Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis
- Authors: Haider M.1, Sahebkar A.2, Eid A.3
-
Affiliations:
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences
- Department of Basic Medical Sciences, College of Medicine, QU Health,, Qatar University
- Issue: Vol 31, No 27 (2024)
- Pages: 4312-4319
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/644970
- DOI: https://doi.org/10.2174/0929867330666230501231528
- ID: 644970
Cite item
Full Text
Abstract
therosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogens vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.
Keywords
About the authors
Mohammad Haider
Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University
Email: info@benthamscience.net
Amirhossein Sahebkar
Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Ali Eid
Department of Basic Medical Sciences, College of Medicine, QU Health,, Qatar University
Author for correspondence.
Email: info@benthamscience.net
References
- Centers for Disease Control and Prevention (CDC) Million hearts: strategies to reduce the prevalence of leading cardiovascular disease risk factors--United States, 2011. MMWR Morb Mortal Wkly Rep, 2011, 60(36), 1248-1251.
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11(1), 117. doi: 10.1186/1741-7015-11-117 PMID: 23635324
- Baradaran, A.J.J.o.n. Lipoprotein (a), type 2 diabetes and nephropathy; the mystery continues. J. Nephropathol., 2012, 1(3), 126. doi: 10.5812/nephropathol.8107
- Grebe, A.; Latz, E. Cholesterol crystals and inflammation. Curr. Rheumatol. Rep., 2013, 15(3), 313. doi: 10.1007/s11926-012-0313-z PMID: 23412688
- Tavafi, M.J.J.o.r.i.p. Complexity of diabetic nephropathy pathogenesis and design of investigations. J. Renal Inj. Prev., 2013, 2(2), 59-62. doi: 10.12861/jrip.2013.20
- Douglas, G.; Channon, K.M. The pathogenesis of atherosclerosis. Medicine, 2014, 42(9), 480-484. doi: 10.1016/j.mpmed.2014.06.011
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D.J.J.o.t.A.C.o.C. Pathology of the vulnerable plaque. J. Am. Coll Cardiol., 2006, 47(8S), C13-C18. doi: 10.1002/9780470987575.ch2
- Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241. doi: 10.1038/35025203 PMID: 11001066
- Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med., 2014, 276(6), 618-632. doi: 10.1111/joim.12296 PMID: 25156650
- Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252. doi: 10.1016/j.cca.2013.06.006 PMID: 23782937
- Grover, S.P.; Mackman, N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 80-86. doi: 10.1016/j.atherosclerosis.2020.06.003 PMID: 32674807
- Wilcox, J.N.; Smith, K.M.; Schwartz, S.M.; Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2839-2843. doi: 10.1073/pnas.86.8.2839 PMID: 2704749
- Cimmino, G.; DAmico, C.; Vaccaro, V.; DAnna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: Is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523. doi: 10.1586/erc.11.40 PMID: 21517734
- Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Ferna´ndez-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; Badimon, J.J. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation, 1997, 95(3), 594-599. doi: 10.1161/01.CIR.95.3.594 PMID: 9024145
- Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem., 1982, 257(6), 2912-2919. doi: 10.1016/S0021-9258(19)81051-7 PMID: 7199524
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: A report from the American Heart Association. Circulation, 2011, 123(4), e18-e209. doi: 10.1161/CIR.0b013e3182009701 PMID: 21160056
- Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol., 2011, 57(1), 9-17. doi: 10.1016/j.jacc.2010.08.623 PMID: 21185495
- Regitz-Zagrosek, V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat. Rev. Drug Discov., 2006, 5(5), 425-439. doi: 10.1038/nrd2032 PMID: 16672926
- Hodis, H.N.; Mack, W.J. Hormone replacement therapy and the association with coronary heart disease and overall mortality: Clinical application of the timing hypothesis. J. Steroid Biochem. Mol. Biol., 2014, 142, 68-75. doi: 10.1016/j.jsbmb.2013.06.011 PMID: 23851166
- Choi, Y.; Chang, Y.; Kim, B.K.; Kang, D.; Kwon, M.J.; Kim, C.W.; Jeong, C.; Ahn, Y.; Park, H.Y.; Ryu, S.; Cho, J. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Maturitas, 2015, 80(4), 399-405. doi: 10.1016/j.maturitas.2014.12.016 PMID: 25631350
- Atsma, F.; Bartelink, M.L.E.L.; Grobbee, D.E.; van der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause, 2006, 13(2), 265-279. doi: 10.1097/01.gme.0000218683.97338.ea PMID: 16645540
- Turgeon, J.L.; McDonnell, D.P.; Martin, K.A.; Wise, P.M. Hormone therapy: Physiological complexity belies therapeutic simplicity. Science, 2004, 304(5675), 1269-1273. doi: 10.1126/science.1096725 PMID: 15166356
- Fardoun, M.M.; Issa, K.; Maaliki, D.; Nasser, S.A.; Baydoun, E.; Eid, A.H. Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction. Vascul. Pharmacol., 2020, 131, 106690. doi: 10.1016/j.vph.2020.106690 PMID: 32407896
- Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23. doi: 10.1007/s11906-020-1022-z PMID: 32114652
- Eid, A.H.; Maiti, K.; Mitra, S.; Chotani, M.A.; Flavahan, S.; Bailey, S.R.; Thompson-Torgerson, C.S.; Flavahan, N.A. Estrogen increases smooth muscle expression of α 2C -adrenoceptors and cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1955-H1961. doi: 10.1152/ajpheart.00306.2007 PMID: 17644575
- Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 2005, 146(2), 624-632. doi: 10.1210/en.2004-1064 PMID: 15539556
- Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124, 106600. doi: 10.1016/j.vph.2019.106600 PMID: 31629918
- Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21. doi: 10.1016/j.vph.2018.09.001 PMID: 30227233
- Hutchens, M.P.; Nakano, T.; Kosaka, Y.; Dunlap, J.; Zhang, W.; Herson, P.S.; Murphy, S.J.; Anderson, S.; Hurn, P.D. Estrogen is renoprotective via a nonreceptor-dependent mechanism after cardiac arrest in vivo. Anesthesiology, 2010, 112(2), 395-405. doi: 10.1097/ALN.0b013e3181c98da9 PMID: 20068453
- Chakrabarti, S.; Morton, J.S.; Davidge, S.T. Mechanisms of estrogen effects on the endothelium: An overview. Can. J. Cardiol., 2014, 30(7), 705-712. doi: 10.1016/j.cjca.2013.08.006 PMID: 24252499
- Takada, Y.; Kato, C.; Kondo, S.; Korenaga, R.; Ando, J. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun., 1997, 240(3), 737-741. doi: 10.1006/bbrc.1997.7734 PMID: 9398636
- Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14(10), 1649-1660. doi: 10.1210/mend.14.10.0532 PMID: 11043579
- Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPERnovel membrane oestrogen receptor. Clin. Sci., 2016, 130(12), 1005-1016. doi: 10.1042/CS20160114
- Meyer, M.R.; Amann, K.; Field, A.S.; Hu, C.; Hathaway, H.J.; Kanagy, N.L.; Walker, M.K.; Barton, M.; Prossnitz, E.R. Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction. Hypertension, 2012, 59(2), 507-512. doi: 10.1161/HYPERTENSIONAHA.111.184606 PMID: 22203741
- Prabhushankar, R.; Krueger, C.; Manrique, C. Membrane estrogen receptors: Their role in blood pressure regulation and cardiovascular disease. Curr. Hypertens. Rep., 2014, 16(1), 408. doi: 10.1007/s11906-013-0408-6 PMID: 24343167
- Barton, M.; Prossnitz, E.R. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol. Metab., 2015, 26(4), 185-192. doi: 10.1016/j.tem.2015.02.003 PMID: 25767029
- Burke, A.P.; Farb, A.; Malcom, G.; Virmani, R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am. Heart J., 2001, 141(S2), S58-S62. doi: 10.1067/mhj.2001.109946 PMID: 11174360
- Sever, R.; Glass, C.K. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a016709. doi: 10.1101/cshperspect.a016709 PMID: 23457262
- Klinge, C.M.; Blankenship, K.A.; Risinger, K.E.; Bhatnagar, S.; Noisin, E.L.; Sumanasekera, W.K.; Zhao, L.; Brey, D.M.; Keynton, R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem., 2005, 280(9), 7460-7468. doi: 10.1074/jbc.M411565200 PMID: 15615701
- Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest., 2005, 85(1), 9-23. doi: 10.1038/labinvest.3700215 PMID: 15568038
- Kaplan, J.R.; Manuck, S.B. Premenopausal reproductive health modulates future cardiovascular risk - comparative evidence from monkeys and women. Yale J. Biol. Med., 2017, 90(3), 499-507. PMID: 28955188
- Fairweather, D. Sex differences in inflammation during atherosclerosis. Clin. Med. Insights Cardiol., 2015, 8(S3), 49-59. PMID: 25983559
- Saha, K.R.; Rahman, M.M.; Paul, A.R.; Das, S.; Haque, S.; Jafrin, W.; Mia, A.R. Changes in lipid profile of postmenopausal women. Mymensingh Med. J., 2013, 22(4), 706-711. PMID: 24292300
- Vaisar, T.; Gordon, J.L.; Wimberger, J.; Heinecke, J.W.; Hinderliter, A.L.; Rubinow, D.R.; Girdler, S.S.; Rubinow, K.B. Perimenopausal transdermal estradiol replacement reduces serum HDL cholesterol efflux capacity but improves cardiovascular risk factors. J. Clin. Lipidol., 2021, 15(1), 151-161.e0. doi: 10.1016/j.jacl.2020.11.009 PMID: 33288437
- Lee, J.Y.; Hyun, H.S.; Park, H.G.; Seo, J.H.; Lee, E.Y.; Lee, J.S.; Lee, D.Y.; Choi, D.S.; Yoon, B.K. Effects of hormone therapy on serum lipid levels in postmenopausal korean women. J. Menopausal Med., 2015, 21(2), 104-111. doi: 10.6118/jmm.2015.21.2.104 PMID: 26357648
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330. doi: 10.1093/eurheartj/ehz962 PMID: 32052833
- Langer, G.; Bader, B.; Meoli, L.; Isensee, J.; Delbeck, M.; Noppinger, P.R.; Otto, C.J.S. A critical review of fundamental controversies in the field of GPR30 research. Steroids., 2010, 75(8-9), 603-610. doi: 10.1016/j.steroids.2009.12.006
- Meyer, M.R.; Fredette, N.C.; Howard, T.A.; Hu, C.; Ramesh, C.; Daniel, C.; Amann, K.; Arterburn, J.B.; Barton, M.; Prossnitz, E.R. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep., 2014, 4(1), 7564. doi: 10.1038/srep07564 PMID: 25532911
- Hussain, Y.; Ding, Q.; Connelly, P.W.; Brunt, J.H.; Ban, M.R.; McIntyre, A.D.; Huff, M.W.; Gros, R.; Hegele, R.A.; Feldman, R.D. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: Cellular and population genetic studies. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 213-221. doi: 10.1161/ATVBAHA.114.304326 PMID: 25395619
- Fu, W.; Gao, X.P.; Zhang, S.; Dai, Y.P.; Zou, W.J.; Yue, L.M. 17β-estradiol inhibits pcsk9-mediated LDLR degradation through GPER/PLC activation in HepG2 Cells. Front. Endocrinol., 2020, 10, 930-930. doi: 10.3389/fendo.2019.00930 PMID: 32082252
- Ding, Q.; Gros, R.; Limbird, L.E.; Chorazyczewski, J.; Feldman, R.D.J.A.J.o.P.-C.P. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am. J. Physiol. Cell Physiol., 2009, 297(5), C1178-C1187. doi: 10.1152/ajpcell.00185.2009 PMID: 19741198
- Gros, R.; Hussain, Y.; Chorazyczewski, J.; Pickering, J.G.; Ding, Q.; Feldman, R.D.J.H. Extent of vascular remodeling is dependent on the balance between estrogen receptor α and G-proteincoupled estrogen receptor. Hypertension., 2016, 68(5), 1225-1235. doi: 10.1161/HYPERTENSIONAHA.116.07859
- Sharma, G.; Prossnitz, E.R. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. Endo. Metab. Sci., 2021, 2, 100080. doi: 10.1016/j.endmts.2021.100080 PMID: 35321004
- Haas, E.; Bhattacharya, I.; Brailoiu, E.; Damjanović, M.; Brailoiu, G.C.; Gao, X.; Mueller-Guerre, L.; Marjon, N.A.; Gut, A.; Minotti, R.; Meyer, M.R.; Amann, K.; Ammann, E.; Perez-Dominguez, A.; Genoni, M.; Clegg, D.J.; Dun, N.J.; Resta, T.C.; Prossnitz, E.R.; Barton, M. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res., 2009, 104(3), 288-291. doi: 10.1161/CIRCRESAHA.108.190892 PMID: 19179659
- Sharma, G.; Hu, C.; Brigman, J.L.; Zhu, G.; Hathaway, H.J.; Prossnitz, E.R. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology, 2013, 154(11), 4136-4145. doi: 10.1210/en.2013-1357 PMID: 23970785
- Davis, K.E.; Carstens, E.J.; Irani, B.G.; Gent, L.M.; Hahner, L.M.; Clegg, D.J. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav., 2014, 66(1), 196-207. doi: 10.1016/j.yhbeh.2014.02.004 PMID: 24560890
- Sharma, G.; Hu, C.; Staquicini, D.I.; Brigman, J.L.; Liu, M.; Mauvais-Jarvis, F.; Pasqualini, R.; Arap, W.; Arterburn, J.B.; Hathaway, H.J.; Prossnitz, E.R. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci. Transl. Med., 2020, 12(528), eaau5956. doi: 10.1126/scitranslmed.aau5956 PMID: 31996464
- Mårtensson, U.E.A.; Salehi, S.A.; Windahl, S.; Gomez, M.F.; Swärd, K.; Daszkiewicz-Nilsson, J.; Wendt, A.; Andersson, N.; Hellstrand, P.; Grände, P.O.; Owman, C.; Rosen, C.J.; Adamo, M.L.; Lundquist, I.; Rorsman, P.; Nilsson, B.O.; Ohlsson, C.; Olde, B.; Leeb-Lundberg, L.M.F. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology, 2009, 150(2), 687-698. doi: 10.1210/en.2008-0623 PMID: 18845638
- Muller, C.; Brown-Glaberman, U.A.; Chaney, M.F.; Garyantes, T.; LoRusso, P.; McQuade, J.L.; Mita, A.C.; Mita, M.M.; Natale, C.; Orloff, M.; Papadopoulos, K.P.; Sato, T.; Yilmaz, E.; Rodon, J. Phase 1 trial of a novel, first-in-class G protein-coupled estrogen receptor (GPER) agonist, LNS8801, in patients with advanced or recurrent treatment-refractory solid malignancies. J. Clin. Oncol., 2021, 39(S15), 3084-3084. doi: 10.1200/JCO.2021.39.15_suppl.3084
- Beyoğlu, A.; Kurutaş, E.B.; Karaküçük, Y.; Çömez, A.; Meşen, A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq. Bras. Oftalmol., 2022, S0004-27492022005008205. PMID: 35857982
- Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology, 2012, 221(3), 527-535. doi: 10.1007/s00213-011-2599-3 PMID: 22143579
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a MULTISYSTEM disease: Trends in obesity rates and OBESITY‐RELATED complications. Diabetes Obes. Metab., 2021, 23(S1), 3-16. doi: 10.1111/dom.14290 PMID: 33621415
- Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 2019, 40(2), 537-557. doi: 10.1210/er.2018-00184 PMID: 30312399
- Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via gper1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998. doi: 10.3389/fphar.2021.658998 PMID: 34248622
- Beral, V.; Bull, D.; Reeves, G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet, 2005, 365(9470), 1543-1551. doi: 10.1016/S0140-6736(05)66455-0 PMID: 15866308
- Furness, S.; Roberts, H.; Marjoribanks, J.; Lethaby, A. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database Syst. Rev., 2012, 2012(8), CD000402. doi: 10.1002/14651858.CD000402.pub4
- Wildemeersch, D. Why perimenopausal women should consider to use a levonorgestrel intrauterine system. Gynecol. Endocrinol., 2016, 32(8), 659-661. doi: 10.3109/09513590.2016.1153056 PMID: 26930021
- Pinkerton, J.V.; Pickar, J.H.; Racketa, J.; Mirkin, S. Bazedoxifene/conjugated estrogens for menopausal symptom treatment and osteoporosis prevention. Climacteric, 2012, 15(5), 411-418. doi: 10.3109/13697137.2012.696289 PMID: 22853444
- Singh, G.; Puckett, Y. Endometrial Hyperplasia. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
- Hamoda, H.; Panay, N.; Pedder, H.; Arya, R.; Savvas, M. The british menopause society & womens health concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reprod. Health, 2020, 26(4), 181-209. doi: 10.1177/2053369120957514 PMID: 33045914
- Gompel, A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 69, 95-107. doi: 10.1016/j.bpobgyn.2020.05.003 PMID: 32732107
- De Medeiros, S.F.; Yamamoto, M.M.W.; Barbosa, J.S. Abnormal bleeding during menopause hormone therapy: insights for clinical management. Clin. Med. Insights Womens Health, 2013, 6, CMWH.S10483. doi: 10.4137/CMWH.S10483 PMID: 24665210
- Edwards, M.; Can, A.S. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
- Mu, E.; Kulkarni, J. Hormonal contraception and mood disorders. Aust. Prescr., 2022, 45(3), 75-79. doi: 10.18773/austprescr.2022.025 PMID: 35755988
- Dennis, M.K.; Burai, R.; Ramesh, C.; Petrie, W.K.; Alcon, S.N.; Nayak, T.K.; Bologa, C.G.; Leitao, A.; Brailoiu, E.; Deliu, E.; Dun, N.J.; Sklar, L.A.; Hathaway, H.J.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol., 2009, 5(6), 421-427. doi: 10.1038/nchembio.168 PMID: 19430488
- Barton, M. Position paper: The membrane estrogen receptor GPER Clues and questions. Steroids, 2012, 77(10), 935-942. doi: 10.1016/j.steroids.2012.04.001 PMID: 22521564
- DeLeon, C.; Wang, D.Q.H.; Arnatt, C.K. G protein-coupled estrogen receptor, GPER1, offers a novel target for the treatment of digestive diseases. Front. Endocrinol., 2020, 11, 578536. doi: 10.3389/fendo.2020.578536 PMID: 33281743
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170. doi: 10.1016/bs.apcsb.2019.01.001 PMID: 31036290
- Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen signaling in endometrial cancer: A key oncogenic pathway with several open questions. Horm. Cancer, 2019, 10(2-3), 51-63. doi: 10.1007/s12672-019-0358-9 PMID: 30712080
- Krakstad, C.; Trovik, J.; Wik, E.; Engelsen, I.B.; Werner, H.M.J.; Birkeland, E.; Raeder, M.B.; Øyan, A.M.; Stefansson, I.M.; Kalland, K.H.; Akslen, L.A.; Salvesen, H.B. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br. J. Cancer, 2012, 106(10), 1682-1688. doi: 10.1038/bjc.2012.91 PMID: 22415229
- Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78(11), 1087-1091. doi: 10.1016/j.steroids.2013.07.007 PMID: 23921077
- Levine, D.A.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; Yau, C.; Laird, P.W.; Ding, L.; Zhang, W.; Mills, G.B.; Kucherlapati, R.; Mardis, E.R.; Levine, D.A. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497(7447), 67-73. doi: 10.1038/nature12113 PMID: 23636398
- Kim, K.H.; Bender, J.R. Rapid, estrogen receptor-mediated signaling: Why is the endothelium so special? Sci. STKE, 2005, 2005(288), pe28. doi: 10.1126/stke.2882005pe28 PMID: 15956360
- Otto, C.; Fuchs, I.; Kauselmann, G.; Kern, H.; Zevnik, B.; Andreasen, P.; Schwarz, G.; Altmann, H.; Klewer, M.; Schoor, M.; Vonk, R.; Fritzemeier, K.H. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod., 2009, 80(1), 34-41. doi: 10.1095/biolreprod.108.071175 PMID: 18799753
- Isensee, J.; Meoli, L.; Zazzu, V.; Nabzdyk, C.; Witt, H.; Soewarto, D.; Effertz, K.; Fuchs, H.; Gailus-Durner, V.; Busch, D.; Adler, T.; de Angelis, M.H.; Irgang, M.; Otto, C.; Noppinger, P.R. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology, 2009, 150(4), 1722-1730. doi: 10.1210/en.2008-1488 PMID: 19095739
- Fardoun, M.; Mondello, S.; Kobeissy, F.; Eid, A.H. G protein estrogen receptor as a potential therapeutic target in Raynauds phenomenon. Front. Pharmacol., 2022, 13, 1061374. doi: 10.3389/fphar.2022.1061374 PMID: 36438809
Supplementary files
