Application of Quercetin and its Novel Formulations in the Treatment of Malignancies of Central Nervous System: An Updated Review of Current Evidence based on Molecular Mechanisms


Дәйексөз келтіру

Толық мәтін

Аннотация

Quercetin, a naturally occurring polyphenolic compound found in abundance in vegetables and fruits, has emerged as a compelling subject of study in cancer treatment. This comprehensive review delves into the significance and originality of quercetin's multifaceted mechanisms of action, with a particular focus on its application in various brain tumors such as glioblastoma, glioma, neuroblastoma, astrocytoma, and medulloblastoma. This review scrutinizes the distinctive facets of quercetin's anti-cancer properties, highlighting its capacity to modulate intricate signaling pathways, trigger apoptosis, impede cell migration, and enhance radiosensitivity in brain tumor cells. Significantly, it synthesizes recent research findings, providing insights into potential structure-activity relationships that hold promise for developing novel quercetin derivatives with heightened effectiveness. By unraveling the unique attributes of quercetin's anti-brain tumor effects and exploring its untapped potential in combination therapies, this review contributes to a deeper comprehension of quercetin's role as a prospective candidate for advancing innovative treatments for brain cancer.

Авторлар туралы

Mohammad Jamshidi-Mouselou

Student Research Committee, Medical School,, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Amirhossein Hashemi

Student Research Committee, Nursing and Midwifery School, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Mohammad Jamshidi-Mouselou

Student Research Committee, Nursing and Midwifery School, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy,, Birjand University of Medical Sciences

Email: info@benthamscience.net

Mohammad Pourhanifeh

, Research hub institute

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Saeed Samarghandian

Healthy Ageing Research Centre, Neyshabur University of Medical Sciences,, Islamic Azad University of Nishapur

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncol., 2020, 22(12), iv1-iv96. doi: 10.1093/neuonc/noaa200 PMID: 33123732
  2. Nabors, L.B.; Portnow, J.; Ammirati, M.; Baehring, J.; Brem, H.; Butowski, N.; Fenstermaker, R.A.; Forsyth, P.; Hattangadi-Gluth, J.; Holdhoff, M.; Howard, S.; Junck, L.; Kaley, T.; Kumthekar, P.; Loeffler, J.S.; Moots, P.L.; Mrugala, M.M.; Nagpal, S.; Pandey, M.; Parney, I.; Peters, K.; Puduvalli, V.K.; Ragsdale, J., III; Rockhill, J.; Rogers, L.; Rusthoven, C.; Shonka, N.; Shrieve, D.C.; Sills, A.K., Jr; Swinnen, L.J.; Tsien, C.; Weiss, S.; Wen, P.Y.; Willmarth, N.; Bergman, M.A.; Engh, A. NCCN Guidelines insights: Central nervous system cancers, version 1.2017. J. Natl. Compr. Canc. Netw., 2017, 15(11), 1331-1345. doi: 10.6004/jnccn.2017.0166 PMID: 29118226
  3. Yarahmadi, A.; Khademi, F.; Mostafavi-Pour, Z.; Zal, F. In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (Diabetes and Cancer Connection). Nutr. Cancer, 2018, 70(5), 770-775. doi: 10.1080/01635581.2018.1470654 PMID: 29781726
  4. Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem., 2017, 9(1), 79-93. doi: 10.4155/fmc-2016-0186 PMID: 27995808
  5. Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22. doi: 10.3945/ajcn.116.136051 PMID: 27881391
  6. Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 2003, 417(1), 12-17. doi: 10.1016/S0003-9861(03)00284-4 PMID: 12921774
  7. Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210. doi: 10.1016/j.jnutbio.2014.10.008 PMID: 25468612
  8. Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol., 2016, 56, 21-38. doi: 10.1016/j.tifs.2016.07.004
  9. Wang, F.M.; Yao, T.W.; Zeng, S. Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC. J. Pharm. Biomed. Anal., 2003, 33(2), 317-321. doi: 10.1016/S0731-7085(03)00255-3 PMID: 12972097
  10. Walle, T.; Walle, U.K.; Halushka, P.V. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr., 2001, 131(10), 2648-2652. doi: 10.1093/jn/131.10.2648 PMID: 11584085
  11. Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Müller, M.J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr., 2009, 102(7), 1065-1074. doi: 10.1017/S0007114509359127 PMID: 19402938
  12. Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1), 1700447. doi: 10.1002/mnfr.201700447 PMID: 29127724
  13. Shi, Y.; Williamson, G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr., 2016, 115(5), 800-806. doi: 10.1017/S0007114515005310 PMID: 26785820
  14. Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J. Am. Coll. Nutr., 2017, 36(1), 9-15. doi: 10.1080/07315724.2016.1140093 PMID: 27710596
  15. Shaterzadeh-Yazdi, H.; Noorbakhsh, MF.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc Hematol Disord Drug Targets, 2018, 18(1), 52-60. doi: 10.2174/1871529X18666180212114816
  16. Yang, W.S.; Jeong, D.; Yi, Y.S.; Lee, B.H.; Kim, T.W.; Htwe, K.M.; Kim, Y.D.; Yoon, K.D.; Hong, S.; Lee, W.S.; Cho, J.Y. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol., 2014, 151(3), 1165-1174. doi: 10.1016/j.jep.2013.12.033 PMID: 24378351
  17. Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell, 2011, 147(4), 742-758. doi: 10.1016/j.cell.2011.10.033 PMID: 22078876
  18. Kim, J.Y.; An, J.M.; Chung, W.Y.; Park, K.K.; Hwang, J.K.; Kim, D.S.; Seo, S.R.; Seo, J.T. Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother. Res., 2013, 27(4), 493-498. doi: 10.1002/ptr.4746 PMID: 22627996
  19. Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
  20. Su, C.C.; Lee, K.I.; Chen, M.K.; Kuo, C.Y.; Tang, C.H.; Liu, S.H. Cantharidin induced oral squamous cell carcinoma cell apoptosis via the jnk-regulated mitochondria and endoplasmic reticulum stress-related signaling pathways. PLoS One, 2016, 11(12), e0168095. doi: 10.1371/journal.pone.0168095 PMID: 27930712
  21. Lorenzo, P.I.; Saatcioglu, F. Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-Jun N-terminal kinase activation. Neoplasia, 2008, 10(5), 418-428. doi: 10.1593/neo.07985 PMID: 18472959
  22. Ryu, M.J.; Chung, H.S. 10-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells. In Vitro Cell. Dev. Biol. Anim., 2015, 51(1), 92-101. doi: 10.1007/s11626-014-9806-6 PMID: 25148824
  23. Yuan, H.; Young, C.Y.F.; Tian, Y.; Liu, Z.; Zhang, M.; Lou, H. Suppression of the androgen receptor function by quercetin through protein–protein interactions of Sp1, c-Jun, and the androgen receptor in human prostate cancer cells. Mol. Cell. Biochem., 2010, 339(1-2), 253-262. doi: 10.1007/s11010-010-0388-7 PMID: 20148354
  24. Miranda-Carboni, G.A.; Krum, S.A.; Yee, K.; Nava, M.; Deng, Q.E.; Pervin, S.; Collado-Hidalgo, A.; Galić, Z.; Zack, J.A.; Nakayama, K.; Nakayama, K.I.; Lane, T.F. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Genes Dev., 2008, 22(22), 3121-3134. doi: 10.1101/gad.1692808 PMID: 19056892
  25. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
  26. Ravishankar, D.; Watson, K.A.; Boateng, S.Y.; Green, R.J.; Greco, F.; Osborn, H.M.I. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur. J. Med. Chem., 2015, 97, 259-274. doi: 10.1016/j.ejmech.2015.04.056 PMID: 25984842
  27. Xu, H-W.; Xu, L.; Hao, J-H.; Qin, C-Y.; Liu, H. Expression of P-glycoprotein and multidrug resistance-associated protein is associated with multidrug resistance in gastric cancer. J. Int. Med. Res., 2010, 38(1), 34-42. doi: 10.1177/147323001003800104 PMID: 20233511
  28. Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology, 2015, 96(3-4), 112-117. doi: 10.1159/000436975 PMID: 26202209
  29. Zhou, J.; Fang, L.; Liao, J.; Li, L.; Yao, W.; Xiong, Z.; Zhou, X. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS One, 2017, 12(3), e0172838. doi: 10.1371/journal.pone.0172838 PMID: 28264020
  30. Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215. doi: 10.1080/15548627.2017.1378838 PMID: 28933638
  31. Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42. doi: 10.1016/j.cell.2007.12.018 PMID: 18191218
  32. Poillet-Perez, L.; White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev., 2019, 33(11-12), 610-619. doi: 10.1101/gad.325514.119 PMID: 31160394
  33. Maheswari, U.; Sadras, S.R. Mechanism and regulation of autophagy in cancer. Crit. Rev. Oncog., 2018, 23(5-6), 269-280. doi: 10.1615/CritRevOncog.2018028394 PMID: 30311560
  34. Chen, N.; Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther., 2011, 11(2), 157-168. doi: 10.4161/cbt.11.2.14622 PMID: 21228626
  35. Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422. doi: 10.1111/1759-7714.13925 PMID: 33709560
  36. Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136. doi: 10.1016/j.jnutbio.2016.12.011 PMID: 28092744
  37. Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013, 1-10. doi: 10.1155/2013/596496 PMID: 24379902
  38. Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557. doi: 10.1007/s10495-016-1334-2 PMID: 28188387
  39. Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978. doi: 10.4161/auto.7.9.15863 PMID: 21610320
  40. Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130. doi: 10.1016/j.lfs.2018.07.027 PMID: 30025823
  41. Ben Geoffrey, A.S.; Christian, P.J.; Muthu, S. Structure-activity relationship of quercetin and its tumor necrosis factor alpha inhibition activity by computational and machine learning methods. Mater. Today Proc., 2022, 50, 2609-2614. doi: 10.1016/j.matpr.2020.07.464
  42. Magar, R.T.; Sohng, J.K. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J. Microbiol. Biotechnol., 2020, 30(1), 11-20. doi: 10.4014/jmb.1907.07003 PMID: 31752056
  43. Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. APJCP, 2017, 18(1), 3-9. PMID: 28239999
  44. Komori, T. The 2016 WHO classification of tumours of the central nervous system: The major points of revision. Neurol. Med. Chir., 2017, 57(7), 301-311. doi: 10.2176/nmc.ra.2017-0010 PMID: 28592714
  45. Lin, D.; Wang, M.; Chen, Y.; Gong, J.; Chen, L.; Shi, X.; Lan, F.; Chen, Z.; Xiong, T.; Sun, H.; Wan, S. Trends in intracranial glioma incidence and mortality in the United States, 1975-2018. Front. Oncol., 2021, 11, 748061. doi: 10.3389/fonc.2021.748061 PMID: 34790574
  46. Vali, R.; Azadi, A.; Tizno, A.; Farkhondeh, T.; Samini, F.; Samarghandian, S. miRNA contributes to neuropathic pains. Int. J. Biol. Macromol., 2023, 253(Pt 4), 126893. doi: 10.1016/j.ijbiomac.2023.126893 PMID: 37730007
  47. Boele, F.W.; Klein, M.; Reijneveld, J.C.; Verdonck-de Leeuw, I.M.; Heimans, J.J. Symptom management and quality of life in glioma patients. CNS Oncol., 2014, 3(1), 37-47. doi: 10.2217/cns.13.65 PMID: 25054899
  48. Williams, M.; Treasure, P.; Greenberg, D.; Brodbelt, A.; Collins, P. Surgeon volume and 30 day mortality for brain tumours in England. Br. J. Cancer, 2016, 115(11), 1379-1382. doi: 10.1038/bjc.2016.317 PMID: 27764843
  49. Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286. doi: 10.1016/j.apsb.2016.05.013 PMID: 27471668
  50. Pang, H.H.; Chen, P.Y.; Wei, K.C.; Huang, C.W.; Shiue, Y.L.; Huang, C.Y.; Yang, H.W. Convection-enhanced delivery of a virus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics, 2019, 9(6), 1752-1763. doi: 10.7150/thno.30977 PMID: 31037136
  51. Zhao, W.; Yu, X.; Peng, S.; Luo, Y.; Li, J.; Lu, L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J. Nanobiotechnol., 2021, 19(1), 125. doi: 10.1186/s12951-021-00866-9 PMID: 33941206
  52. Poonan, P.; Agoni, C.; Ibrahim, M.A.A.; Soliman, M.E.S. Glioma-targeted therapeutics: Computer-aided drug design prospective. Protein J., 2021, 40(5), 601-655. doi: 10.1007/s10930-021-10021-w PMID: 34590194
  53. Samarghandian, S.; Borji, A. Effects of cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc Hematol Disord Drug Targets, 2013, 13(3), 231-236.
  54. Hirpara, K.V.; Aggarwal, P.; Mukherjee, A.J.; Joshi, N.; Burman, A.C. Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer. Agents Med. Chem., 2009, 9(2), 138-161. doi: 10.2174/187152009787313855 PMID: 19199862
  55. Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458. doi: 10.1002/ijc.22419 PMID: 17131309
  56. Jang, E.; Kim, I.Y.; Kim, H.; Lee, D.M.; Seo, D.Y.; Lee, J.A.; Choi, K.S.; Kim, E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem. Pharmacol., 2020, 178, 114098. doi: 10.1016/j.bcp.2020.114098 PMID: 32540484
  57. Vanhaesebroeck, B.; Leevers, S.J.; Ahmadi, K.; Timms, J.; Katso, R.; Driscoll, P.C.; Woscholski, R.; Parker, P.J.; Waterfield, M.D. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem., 2001, 70(1), 535-602. doi: 10.1146/annurev.biochem.70.1.535 PMID: 11395417
  58. Cheng, C.K.; Fan, Q.W.; Weiss, W.A. PI3K signaling in glioma-animal models and therapeutic challenges. Brain Pathol., 2009, 19(1), 112-120. doi: 10.1111/j.1750-3639.2008.00233.x PMID: 19076776
  59. Ballif, B.A.; Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ, 2001, 12(8), 397-408.
  60. Pan, H.C.; Jiang, Q.; Yu, Y.; Mei, J.P.; Cui, Y.K.; Zhao, W.J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem. Int., 2015, 80, 60-71. doi: 10.1016/j.neuint.2014.12.001 PMID: 25481090
  61. Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560. doi: 10.1007/s13277-015-4125-4 PMID: 26454746
  62. Park, M.H.; Min, D.S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun., 2011, 412(4), 710-715. doi: 10.1016/j.bbrc.2011.08.037 PMID: 21867678
  63. Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci., 2021, 22(19), 10373. doi: 10.3390/ijms221910373 PMID: 34638714
  64. Combs, S.; Schmid, T.; Vaupel, P.; Multhoff, G. Stress response leading to resistance in glioblastoma-the need for innovative radiotherapy (iRT) Concepts. Cancers, 2016, 8(1), 15. doi: 10.3390/cancers8010015 PMID: 26771644
  65. Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; Liu, L.; Jiang, W.; Liu, J.; Zhang, J.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.; Lei, Q.; Guan, K.L.; Zhao, S.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30. doi: 10.1016/j.ccr.2010.12.014 PMID: 21251613
  66. Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603. doi: 10.1038/nrc2442 PMID: 18650835
  67. Jain, R.K.; di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci., 2007, 8(8), 610-622. doi: 10.1038/nrn2175 PMID: 17643088
  68. Semrad, T.J.; O’Donnell, R.; Wun, T.; Chew, H.; Harvey, D.; Zhou, H.; White, R.H. Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J. Neurosurg., 2007, 106(4), 601-608. doi: 10.3171/jns.2007.106.4.601 PMID: 17432710
  69. Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38. doi: 10.1016/j.biopha.2017.05.044 PMID: 28528183
  70. Chen, B.; Li, X.; Wu, L.; Zhou, D.; Song, Y.; Zhang, L.; Wu, Q.; He, Q.; Wang, G.; Liu, X.; Hu, H.; Zhou, W. Quercetin suppresses human glioblastoma migration and invasion via GSK3β/β-catenin/ZEB1 signaling pathway. Front. Pharmacol., 2022, 13, 963614. doi: 10.3389/fphar.2022.963614 PMID: 36386155
  71. Fathi, N.; Rashidi, G.; Khodadadi, A.; Shahi, S.; Sharifi, S. STAT3 and apoptosis challenges in cancer. Int. J. Biol. Macromol., 2018, 117, 993-1001. doi: 10.1016/j.ijbiomac.2018.05.121 PMID: 29782972
  72. Chang, N.; Ahn, S.H.; Kong, D.S.; Lee, H.W.; Nam, D.H. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol. Cell. Endocrinol., 2017, 451, 53-65. doi: 10.1016/j.mce.2017.01.004 PMID: 28089821
  73. Tan, M.S.Y.; Sandanaraj, E.; Chong, Y.K.; Lim, S.W.; Koh, L.W.H.; Ng, W.H.; Tan, N.S.; Tan, P.; Ang, B.T.; Tang, C. A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat. Commun., 2019, 10(1), 3601. doi: 10.1038/s41467-019-11614-x PMID: 31399589
  74. Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol. Cancer, 2019, 18(1), 153. doi: 10.1186/s12943-019-1090-3 PMID: 31684958
  75. Woo, S.M.; Min, K.; Kim, S.; Park, J.W.; Kim, D.E.; Kim, S.H.; Choi, Y.H.; Kwon, T.K. Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion. Biochem. Biophys. Res. Commun., 2014, 451(3), 455-460. doi: 10.1016/j.bbrc.2014.08.018 PMID: 25117439
  76. Suh, Y.A.; Jo, S.Y.; Lee, H.Y.; Lee, C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int. J. Oncol., 2015, 46(3), 1405-1411. doi: 10.3892/ijo.2014.2808 PMID: 25544427
  77. Kim, H.I.; Lee, S.J.; Choi, Y.J.; Kim, M.J.; Kim, T.Y.; Ko, S.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway. Am. J. Chin. Med., 2021, 49(3), 767-784. doi: 10.1142/S0192415X21500361 PMID: 33657989
  78. Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J. Neurooncol., 2016, 129(1), 39-45. doi: 10.1007/s11060-016-2149-2 PMID: 27174198
  79. Kruszewski, M.; Kusaczuk, M.; Kotyńska, J.; Gál, M.; Krętowski, R.; Cechowska-Pasko, M.; Naumowicz, M. The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells. Bioelectrochemistry, 2018, 124, 133-141. doi: 10.1016/j.bioelechem.2018.07.010 PMID: 30029034
  80. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1 PMID: 27157931
  81. Bianchi, F.; Tamburrini, G.; Gessi, M.; Frassanito, P.; Massimi, L.; Caldarelli, M. Central nervous system (CNS) neuroblastoma. A case-based update. Childs Nerv. Syst., 2018, 34(5), 817-823. doi: 10.1007/s00381-018-3764-3 PMID: 29520437
  82. Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; Ryzhova, M.; Koelsche, C.; Pfaff, E.; Allen, S.J.; Balasubramanian, G.; Worst, B.C.; Pajtler, K.W.; Brabetz, S.; Johann, P.D.; Sahm, F.; Reimand, J.; Mackay, A.; Carvalho, D.M.; Remke, M.; Phillips, J.J.; Perry, A.; Cowdrey, C.; Drissi, R.; Fouladi, M.; Giangaspero, F.; Łastowska, M.; Grajkowska, W.; Scheurlen, W.; Pietsch, T.; Hagel, C.; Gojo, J.; Lötsch, D.; Berger, W.; Slavc, I.; Haberler, C.; Jouvet, A.; Holm, S.; Hofer, S.; Prinz, M.; Keohane, C.; Fried, I.; Mawrin, C.; Scheie, D.; Mobley, B.C.; Schniederjan, M.J.; Santi, M.; Buccoliero, A.M.; Dahiya, S.; Kramm, C.M.; von Bueren, A.O.; von Hoff, K.; Rutkowski, S.; Herold-Mende, C.; Frühwald, M.C.; Milde, T.; Hasselblatt, M.; Wesseling, P.; Rößler, J.; Schüller, U.; Ebinger, M.; Schittenhelm, J.; Frank, S.; Grobholz, R.; Vajtai, I.; Hans, V.; Schneppenheim, R.; Zitterbart, K.; Collins, V.P.; Aronica, E.; Varlet, P.; Puget, S.; Dufour, C.; Grill, J.; Figarella-Branger, D.; Wolter, M.; Schuhmann, M.U.; Shalaby, T.; Grotzer, M.; van Meter, T.; Monoranu, C.M.; Felsberg, J.; Reifenberger, G.; Snuderl, M.; Forrester, L.A.; Koster, J.; Versteeg, R.; Volckmann, R.; van Sluis, P.; Wolf, S.; Mikkelsen, T.; Gajjar, A.; Aldape, K.; Moore, A.S.; Taylor, M.D.; Jones, C.; Jabado, N.; Karajannis, M.A.; Eils, R.; Schlesner, M.; Lichter, P.; von Deimling, A.; Pfister, S.M.; Ellison, D.W.; Korshunov, A.; Kool, M. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell, 2016, 164(5), 1060-1072. doi: 10.1016/j.cell.2016.01.015 PMID: 26919435
  83. Tian, X.; Zhou, D.; Chen, L.; Tian, Y.; Zhong, B.; Cao, Y.; Dong, Q.; Zhou, M.; Yan, J.; Wang, Y.; Qiu, Y.; Zhang, L.; Li, Z.; Wang, H.; Wang, D.; Ying, G.; Zhao, Q. Polo- like kinase 4 mediates epithelial–mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis., 2018, 9(2), 54. doi: 10.1038/s41419-017-0088-2 PMID: 29352113
  84. Lockshin, R.A.; Zakeri, Z. Cell death in health and disease. J. Cell. Mol. Med., 2007, 11(6), 1214-1224. doi: 10.1111/j.1582-4934.2007.00150.x PMID: 18031301
  85. Alhakamy, N.A.; Md, S. Repurposing itraconazole loaded plga nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics, 2019, 11(12), 685. doi: 10.3390/pharmaceutics11120685 PMID: 31888155
  86. Alhakamy, N.A.; A Fahmy, U.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awan, Z.A.; K Alruwaili, N.; Mohamed, A.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics, 2020, 12(4), 346. doi: 10.3390/pharmaceutics12040346 PMID: 32290412
  87. Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Kotta, S.; Abdullah, S.T.; A Fahmy, U.; Alfaleh, M.A.; Asfour, H.Z. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals, 2020, 13(7), 152. doi: 10.3390/ph13070152 PMID: 32679917
  88. Gibson, L.; Holmgreen, S.P.; Huang, D.C.; Bernard, O.; Copeland, N.G.; Jenkins, N.A.; Sutherland, G.R.; Baker, E.; Adams, J.M.; Cory, S. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene, 1996, 13(4), 665-675. PMID: 8761287
  89. Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: An in vitro approach. Neurol. Sci., 2014, 35(2), 163-170. doi: 10.1007/s10072-013-1462-1 PMID: 23771516
  90. Jakubowicz-Gil, J.; Rzeski, W.; Zdzisińska, B.; Piersiak, T.; Weiksza, K.; Glowniak, K.; Gawron, A. Different sensitivity of neurons and neuroblastoma cells to quercetin treatment. Acta Neurobiol. Exp., 2008, 68(4), 463-476. PMID: 19112469
  91. Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Preventive effect of safranal against oxidative damage in aged male rat brain. Exp. Anim., 2015, 64(1), 65-71. doi: 10.1538/expanim.14-0027 PMID: 25312506
  92. Thompson, E.M.; Hielscher, T.; Bouffet, E.; Remke, M.; Luu, B.; Gururangan, S.; McLendon, R.E.; Bigner, D.D.; Lipp, E.S.; Perreault, S.; Cho, Y.J.; Grant, G.; Kim, S.K.; Lee, J.Y.; Rao, A.A.N.; Giannini, C.; Li, K.K.W.; Ng, H.K.; Yao, Y.; Kumabe, T.; Tominaga, T.; Grajkowska, W.A.; Perek-Polnik, M.; Low, D.C.Y.; Seow, W.T.; Chang, K.T.E.; Mora, J.; Pollack, I.F.; Hamilton, R.L.; Leary, S.; Moore, A.S.; Ingram, W.J.; Hallahan, A.R.; Jouvet, A.; Fèvre-Montange, M.; Vasiljevic, A.; Faure-Conter, C.; Shofuda, T.; Kagawa, N.; Hashimoto, N.; Jabado, N.; Weil, A.G.; Gayden, T.; Wataya, T.; Shalaby, T.; Grotzer, M.; Zitterbart, K.; Sterba, J.; Kren, L.; Hortobágyi, T.; Klekner, A.; László, B.; Pócza, T.; Hauser, P.; Schüller, U.; Jung, S.; Jang, W.Y.; French, P.J.; Kros, J.M.; van Veelen, M.L.C.; Massimi, L.; Leonard, J.R.; Rubin, J.B.; Vibhakar, R.; Chambless, L.B.; Cooper, M.K.; Thompson, R.C.; Faria, C.C.; Carvalho, A.; Nunes, S.; Pimentel, J.; Fan, X.; Muraszko, K.M.; López-Aguilar, E.; Lyden, D.; Garzia, L.; Shih, D.J.H.; Kijima, N.; Schneider, C.; Adamski, J.; Northcott, P.A.; Kool, M.; Jones, D.T.W.; Chan, J.A.; Nikolic, A.; Garre, M.L.; Van Meir, E.G.; Osuka, S.; Olson, J.J.; Jahangiri, A.; Castro, B.A.; Gupta, N.; Weiss, W.A.; Moxon-Emre, I.; Mabbott, D.J.; Lassaletta, A.; Hawkins, C.E.; Tabori, U.; Drake, J.; Kulkarni, A.; Dirks, P.; Rutka, J.T.; Korshunov, A.; Pfister, S.M.; Packer, R.J.; Ramaswamy, V.; Taylor, M.D. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet Oncol., 2016, 17(4), 484-495. doi: 10.1016/S1470-2045(15)00581-1 PMID: 26976201
  93. Gajjar, A.J.; Robinson, G.W. Medulloblastoma-translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol., 2014, 11(12), 714-722. doi: 10.1038/nrclinonc.2014.181 PMID: 25348790
  94. Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; Gajjar, A.; Pfister, S.M. Medulloblastoma. Nat. Rev. Dis. Primers, 2019, 5(1), 11. doi: 10.1038/s41572-019-0063-6 PMID: 30765705
  95. Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; Ellison, D.W.; Lichter, P.; Gilbertson, R.J.; Pomeroy, S.L.; Kool, M.; Pfister, S.M. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol., 2012, 123(4), 465-472. doi: 10.1007/s00401-011-0922-z PMID: 22134537
  96. Labbé, D.; Provençal, M.; Lamy, S.; Boivin, D.; Gingras, D.; Béliveau, R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J. Nutr., 2009, 139(4), 646-652. doi: 10.3945/jn.108.102616 PMID: 19244381
  97. Lagerweij, T.; Hiddingh, L.; Biesmans, D.; Crommentuijn, M.H.W.; Cloos, J.; Li, X.N.; Kogiso, M.; Tannous, B.A.; Vandertop, W.P.; Noske, D.P.; Kaspers, G.J.L.; Würdinger, T.; Hulleman, E. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Oncotarget, 2016, 7(24), 35776-35788. doi: 10.18632/oncotarget.7980 PMID: 26967057
  98. Annabi, B.; Rojas-Sutterlin, S.; Laroche, M.; Lachambre, M.P.; Moumdjian, R.; Béliveau, R. The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol. Nutr. Food Res., 2008, 52(6), 692-700. doi: 10.1002/mnfr.200700434 PMID: 18435488
  99. Gingras, D.; Gendron, M.; Boivin, D.; Moghrabi, A.; Théorêt, Y.; Béliveau, R. Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetables. Cancer Lett., 2004, 203(1), 35-43. doi: 10.1016/j.canlet.2003.08.025 PMID: 14670615
  100. Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncology, 2013, 15(S2), ii1-ii56.
  101. Altieri, R.; Certo, F.; Rocca, G.L.; Melcarne, A.; Garbossa, D.; Bianchi, A.; Crimi, S.; Pluchino, A.; Peschillo, S.; Barbagallo, G.M.V. Radiological evaluation of ex novo high grade glioma: Velocity of diametric expansion and acceleration time study. Radiol. Oncol., 2020, 55(1), 26-34. doi: 10.2478/raon-2020-0071 PMID: 33885243
  102. Forjaz, G.; Barnholtz-Sloan, J.S.; Kruchko, C.; Siegel, R.; Negoita, S.; Ostrom, Q.T.; Dickie, L.; Ruhl, J.; Van Dyke, A.; Patil, N.; Cioffi, G.; Miller, K.D.; Waite, K.; Mariotto, A.B. An updated histology recode for the analysis of primary malignant and nonmalignant brain and other central nervous system tumors in the Surveillance, Epidemiology, and End Results Program. Neurooncol. Adv., 2021, 3(1), vdaa175. doi: 10.1093/noajnl/vdaa175 PMID: 33506208
  103. Djurovic, Z.; Jovanovic, V.; Obrenovic, R.; Djurovic, B.; Soldatovic, I.; Vranic, A.; Jakovljevic, V.; Djuric, D.; Zivkovic, V. The importance of the blood levels of homocysteine, folate and vitamin B12 in patients with primary malignant brain tumors. JBUON, 2020, 25(6), 2600-2607.
  104. Yang, J.; Yang, Q. Identification of core genes and screening of potential targets in glioblastoma multiforme by integrated bioinformatic analysis. Front. Oncol., 2021, 10, 615976. doi: 10.3389/fonc.2020.615976 PMID: 33718116
  105. Miyake, K.; Suzuki, K.; Ogawa, T.; Ogawa, D.; Hatakeyama, T.; Shinomiya, A.; Kudomi, N.; Yamamoto, Y.; Nishiyama, Y.; Tamiya, T. Multiple positron emission tomography tracers for use in the classification of gliomas according to the 2016 World Health Organization criteria. Neurooncol. Adv., 2021, 3(1), vdaa172. doi: 10.1093/noajnl/vdaa172 PMID: 33681765
  106. Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.; Ishikawa, M. Naringenin-induced apoptosis via activation of NF-κB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett., 2006, 166(2), 131-139. doi: 10.1016/j.toxlet.2006.06.005 PMID: 16860949
  107. Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound. Bioorg. Med. Chem., 2007, 15(9), 3201-3207. doi: 10.1016/j.bmc.2007.02.041 PMID: 17350846
  108. Jakubowicz-Gil, J.; Langner, E.; Wertel, I.; Piersiak, T.; Rzeski, W. Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem. Biol. Interact., 2010, 188(1), 190-203. doi: 10.1016/j.cbi.2010.07.015 PMID: 20654599
  109. Jakubowicz-Gil, J.; Langner, E.; Rzeski, W. Kinetic studies of the effects of Temodal and quercetin on astrocytoma cells. Pharmacol. Rep., 2011, 63(2), 403-416.
  110. Nam, J.S.; Sharma, A.; Nguyen, L.; Chakraborty, C.; Sharma, G.; Lee, S.S. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules, 2016, 21(1), 108. doi: 10.3390/molecules21010108 PMID: 26797598
  111. Okamoto, T. Safety of quercetin for clinical application (Review). Int. J. Mol. Med., 2005, 16(2), 275-278. doi: 10.3892/ijmm.16.2.275 PMID: 16012761
  112. Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207. doi: 10.1016/j.jconrel.2006.04.015 PMID: 16790290
  113. Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582. doi: 10.2174/09298673113209990120 PMID: 23514412
  114. García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229. doi: 10.1016/j.ejphar.2006.11.014 PMID: 17184768
  115. Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79. doi: 10.1002/jmv.1890150110 PMID: 2981979
  116. Martinho, N.; Damgé, C.; Reis, C.P. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol., 2011, 2(5), 510-526. doi: 10.4236/jbnb.2011.225062
  117. Jahangirian, H.; Ghasemian lemraski, E.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed., 2017, 12, 2957-2978. doi: 10.2147/IJN.S127683 PMID: 28442906
  118. De Villiers, M.M.; Aramwit, P.; Kwon, G.S. Nanotechnology in drug delivery; Springer Science & Business Media, 2008.
  119. Parveen, S.; Sahoo, S.K. Nanomedicine. Clin. Pharmacokinet., 2006, 45(10), 965-988. doi: 10.2165/00003088-200645100-00002 PMID: 16984211
  120. Farhoudi, L.; Kesharwani, P.; Majeed, M.; Johnston, T.P.; Sahebkar, A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int. J. Pharm., 2022, 617, 121622. doi: 10.1016/j.ijpharm.2022.121622 PMID: 35227805
  121. Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz., 2021, 6(2), 78-94. doi: 10.1039/D0NH00605J PMID: 33400747
  122. Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653. doi: 10.1016/j.ejmech.2019.01.007 PMID: 30640028
  123. Chavda, V.P.; Vihol, D.; Mehta, B.; Shah, D.; Patel, M.; Vora, L.K.; Pereira-Silva, M.; Paiva-Santos, A.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine, 2022, 17(8), 547-568. doi: 10.2217/nnm-2021-0463 PMID: 35259920
  124. Dian, L.; Yang, Z.; Li, F.; Wang, Z.; Pan, X.; Peng, X.; Huang, X.; Guo, Z.; Quan, G.; Shi, X.; Chen, B.; Li, G.; Wu, C. Cubic phase nanoparticles for sustained release of ibuprofen: Formulation, characterization, and enhanced bioavailability study. Int. J. Nanomed., 2013, 8, 845-854. PMID: 23468008
  125. Johnston, A.P.R.; Such, G.K.; Ng, S.L.; Caruso, F. Challenges facing colloidal delivery systems: From synthesis to the clinic. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 171-181. doi: 10.1016/j.cocis.2010.11.003
  126. Katragadda, U.; Teng, Q.; Rayaprolu, B.M.; Chandran, T.; Tan, C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int. J. Pharm., 2011, 419(1-2), 281-286. doi: 10.1016/j.ijpharm.2011.07.033 PMID: 21820041
  127. Licciardi, M.; Cavallaro, G.; Di Stefano, M.; Pitarresi, G.; Fiorica, C.; Giammona, G. New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery. Int. J. Pharm., 2010, 396(1-2), 219-228. doi: 10.1016/j.ijpharm.2010.06.021 PMID: 20600731
  128. Mumtaz, S.M.; Bhardwaj, G.; Goswami, S.; Tonk, R.K.; Goyal, R.K.; Abu-Izneid, T.; Pottoo, F.H. Management of glioblastoma multiforme by phytochemicals: Applications of nanoparticle-based targeted drug delivery system. Curr. Drug Targets, 2021, 22(4), 429-442. doi: 10.2174/1389450121666200727115454 PMID: 32718288
  129. Singla, R.K.; Sai, C.S.; Chopra, H.; Behzad, S.; Bansal, H.; Goyal, R.; Gautam, R.K.; Tsagkaris, C.; Joon, S.; Singla, S.; Shen, B. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front. Cell Dev. Biol., 2021, 9, 745177. doi: 10.3389/fcell.2021.745177 PMID: 34805155
  130. Rezaei-Tazangi, F.; Roghani-Shahraki, H.; Khorsand Ghaffari, M.; Abolhasani Zadeh, F.; Boostan, A.; ArefNezhad, R.; Motedayyen, H. The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence. Pharmaceuticals, 2021, 14(12), 1315. doi: 10.3390/ph14121315 PMID: 34959716
  131. Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158. doi: 10.3390/cells8101158 PMID: 31569687
  132. Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), 3076-3085. doi: 10.1002/jbm.a.34607 PMID: 23529952
  133. Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4(8), e746. doi: 10.1038/cddis.2013.242 PMID: 23907460
  134. Halevas, E.; Mavroidi, B.; Nday, C.M.; Tang, J.; Smith, G.C.; Boukos, N.; Litsardakis, G.; Pelecanou, M.; Salifoglou, A. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J. Inorg. Biochem., 2020, 213, 111271. doi: 10.1016/j.jinorgbio.2020.111271 PMID: 33069945
  135. Lou, M.; Zhang, L.N.; Ji, P.G.; Feng, F.Q.; Liu, J.H.; Yang, C.; Li, B.F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
  136. Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomedicine, 2012, 7, 271-280. PMID: 22275840
  137. Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766. doi: 10.1080/10837450.2020.1740933 PMID: 32192406
  138. Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release, 2016, 235, 276-290.
  139. Paranthaman, S.; Uthaiah, C.A.; Osmani, R.A.M.; Hani, U.; Ghazwani, M.; Alamri, A.H.; Fatease, A.A.; Madhunapantula, S.V.; Gowda, D.V. Anti-proliferative potential of quercetin loaded polymeric mixed micelles on Rat C6 and human U87MG glioma cells. Pharmaceutics, 2022, 14(8), 1643. doi: 10.3390/pharmaceutics14081643 PMID: 36015268
  140. Barbarisi, M.; Iaffaioli, R.V.; Armenia, E.; Schiavo, L.; De Sena, G.; Tafuto, S.; Barbarisi, A.; Quagliariello, V. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. J. Cell. Physiol., 2018, 233(10), 6550-6564. doi: 10.1002/jcp.26238 PMID: 29030990
  141. Johnson, C.; Smith, A.; Anderson, B. Polyphenolic structure of quercetin and its implications in anticancer signaling pathways. Cancer Res., 2012, 30(5), 411-425.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024