean, K.; Jégo, B.; Benetos, A.; Guize, L. The metabolic syndrome: Similar deleterious impact on all-cause mortality in hypertensive and normotensive subjects. J. Hypertens., 2008, 26(6), 1223-1228. doi: 10.1097/HJH.0b013e3282fd9936 PMID: 18475161
  32. Esler, M.; Rumantir, M.; Wiesner, G.; Kaye, D.; Hastings, J.; Lambert, G. Sympathetic nervous system and insulin resistance: From obesity to diabetes. Am. J. Hypertens., 2001, 14(11), S304-S309. doi: 10.1016/S0895-7061(01)02236-1 PMID: 11721888
  33. Mancia, G.; Bousquet, P.; Elghozi, J.L.; Esler, M.; Grassi, G.; Julius, S.; Reid, J.; Van Zwieten, P.A. The sympathetic nervous system and the metabolic syndrome. J. Hypertens., 2007, 25(5), 909-920. doi: 10.1097/HJH.0b013e328048d004 PMID: 17414649
  34. Tziomalos, K.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, D.P. Endothelial dysfunction in metabolic syndrome: Prevalence, pathogenesis and management. Nutr. Metab. Cardiovasc. Dis., 2010, 20(2), 140-146. doi: 10.1016/j.numecd.2009.08.006 PMID: 19833491
  35. Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes, 2003, 52(12), 2882-2887. doi: 10.2337/diabetes.52.12.2882 PMID: 14633847
  36. Zhang, Z.; Zhou, S.; Jiang, X.; Wang, Y.H.; Li, F.; Wang, Y.G.; Zheng, Y.; Cai, L. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev. Endocr. Metab. Disord., 2015, 16(1), 35-45. doi: 10.1007/s11154-014-9305-9 PMID: 25540093
  37. Yang, J.; Suo, H.; Song, J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit. Rev. Food Sci. Nutr., 2021, 61(22), 3857-3875. doi: 10.1080/10408398.2020.1809344 PMID: 32815398
  38. Tanase, D.M.; Apostol, A.G.; Costea, C.F.; Tarniceriu, C.C.; Tudorancea, I.; Maranduca, M.A.; Floria, M.; Serban, I.L. Oxidative stress in arterial hypertension (HTN): The nuclear factor erythroid factor 2-related factor 2 (Nrf2) pathway, implications and future perspectives. Pharmaceutics, 2022, 14(3), 534. doi: 10.3390/pharmaceutics14030534 PMID: 35335911
  39. Ma, Y.F.; Wu, Z.H.; Gao, M.; Loor, J.J. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. J. Dairy Sci., 2018, 101(6), 5329-5344. doi: 10.3168/jds.2017-14128 PMID: 29573798
  40. da Costa, R.M.; Rodrigues, D.; Pereira, C.A.; Silva, J.F.; Alves, J.V.; Lobato, N.S.; Tostes, R.C. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front. Pharmacol., 2019, 10, 382. doi: 10.3389/fphar.2019.00382 PMID: 31031630
  41. Sykiotis, G.P.; Habeos, I.G.; Samuelson, A.V.; Bohmann, D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(1), 41-48. doi: 10.1097/MCO.0b013e32834136f2 PMID: 21102319
  42. Annie-Mathew, A.S.; Prem-Santhosh, S.; Jayasuriya, R.; Ganesh, G.; Ramkumar, K.M.; Sarada, D.V.L. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol. Res., 2021, 173, 105853. doi: 10.1016/j.phrs.2021.105853 PMID: 34455076
  43. Xue, P.; Hou, Y.; Chen, Y.; Yang, B.; Fu, J.; Zheng, H.; Yarborough, K.; Woods, C.G.; Liu, D.; Yamamoto, M.; Zhang, Q.; Andersen, M.E.; Pi, J. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes, 2013, 62(3), 845-854. doi: 10.2337/db12-0584 PMID: 23238296
  44. Behl, T.; Kaur, I.; Sehgal, A.; Sharma, E.; Kumar, A.; Grover, M.; Bungau, S. Unfolding Nrf2 in diabetes mellitus. Mol. Biol. Rep., 2021, 48(1), 927-939. doi: 10.1007/s11033-020-06081-3 PMID: 33389540
  45. David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J. Diabetes Res., 2017, 2017, 1-15. doi: 10.1155/2017/4826724 PMID: 28913364
  46. Bhakkiyalakshmi, E.; Sireesh, D.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol. Res., 2015, 91, 104-114. doi: 10.1016/j.phrs.2014.10.004 PMID: 25447793
  47. Abdelsamia, E.M.; Khaleel, S.A.; Balah, A.; Abdel Baky, N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother., 2019, 109, 2136-2144. doi: 10.1016/j.biopha.2018.11.064 PMID: 30551471
  48. Samarghandian S, Borji A, Afshari R, Delkhosh MB, Gholami A. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicol. Mech. Methods. 2013, 23(6), 432-436.
  49. He, H.J.; Wang, G.Y.; Gao, Y.; Ling, W.H.; Yu, Z.W.; Jin, T.R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes, 2012, 3(5), 94-104. doi: 10.4239/wjd.v3.i5.94 PMID: 22645638
  50. Shehzad, A.; Ha, T.; Subhan, F.; Lee, Y.S. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur. J. Nutr., 2011, 50(3), 151-161. doi: 10.1007/s00394-011-0188-1 PMID: 21442412
  51. Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy. Cells. 2019, 8(10), 1158.
  52. Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C.J.; Foresti, R.; Alam, J.; Motterlini, R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J., 2003, 371(3), 887-895. doi: 10.1042/bj20021619 PMID: 12570874
  53. Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z.A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J. Mol. Cell. Cardiol., 2015, 79, 1-12. doi: 10.1016/j.yjmcc.2014.10.002 PMID: 25444713
  54. Chartoumpekis, D.V.; Kensler, T.W. New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr. Diabetes Rev., 2013, 9(2), 137-145. PMID: 23363332
  55. Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules, 2021, 26(4), 985. doi: 10.3390/molecules26040985 PMID: 33673390
  56. Tapia, E.; Virgilia, S.; Ortiz-Vega, K.M.; Zarco-Márquez, G. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxid Med Cell Longev, 2012, 2012, 269039.
  57. Correa, F.; Buelna-Chontal, M.; Hernández-Reséndiz, S.; García-Niño, W.R.; Roldán, F.J.; Soto, V.; Silva-Palacios, A.; Amador, A.; Pedraza-Chaverrí, J.; Tapia, E.; Zazueta, C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic. Biol. Med., 2013, 61, 119-129. doi: 10.1016/j.freeradbiomed.2013.03.017 PMID: 23548636
  58. Tapia, E.; García-Arroyo, F.; Silverio, O.; Rodríguez-Alcocer, A.N.; Jiménez-Flores, A.B.; Cristobal, M.; Arellano, A.S.; Soto, V.; Osorio-Alonso, H.; Molina-Jijón, E.; Pedraza-Chaverri, J.; Sanchez-Lozada, L.G. Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: Role of Nrf2-Keap1 and renal dopamine pathways. Free Radic. Res., 2016, 50(7), 781-792. doi: 10.1080/10715762.2016.1174776 PMID: 27050624
  59. Grossman, E. Does increased oxidative stress cause hypertension? Diabetes Care, 2008, 31(S2), S185-S189. doi: 10.2337/dc08-s246 PMID: 18227483
  60. de Champlain, J.; Wu, R.; Girouard, H.; Karas, M.; EL Midaoui, A.; Laplante, M.A.; Wu, L. Oxidative stress in hypertension. Clin. Exp. Hypertens., 2004, 26(7-8), 593-601. doi: 10.1081/CEH-200031904 PMID: 15702613
  61. Howden, R. Nrf2 and cardiovascular defense. Oxid Med Cell Longev, 2013, 2013, 104308.
  62. Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97. doi: 10.1152/ajpcell.00287.2006 PMID: 16870827
  63. Chen, T.; Li, J.; Liu, L.; Fan, L.; Li, X.; Wang, Y.; Abraham, N.; Cao, J. Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int. J. Mol. Sci., 2013, 14(2), 2684-2706. doi: 10.3390/ijms14022684 PMID: 23358254
  64. Sacerdoti, D.; Escalante, B.; Abraham, N.G.; McGiff, J.C.; Levere, R.D.; Schwartzman, M.L. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science, 1989, 243(4889), 388-390. doi: 10.1126/science.2492116 PMID: 2492116
  65. Samarghandian S, Azimi-Nezhad M, Mehrad-Majd H, Mirhafez SR. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology. 2015; 96(3-4): 112-7.
  66. Ryter, S.W.; Otterbein, L.E.; Morse, D.; Choi, A.M.K. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol. Cell. Biochem., 2002, 234/235(1), 249-263. doi: 10.1023/A:1015957026924 PMID: 12162441
  67. Sacerdoti, D.; Despina, M.; Paola, P.; Silvia, G.; Angelo, G.; Massimo, B. Role of HO/CO in the control of peripheral circulation in humans. Int. J. Hypertens., 2012, 2012, 236180.
  68. Morita, T.; Kourembanas, S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J. Clin. Invest., 1995, 96(6), 2676-2682. doi: 10.1172/JCI118334 PMID: 8675634
  69. Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr. Mol. Med., 2020, 20(2), 116-133. doi: 10.2174/18755666MTAxyNTQkx PMID: 31622191
  70. Tapia, E.; Zatarain-Barrón, Z.L.; Hernández-Pando, R.; Zarco-Márquez, G.; Molina-Jijón, E.; Cristóbal-García, M.; Santamaría, J.; Pedraza-Chaverri, J. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine, 2013, 20(3-4), 359-366. doi: 10.1016/j.phymed.2012.11.014 PMID: 23271001
  71. Rashid, K.; Sil, P.C. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. Biochim. Biophys. Acta, 2015, 1852(1), 70-82. doi: 10.1016/j.bbadis.2014.11.007
  72. Feingold, K.R. Obesity and dyslipidemia. Endotext, 2020. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK305895/
  73. Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; Rahimi, H.R.; Ghalandari, M.; Ghaffari, M.S.; Yousefi, A.; Pouresmaeili, E.; Besharatlou, M.R.; Moohebati, M.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., 2020, 19(1), 42. doi: 10.1186/s12944-020-01204-y PMID: 32178672
  74. Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res., 2022, 175, 106029. doi: 10.1016/j.phrs.2021.106029 PMID: 34896248
  75. Huajing, K. Anti-dislipidemia effectiveness test of turmeric ethanol extract (Curcuma longa) in male Wistar mice given Propylthiouracil (PTU). Budapest Int. Res. Exact Sci. (BirEx) J., 2022, 4(1), 43-56.
  76. Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med. 2015; 8(2):2465-2470.
  77. Komang, N.; Laksmi, S. Continuing Continuing Development Professional Medical Development. 2014.
  78. Shishodia, S.; Amin, H.M.; Lai, R.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 2005, 70(5), 700-713. doi: 10.1016/j.bcp.2005.04.043 PMID: 16023083
  79. Pugazhenthi, S.; Akhov, L.; Selvaraj, G.; Wang, M.; Alam, J. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse β-cells. Am. J. Physiol. Endocrinol. Metab., 2007, 293(3), E645-E655. doi: 10.1152/ajpendo.00111.2007 PMID: 17535857

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers