CAR-T Therapy in Relapsed Refractory Multiple Myeloma


Cite item

Full Text

Abstract

Multiple myeloma is a plasma cell neoplasm. The emergence of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies has improved the prognosis of multiple myeloma patients. However, some patients are still insensitive to conventional therapy or frequently relapse after remission. Chemotherapy based on proteasome inhibitors or immunomodulatory drugs is ineffective in controlling the progression of relapsed refractory multiple myeloma. No consensus has been reached on treating relapsed refractory multiple myeloma to date. Recently chimeric antigen receptor T cells therapy has shown promising results that could achieve rapid remissions of patients and improve their prognoses. Additionally, most patients in chimeric antigen receptor T cell clinical trials were triple-refractory multiple myeloma patients, indicating that chimeric antigen receptor T cell immunotherapy could overcome drug resistance to new drugs. Since single immunotherapies are prone to acquired resistance, combination immunotherapies based on emerging immunotherapies may solve this issue. Achieving complete remission and minimal residual disease negative status as soon as possible is beneficial to patients. This paper reviewed the main chimeric antigen receptor T cell products in relapsed refractory multiple myeloma, and it explained the drug resistance mechanism and improvement methods of chimeric antigen receptor T cells therapy. This review summarized the best beneficiaries of chimeric antigen receptor T cell therapy and the salvage treatment of disease recurrence after chimeric antigen receptor T cell therapy, providing some ideas for the clinical application of chimeric antigen receptor T cells.

About the authors

Hong Ding

Department of Hematology, West China Hospital, Sichuan University

Email: info@benthamscience.net

Yu Wu

Department of Hematology, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bailur, J.K.; McCachren, S.S.; Doxie, D.B.; Shrestha, M.; Pendleton, K.; Nooka, A.K.; Neparidze, N.; Parker, T.L.; Bar, N.; Kaufman, J.L.; Hofmeister, C.C.; Boise, L.H.; Lonial, S.; Kemp, M.L.; Dhodapkar, K.M.; Dhodapkar, M.V. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight, 2019, 5(11), e127807. doi: 10.1172/jci.insight.127807 PMID: 31013254
  2. Dosani, T.; Carlsten, M.; Maric, I.; Landgren, O. Erratum: The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies. Blood Cancer J., 2015, 5(7), e321. doi: 10.1038/bcj.2015.49 PMID: 26140429
  3. Michels, T.C.; Petersen, K.E. Multiple myeloma: Diagnosis and treatment. Am. Fam. Physician, 2017, 95(6), 373-383. PMID: 28318212
  4. Greipp, P.R.; Miguel, J.S.; Durie, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; Lahuerta, J.J.; Ludwig, H.; Morgan, G.; Powles, R.; Shimizu, K.; Shustik, C.; Sonneveld, P.; Tosi, P.; Turesson, I.; Westin, J. International staging system for multiple myeloma. J. Clin. Oncol., 2005, 23(15), 3412-3420. doi: 10.1200/JCO.2005.04.242 PMID: 15809451
  5. Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol., 2020, 95(5), 548-567. doi: 10.1002/ajh.25791 PMID: 32212178
  6. Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; Caers, J.; Hillengass, J.; San Miguel, J.; van de Donk, N.W.C.J.; Einsele, H.; Bladé, J.; Durie, B.G.M.; Goldschmidt, H.; Mateos, M.V.; Palumbo, A.; Orlowski, R. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood, 2016, 127(24), 2955-2962. doi: 10.1182/blood-2016-01-631200 PMID: 27002115
  7. Zhang, M.; Zhou, L.; Zhao, H.; Zhang, Y.; Wei, G.; Hong, R.; Wu, W.; Xu, H.; Wang, L.; Ni, F.; Cui, J.; Peng, S.; Huang, C.H.; Chang, A.H.; Hu, Y.; Huang, H. Risk factors associated with durable progression-free survival in patients with relapsed or refractory multiple myeloma treated with anti-BCMA CAR T-cell therapy. Clin. Cancer Res., 2021, 27(23), 6384-6392. doi: 10.1158/1078-0432.CCR-21-2031 PMID: 34548316
  8. Zhang, L.; Shen, X.; Yu, W.; Li, J.; Zhang, J.; Zhang, R.; Li, J.; Chen, L. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann. Med., 2021, 53(1), 1547-1559. doi: 10.1080/07853890.2021.1970218 PMID: 34459681
  9. Mina, R.; Joseph, N.S.; Gay, F.; Kastritis, E.; Petrucci, M.T.; Kaufman, J.L.; Montefusco, V.; Gavriatopoulou, M.; Patriarca, F.; Omedé, P.; Boise, L.H.; Roussou, M.; Giuliani, N.; Oliva, S.; Offidani, M.; Belotti, A.; Jaye, D.L.; De Paoli, L.; Terpos, E.; Lonial, S.; Boccadoro, M.; Nooka, A.K.; Dimopoulos, M.A. Clinical features and survival of multiple myeloma patients harboring t(14;16) in the era of novel agents. Blood Cancer J., 2020, 10(4), 40. doi: 10.1038/s41408-020-0307-4 PMID: 32286263
  10. Morgan, G.J.; Walker, B.A.; Davies, F.E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer, 2012, 12(5), 335-348. doi: 10.1038/nrc3257 PMID: 22495321
  11. Anderson, K.; Lutz, C.; van Delft, F.W.; Bateman, C.M.; Guo, Y.; Colman, S.M.; Kempski, H.; Moorman, A.V.; Titley, I.; Swansbury, J.; Kearney, L.; Enver, T.; Greaves, M. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 2011, 469(7330), 356-361. doi: 10.1038/nature09650 PMID: 21160474
  12. Misund, K.; Hofste op Bruinink, D.; Coward, E.; Hoogenboezem, R.M.; Rustad, E.H.; Sanders, M.A.; Rye, M.; Sponaas, A.M.; van der Holt, B.; Zweegman, S.; Hovig, E.; Meza-Zepeda, L.A.; Sundan, A.; Myklebost, O.; Sonneveld, P.; Waage, A. Clonal evolution after treatment pressure in multiple myeloma: Heterogenous genomic aberrations and transcriptomic convergence. Leukemia, 2022, 36(7), 1887-1897. doi: 10.1038/s41375-022-01597-y PMID: 35643867
  13. Hernández-Rivas, J.Á.; Ríos-Tamayo, R.; Encinas, C.; Alonso, R.; Lahuerta, J.J. The changing landscape of relapsed and/or refractory multiple myeloma (MM): Fundamentals and controversies. Biomark. Res., 2022, 10(1), 1. doi: 10.1186/s40364-021-00344-2 PMID: 35000618
  14. Lakshman, A.; Kumar, S.K. Chimeric antigen receptor T-cells, bispecific antibodies, and antibody-drug conjugates for multiple myeloma: An update. Am. J. Hematol., 2022, 97(1), 99-118. doi: 10.1002/ajh.26379 PMID: 34661922
  15. Kegyes, D.; Constantinescu, C.; Vrancken, L.; Rasche, L.; Gregoire, C.; Tigu, B.; Gulei, D.; Dima, D.; Tanase, A.; Einsele, H.; Ciurea, S.; Tomuleasa, C.; Caers, J. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient? J. Hematol. Oncol., 2022, 15(1), 78. doi: 10.1186/s13045-022-01296-2 PMID: 35672793
  16. Dima, D.; Jiang, D.; Singh, D.J.; Hasipek, M.; Shah, H.S.; Ullah, F.; Khouri, J.; Maciejewski, J.P.; Jha, B.K. Multiple myeloma therapy: Emerging trends and challenges. Cancers, 2022, 14(17), 4082. doi: 10.3390/cancers14174082 PMID: 36077618
  17. Costa, L.J.; Usmani, S.Z. Defining and managing high-risk multiple myeloma: Current concepts. J. Natl. Compr. Canc. Netw., 2020, 18(12), 1730-1737. doi: 10.6004/jnccn.2020.7673 PMID: 33285523
  18. Mikkilineni, L.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood, 2017, 130(24), 2594-2602. doi: 10.1182/blood-2017-06-793869 PMID: 28928126
  19. Manier, S.; Ingegnere, T.; Escure, G.; Prodhomme, C.; Nudel, M.; Mitra, S.; Facon, T. Current state and next-generation CAR-T cells in multiple myeloma. Blood Rev., 2022, 54, 100929. doi: 10.1016/j.blre.2022.100929 PMID: 35131139
  20. Munshi, N.C.; Anderson, L.D., Jr; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; Moreau, P.; Yakoub-Agha, I.; Delforge, M.; Cavo, M.; Einsele, H.; Goldschmidt, H.; Weisel, K.; Rambaldi, A.; Reece, D.; Petrocca, F.; Massaro, M.; Connarn, J.N.; Kaiser, S.; Patel, P.; Huang, L.; Campbell, T.B.; Hege, K.; San-Miguel, J. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med., 2021, 384(8), 705-716. doi: 10.1056/NEJMoa2024850 PMID: 33626253
  21. Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; Deol, A.; Munshi, N.C.; O’Donnell, E.; Avigan, D.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.J.; Olyslager, Y.; Banerjee, A.; Jackson, C.C.; Goldberg, J.D.; Schecter, J.M.; Deraedt, W.; Zhuang, S.H.; Infante, J.; Geng, D.; Wu, X.; Carrasco-Alfonso, M.J.; Akram, M.; Hossain, F.; Rizvi, S.; Fan, F.; Lin, Y.; Martin, T.; Jagannath, S. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet, 2021, 398(10297), 314-324. doi: 10.1016/S0140-6736(21)00933-8 PMID: 34175021
  22. Caraccio, C.; Krishna, S.; Phillips, D.J.; Schürch, C.M. Bispecific antibodies for multiple myeloma: A review of targets, drugs, clinical trials, and future directions. Front. Immunol., 2020, 11, 501. doi: 10.3389/fimmu.2020.00501 PMID: 32391000
  23. Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448. doi: 10.1056/NEJMoa1709866 PMID: 29385370
  24. Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; Wasik, M.; Levine, B.L.; Lacey, S.F.; Melenhorst, J.J.; Porter, D.L.; June, C.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med., 2017, 377(26), 2545-2554. doi: 10.1056/NEJMoa1708566 PMID: 29226764
  25. Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M.V. How to train your T cells: Overcoming immune dysfunction in multiple myeloma. Clin. Cancer Res., 2020, 26(7), 1541-1554. doi: 10.1158/1078-0432.CCR-19-2111 PMID: 31672768
  26. Holzinger, A.; Abken, H. CAR T cells: A snapshot on the growing options to design a CAR. HemaSphere, 2019, 3(1), e172. doi: 10.1097/HS9.0000000000000172 PMID: 31723811
  27. Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov., 2013, 3(4), 388-398. doi: 10.1158/2159-8290.CD-12-0548 PMID: 23550147
  28. Savoldo, B.; Ramos, C.A.; Liu, E.; Mims, M.P.; Keating, M.J.; Carrum, G.; Kamble, R.T.; Bollard, C.M.; Gee, A.P.; Mei, Z.; Liu, H.; Grilley, B.; Rooney, C.M.; Heslop, H.E.; Brenner, M.K.; Dotti, G. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest., 2011, 121(5), 1822-1826. doi: 10.1172/JCI46110 PMID: 21540550
  29. Abate-Daga, D.; Davila, M.L. CAR models: Next-generation CAR modifications for enhanced T-cell function. Mol. Ther. Oncolytics, 2016, 3, 16014. doi: 10.1038/mto.2016.14 PMID: 27231717
  30. Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol., 2019, 94(S1), S3-S9. doi: 10.1002/ajh.25418 PMID: 30680780
  31. Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: cARs take the front seat for hematologic malignancies. Blood, 2014, 123(17), 2625-2635. doi: 10.1182/blood-2013-11-492231 PMID: 24578504
  32. Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood, 2016, 127(26), 3321-3330. doi: 10.1182/blood-2016-04-703751 PMID: 27207799
  33. Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics, 2016, 3, 16011. doi: 10.1038/mto.2016.11 PMID: 27626062
  34. Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014, 124(2), 188-195. doi: 10.1182/blood-2014-05-552729 PMID: 24876563
  35. Carpenter, R.O.; Evbuomwan, M.O.; Pittaluga, S.; Rose, J.J.; Raffeld, M.; Yang, S.; Gress, R.E.; Hakim, F.T.; Kochenderfer, J.N. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res., 2013, 19(8), 2048-2060. doi: 10.1158/1078-0432.CCR-12-2422 PMID: 23344265
  36. Novak, A.J.; Darce, J.R.; Arendt, B.K.; Harder, B.; Henderson, K.; Kindsvogel, W.; Gross, J.A.; Greipp, P.R.; Jelinek, D.F. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood, 2004, 103(2), 689-694. doi: 10.1182/blood-2003-06-2043 PMID: 14512299
  37. Moreaux, J.; Legouffe, E.; Jourdan, E.; Quittet, P.; Rème, T.; Lugagne, C.; Moine, P.; Rossi, J.F.; Klein, B.; Tarte, K. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood, 2004, 103(8), 3148-3157. doi: 10.1182/blood-2003-06-1984 PMID: 15070697
  38. Lin, Y.; Raje, N.S.; Berdeja, J.G.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Massaro, M.; Petrocca, F.; Caia, A.; Yang, Z.; Campbell, T.B.; Hege, K.; Munshi, N.C.; Kochenderfer, J.N. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: Updated results from phase 1 CRB-401 study. Blood, 2020, 136(Suppl. 1), 26-27. doi: 10.1182/blood-2020-134324
  39. Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; Gu, L.F.; Wang, J.L.; Yang, N.; Zhang, R.; Zhang, H.; Shen, Y.; Bai, J.; Xu, Y.; Wang, X.G.; Zhang, R.L.; Wei, L.L.; Li, Z.F.; Li, Z.Z.; Geng, Y.; He, Q.; Zhuang, Q.C.; Fan, X.H.; He, A.L.; Zhang, W.G. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol., 2018, 11(1), 141. doi: 10.1186/s13045-018-0681-6 PMID: 30572922
  40. Minnie, S.A.; Hill, G.R. Immunotherapy of multiple myeloma. J. Clin. Invest., 2020, 130(4), 1565-1575. doi: 10.1172/JCI129205 PMID: 32149732
  41. Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; Roshal, M.; Maslak, P.; Davila, M.; Brentjens, R.J.; Sadelain, M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 449-459. doi: 10.1056/NEJMoa1709919 PMID: 29385376
  42. Garfall, A.L.; Maus, M.V.; Hwang, W.T.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Zheng, Z.; Vogl, D.T.; Cohen, A.D.; Weiss, B.M.; Dengel, K.; Kerr, N.D.S.; Bagg, A.; Levine, B.L.; June, C.H.; Stadtmauer, E.A. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med., 2015, 373(11), 1040-1047. doi: 10.1056/NEJMoa1504542 PMID: 26352815
  43. Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Li, L.; Lu, J.; Chen, X.; Sersch, M.A.; Shen, L.; Ye, X.; Zhang, H.; Zhao, Y.; Liu, J.; Fu, W. Long-term follow-up results of a multicenter first-in-human study of the dual BCMA/CD19 Targeted FasT CAR-T GC012F for patients with relapsed/refractory multiple myeloma. J. Clin. Oncol., 2021, 39(15_suppl)(Suppl.), 8014. doi: 10.1200/JCO.2021.39.15_suppl.8014
  44. Chu, J.; He, S.; Deng, Y.; Zhang, J.; Peng, Y.; Hughes, T.; Yi, L.; Kwon, C.H.; Wang, Q.E.; Devine, S.M.; He, X.; Bai, X.F.; Hofmeister, C.C.; Yu, J. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin. Cancer Res., 2014, 20(15), 3989-4000. doi: 10.1158/1078-0432.CCR-13-2510 PMID: 24677374
  45. Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol., 2011, 29(1), 665-705. doi: 10.1146/annurev-immunol-030409-101302 PMID: 21219180
  46. Richardson, P.G.; Jagannath, S.; Moreau, P.; Jakubowiak, A.J.; Raab, M.S.; Facon, T.; Vij, R.; White, D.; Reece, D.E.; Benboubker, L.; Zonder, J.; Tsao, L.C.; Anderson, K.C.; Bleickardt, E.; Singhal, A.K.; Lonial, S. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: Final phase 2 results from the randomised, open-label, phase 1b–2 dose-escalation study. Lancet Haematol., 2015, 2(12), e516-e527. doi: 10.1016/S2352-3026(15)00197-0 PMID: 26686406
  47. O’Connell, F.P.; Pinkus, J.L.; Pinkus, G.S. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am. J. Clin. Pathol., 2004, 121(2), 254-263. doi: 10.1309/617DWB5GNFWXHW4L PMID: 14983940
  48. Sidana, S.; Shah, N. CAR T-cell therapy: Is it prime time in myeloma? Hematology (Am. Soc. Hematol. Educ. Program), 2019, 2019(1), 260-265. doi: 10.1182/hematology.2019000370 PMID: 31808895
  49. Mei, H.; Li, C.; Jiang, H.; Zhao, X.; Huang, Z.; Jin, D.; Guo, T.; Kou, H.; Liu, L.; Tang, L.; Yin, P.; Wang, Z.; Ai, L.; Ke, S.; Xia, Y.; Deng, J.; Chen, L.; Cai, L.; Sun, C.; Xia, L.; Hua, G.; Hu, Y. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J. Hematol. Oncol., 2021, 14(1), 161. doi: 10.1186/s13045-021-01170-7 PMID: 34627333
  50. Yan, Z.; Cao, J.; Cheng, H.; Qiao, J.; Zhang, H.; Wang, Y.; Shi, M.; Lan, J.; Fei, X.; Jin, L.; Jing, G.; Sang, W.; Zhu, F.; Chen, W.; Wu, Q.; Yao, Y.; Wang, G.; Zhao, J.; Zheng, J.; Li, Z.; Xu, K. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: A single-arm, phase 2 trial. Lancet Haematol., 2019, 6(10), e521-e529. doi: 10.1016/S2352-3026(19)30115-2 PMID: 31378662
  51. Shi, X.; Yan, L.; Shang, J.; Kang, L.; Yan, Z.; Jin, S.; Zhu, M.; Chang, H.; Gong, F.; Zhou, J.; Chen, G.; Pan, J.; Liu, D.; Zhu, X.; Tang, F.; Liu, M.; Liu, W.; Yao, F.; Yu, L.; Wu, D.; Fu, C. Anti-CD19 and anti-BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stem-cell transplantation for high-risk newly diagnosed multiple myeloma. Am. J. Hematol., 2022, 97(5), 537-547. doi: 10.1002/ajh.26486 PMID: 35114022
  52. Chen, W.; Fu, C.; Cai, Z.; Li, Z.; Wang, H.; Yan, L.; Wu, Y.; Shi, X.; Gao, W.; Yan, S.; Wang, W.; Han, X.; Zheng, G.; Wen, Y.; Xiao, J.; Wang, H.; Ma, H. Results from lummicar-1: A phase 1 study of fully human B-cell maturation antigen-specific CAR T Cells (CT053) in Chinese subjects with relapsed and/or refractory multiple myeloma. Blood, 2020, 136(Suppl. 1), 49-50. doi: 10.1182/blood-2020-140727
  53. Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D., Jr; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; Li, Z.; Brayer, J. Results from lummicar-2: A phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood, 2020, 136(Suppl. 1), 28-29. doi: 10.1182/blood-2020-139802
  54. Costello, C.L.; Cohen, A.D.; Patel, K.K.; Ali, S.S.; Berdeja, J.G.; Shah, N.; Ganguly, S.; Kocoglu, M.H.; Abedi, M.; Ostertag, E.M.; Martin, C.E.; Ghoddussi, M.; Shedlock, D.J.; McCaigue, J.; Namini, H.; Yalamanchili, S.; Spear, M.A.; Gregory, T.K. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) with novel therapeutic strategies. Blood, 2020, 136(Suppl. 1), 29-30. doi: 10.1182/blood-2020-142695
  55. Alsina, M.; Shah, N.; Raje, N.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C.; Rosenblatt, J.; Lin, Y.; Jakubowiak, A.; Jasielec, J.; Timm, A.; Turka, A.; Mao, P.; Martin, N.; Campbell, T.B.; Hege, K.; Bitter, H.; Petrocca, F.; Berdeja, J.G. Updated results from the phase I CRB-402 study of anti-bcma CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: Correlation of expansion and duration of response with T cell phenotypes. Blood, 2020, 136(Suppl. 1), 25-26. doi: 10.1182/blood-2020-140410
  56. Mailankody, S.; Liedtke, M.; Sidana, S.; Matous, J.V.; Chhabra, S.; Oluwole, O.O.; Malik, S.A.; Kumar, S.; Nath, R.; Anwer, F.; Cruz, J.C.; Jagannath, S.; Htut, M.; Raje, N.S.; Siegel, D.S.; Karski, E.E.; Lovelace, W.; Lourbakos, A.; Ponnathapura Nandakumar, S.; Balakumaran, A.; Hari, P. Universal updated phase 1 data validates the feasibility of allogeneic anti-BCMA ALLO-715 therapy for relapsed/refractory multiple myeloma. Blood, 2021, 138(Suppl. 1), 651. doi: 10.1182/blood-2021-145572
  57. Quarona, V.; Zaccarello, G.; Chillemi, A.; Brunetti, E.; Singh, V.K.; Ferrero, E.; Funaro, A.; Horenstein, A.L.; Malavasi, F. CD38 and CD157: A long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom., 2013, 84B(4), 207-217. doi: 10.1002/cyto.b.21092 PMID: 23576305
  58. Drent, E.; Themeli, M.; Poels, R.; de Jong-Korlaar, R.; Yuan, H.; de Bruijn, J.; Martens, A.C.M.; Zweegman, S.; van de Donk, N.W.C.J.; Groen, R.W.J.; Lokhorst, H.M.; Mutis, T. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol. Ther., 2017, 25(8), 1946-1958. doi: 10.1016/j.ymthe.2017.04.024 PMID: 28506593
  59. Straathof, K.C.; Pulè, M.A.; Yotnda, P.; Dotti, G.; Vanin, E.F.; Brenner, M.K.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M. An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105(11), 4247-4254. doi: 10.1182/blood-2004-11-4564 PMID: 15728125
  60. Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.Y.; Minarik, J.; Cavo, M.; Prince, H.M.; Macé, S.; Corzo, K.P.; Campana, F.; Le-Guennec, S.; Dubin, F.; Anderson, K.C.; Attal, M.; Richardson, P.G.; Rajkumar, V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S-Y.; Minarik, J.; Cavo, M.; Prince, H.M.; Macé, S.; Corzo, K.P.; Campana, F.; Le-Guennec, S.; Dubin, F.; Anderson, K.C.; Harrison, S.; Janowski, W.; Kerridge, I.; Spencer, A.; Delforge, M.; Fostier, K.; Vlummens, P.; Wu, K.L.; Leblanc, R.; Pavic, M.; Sebag, M.; Hajek, R.; Maisnar, V.; Pour, L.; Gregersen, H.; Benbouker, L.; Caillot, D.; Escoffre-Barbe, M.; Facon, T.; Frenzel, L.; Hulin, C.; Karlin, L.; Kolb, B.; Pegourie, B.; Perrot, A.; Tiab, M.; Vincent, L.; Niederwieser, D.; Anagnostopoulos, A.; Delimpasi, S.; Kyrtsonis, M-C.; Symeonidis, A.; Illes, A.; Mikala, G.; Nagy, Z.; Bringen, S.; Corradini, P.; Fabio, C.; Lemoli, R.; Liberati, A.; Nozzoli, C.; Zambello, R.; Iida, S.; Ikeda, T.; Iyama, S.; Matsumoto, M.; Shimazaki, C.; Sunami, K.; Suzuki, K.; Uchiyama, M.; Koh, Y.; Kim, K.; Lee, J.H.; Min, C-K.; Blacklock, H.; Goodman, H.; Neylon, A.; Simpson, D.; Grosicki, S.; Jurczyszyn, A.; Walter-Croneck, A.; Warzocha, K.; Araujo, L.; Moreira, C.; Doronin, V.; Mendeleeva, L.; Vorobyev, V.; Vranovsky, A.; Alegre, A.; Gironella, M.; Gonzalez Perez, M.S.; Montes, C.; Ocio, E.; Rodriguez, P.; Hardling, M.; Lauri, B.; Wang, M-C.; Yeh, S-P.; Arat, M.; Demirkan, F.; Gulbas, Z.; Besisik, S.K.; Karadogan, I.; Tuglular, T.; Unal, A.; Vural, F.; Sive, J.; Streetly, M.; Yong, K.; Tache, J. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet, 2019, 394(10214), 2096-2107. doi: 10.1016/S0140-6736(19)32556-5 PMID: 31735560
  61. Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; Mark, T.M.; Qi, M.; Schecter, J.; Amin, H.; Qin, X.; Deraedt, W.; Ahmadi, T.; Spencer, A.; Sonneveld, P. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med., 2016, 375(8), 754-766. doi: 10.1056/NEJMoa1606038 PMID: 27557302
  62. Syed, Y.Y. Daratumumab: A review in combination therapy for transplant-ineligible newly diagnosed multiple myeloma. Drugs, 2019, 79(4), 447-454. doi: 10.1007/s40265-019-01080-6 PMID: 30830601
  63. Drent, E.; Groen, R.W.J.; Noort, W.A.; Themeli, M.; Lammerts van Bueren, J.J.; Parren, P.W.H.I.; Kuball, J.; Sebestyen, Z.; Yuan, H.; de Bruijn, J.; van de Donk, N.W.C.J.; Martens, A.C.M.; Lokhorst, H.M.; Mutis, T. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101(5), 616-625. doi: 10.3324/haematol.2015.137620 PMID: 26858358
  64. Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; Do, T.; Pham, M.T.; Brown, J.M.; De Larrea, C.F.; Olson, E.; Peguero, E.; Wang, P.; Liu, H.; Xu, Y.; Garrett-Thomson, S.C.; Almo, S.C.; Wendel, H.G.; Riviere, I.; Liu, C.; Sather, B.; Brentjens, R.J. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med., 2019, 11(485), eaau7746. doi: 10.1126/scitranslmed.aau7746 PMID: 30918115
  65. Atamaniuk, J.; Gleiss, A.; Porpaczy, E.; Kainz, B.; Grunt, T.W.; Raderer, M.; Hilgarth, B.; Drach, J.; Ludwig, H.; Gisslinger, H.; Jaeger, U.; Gaiger, A. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur. J. Clin. Invest., 2012, 42(9), 953-960. doi: 10.1111/j.1365-2362.2012.02679.x PMID: 22591013
  66. Smith, E.L.; Staehr, M.; Masakayan, R.; Tatake, I.J.; Purdon, T.J.; Wang, X.; Wang, P.; Liu, H.; Xu, Y.; Garrett-Thomson, S.C.; Almo, S.C.; Riviere, I.; Liu, C.; Brentjens, R.J. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther., 2018, 26(6), 1447-1456. doi: 10.1016/j.ymthe.2018.03.016 PMID: 29678657
  67. Gagelmann, N.; Riecken, K.; Wolschke, C.; Berger, C.; Ayuk, F.A.; Fehse, B.; Kröger, N. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9), 2317-2332. doi: 10.1038/s41375-020-0930-x PMID: 32572190
  68. Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; Wang, X.; Sikder, D.; Senechal, B.; Bermudez, V.P.; Purdon, T.J.; Hosszu, K.; McAvoy, D.P.; Farzana, T.; Mead, E.; Wilcox, J.A.; Santomasso, B.D.; Shah, G.L.; Shah, U.A.; Korde, N.; Lesokhin, A.; Tan, C.R.; Hultcrantz, M.; Hassoun, H.; Roshal, M.; Sen, F.; Dogan, A.; Landgren, O.; Giralt, S.A.; Park, J.H.; Usmani, S.Z.; Rivière, I.; Brentjens, R.J.; Smith, E.L. GPRC5D-targeted CAR T cells for myeloma. N. Engl. J. Med., 2022, 387(13), 1196-1206. doi: 10.1056/NEJMoa2209900 PMID: 36170501
  69. Zhang, M.; Wei, G.; Zhou, L.; Zhou, J.; Chen, S.; Zhang, W.; Wang, D.; Luo, X.; Cui, J.; Huang, S.; Fu, S.; Zhou, X.; Tang, Y.; Ding, X.; Kuang, J.; He, X.P.; Hu, Y.; Huang, H. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): A first-in-human, single-centre, single-arm, phase 1 trial. Lancet Haematol., 2023, 10(2), e107-e116. doi: 10.1016/S2352-3026(22)00372-6 PMID: 36725117
  70. Bal, S.; Kocoglu, M.H.; Nadeem, O.; Htut, M.; Gregory, T.; Anderson, L.D., Jr; Costa, L.J.; Buchholz, T.J.; Ziyad, S.; Li, M.; Chen, Y.; Kaeding, A.J.; Burgess, M.R.; Hege, K.; Berdeja, J. Clinical activity of BMS-986393 (CC-95266), a G protein-coupled receptor class C group 5 member D (GPRC5D)-targeted chimeric antigen receptor (CAR) T cell therapy, in patients with relapsed and/or refractory (R/R) multiple myeloma (MM): First results from a phase 1, multicenter, open-label study. Blood, 2022, 140(Suppl. 1), 883-885. doi: 10.1182/blood-2022-162395
  71. Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; Lam, L.P.; Morgan, R.A.; Friedman, K.; Massaro, M.; Wang, J.; Russotti, G.; Yang, Z.; Campbell, T.; Hege, K.; Petrocca, F.; Quigley, M.T.; Munshi, N.; Kochenderfer, J.N. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med., 2019, 380(18), 1726-1737. doi: 10.1056/NEJMoa1817226 PMID: 31042825
  72. Samur, M.K.; Fulciniti, M.; Aktas Samur, A.; Bazarbachi, A.H.; Tai, Y.T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; Hege, K.; Kaiser, S.; Loiseau, H.A.; Anderson, K.C.; Munshi, N.C. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun., 2021, 12(1), 868. doi: 10.1038/s41467-021-21177-5 PMID: 33558511
  73. Li, C.; Wang, Q.; Zhu, H.; Mao, X.; Wang, Y.; Zhang, Y.; Zhou, J. T cells expressing anti B-cell maturation antigen chimeric antigen receptors for plasma cell malignancies. Blood, 2018, 132(Suppl. 1), 1013. doi: 10.1182/blood-2018-99-116898
  74. Pont, M.J.; Hill, T.; Cole, G.O.; Abbott, J.J.; Kelliher, J.; Salter, A.I.; Hudecek, M.; Comstock, M.L.; Rajan, A.; Patel, B.K.R.; Voutsinas, J.M.; Wu, Q.; Liu, L.; Cowan, A.J.; Wood, B.L.; Green, D.J.; Riddell, S.R. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood, 2019, 134(19), 1585-1597. doi: 10.1182/blood.2019000050 PMID: 31558469
  75. Green, D.J.; Pont, M.; Sather, B.D.; Cowan, A.J.; Turtle, C.J.; Till, B.G.; Nagengast, A.M.; Libby, E.N., III; Becker, P.S.; Coffey, D.G.; Tuazon, S.A.; Wood, B.; Blake, M.; Works, M.; Thompson, B.S.; Gooley, T.; Appelbaum, F.R.; Maloney, D.G.; Riddell, S.R. Fully human bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood, 2018, 132(Suppl. 1), 1011. doi: 10.1182/blood-2018-99-117729
  76. Chen, C.I.; Bahlis, N.; Gasparetto, C.; Tuchman, S.A.; Lipe, B.C.; Baljevic, M.; Kotb, R.; Sutherland, H.J.; Bensinger, W.I.; Sebag, M.; Leblanc, R.; Venner, C.P.; Schiller, G.J.; Lentzsch, S.; Callander, N.S.; Sheehan, H.; Chai, Y.; Kai, K.; Shah, J.; Shacham, S.; Kauffman, M.G.; White, D.J. Selinexor, pomalidomide, and dexamethasone (SPd) in patients with relapsed or refractory multiple myeloma. Blood, 2019, 134(Suppl. 1), 141. doi: 10.1182/blood-2019-122907
  77. Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; Plesa, G.; Chen, F.; Davis, M.M.; Hwang, W.T.; Young, R.M.; Brogdon, J.L.; Isaacs, R.; Pruteanu-Malinici, I.; Siegel, D.L.; Levine, B.L.; June, C.H.; Milone, M.C. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest., 2019, 129(6), 2210-2221. doi: 10.1172/JCI126397 PMID: 30896447
  78. Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; Kanakry, J.A.; Ali, S.A.; Mikkilineni, L.; Feldman, S.A.; Stroncek, D.F.; Hansen, B.G.; Lawrence, J.; Patel, R.; Hakim, F.; Gress, R.E.; Kochenderfer, J.N. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol., 2018, 36(22), 2267-2280. doi: 10.1200/JCO.2018.77.8084 PMID: 29812997
  79. Wang, M.; Pruteanu, I.; Cohen, A.D.; Garfall, A.L.; Milone, M.C.; Tian, L.; Gonzalez, V.E.; Gill, S.; Frey, N.V.; Barrett, D.M.; Ruella, M.; Lacey, S.F.; Svoboda, J.; Chong, E.A.; Fraietta, J.A.; Davis, M.; Nasta, S.D.; Levine, B.L.; Siegel, D.L.; Maude, S.L.; Schuster, S.J.; Stadtmauer, E.A.; Grupp, S.; Porter, D.L.; June, C.H.; Melenhorst, J.J. Identification and validation of predictive biomarkers to CD19- and BCMA-specific CAR T-cell responses in CAR T-cell precursors. Blood, 2019, 134(Suppl. 1), 622. doi: 10.1182/blood-2019-122513
  80. Leblay, N.; Maity, R.; Barakat, E.; McCulloch, S.; Duggan, P.; Jimenez-Zepeda, V.; Bahlis, N.J.; Neri, P. Cite-Seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapy. Blood, 2020, 136(Suppl. 1), 11-12. doi: 10.1182/blood-2020-137650
  81. Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 2016, 30(2), 492-500. doi: 10.1038/leu.2015.247 PMID: 26369987
  82. Garfall, A.L.; Dancy, E.K.; Cohen, A.D.; Hwang, W.T.; Fraietta, J.A.; Davis, M.M.; Levine, B.L.; Siegel, D.L.; Stadtmauer, E.A.; Vogl, D.T.; Waxman, A.; Rapoport, A.P.; Milone, M.C.; June, C.H.; Melenhorst, J.J. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv., 2019, 3(19), 2812-2815. doi: 10.1182/bloodadvances.2019000600 PMID: 31575532
  83. Dhodapkar, M.V.; Krasovsky, J.; Osman, K.; Geller, M.D. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J. Exp. Med., 2003, 198(11), 1753-1757. doi: 10.1084/jem.20031030 PMID: 14638846
  84. Zelle-Rieser, C.; Thangavadivel, S.; Biedermann, R.; Brunner, A.; Stoitzner, P.; Willenbacher, E.; Greil, R.; Jöhrer, K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J. Hematol. Oncol., 2016, 9(1), 116. doi: 10.1186/s13045-016-0345-3 PMID: 27809856
  85. Long, A.H.; Haso, W.M.; Shern, J.F.; Wanhainen, K.M.; Murgai, M.; Ingaramo, M.; Smith, J.P.; Walker, A.J.; Kohler, M.E.; Venkateshwara, V.R.; Kaplan, R.N.; Patterson, G.H.; Fry, T.J.; Orentas, R.J.; Mackall, C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med., 2015, 21(6), 581-590. doi: 10.1038/nm.3838 PMID: 25939063
  86. Franssen, L.E.; Mutis, T.; Lokhorst, H.M.; van de Donk, N.W.C.J. Immunotherapy in myeloma: How far have we come? Ther. Adv. Hematol., 2019, 10 doi: 10.1177/2040620718822660 PMID: 30719268
  87. Salik, B.; Smyth, M.J.; Nakamura, K. Targeting immune checkpoints in hematological malignancies. J. Hematol. Oncol., 2020, 13(1), 111. doi: 10.1186/s13045-020-00947-6 PMID: 32787882
  88. Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532. doi: 10.1038/nri2343 PMID: 18566595
  89. Rosser, E.C.; Mauri, C. Regulatory B cells: Origin, phenotype, and function. Immunity, 2015, 42(4), 607-612. doi: 10.1016/j.immuni.2015.04.005 PMID: 25902480
  90. Zah, E.; Nam, E.; Bhuvan, V.; Tran, U.; Ji, B.Y.; Gosliner, S.B.; Wang, X.; Brown, C.E.; Chen, Y.Y. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun., 2020, 11(1), 2283. doi: 10.1038/s41467-020-16160-5 PMID: 32385241
  91. Park, J.J.; Omiya, R.; Matsumura, Y.; Sakoda, Y.; Kuramasu, A.; Augustine, M.M.; Yao, S.; Tsushima, F.; Narazaki, H.; Anand, S.; Liu, Y.; Strome, S.E.; Chen, L.; Tamada, K. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood, 2010, 116(8), 1291-1298. doi: 10.1182/blood-2010-01-265975 PMID: 20472828
  92. Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 2007, 110(1), 296-304. doi: 10.1182/blood-2006-10-051482 PMID: 17363736
  93. Chen, K.H.; Wada, M.; Pinz, K.G.; Liu, H.; Shuai, X.; Chen, X.; Yan, L.E.; Petrov, J.C.; Salman, H.; Senzel, L.; Leung, E.L.H.; Jiang, X.; Ma, Y. A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia, 2018, 32(2), 402-412. doi: 10.1038/leu.2017.302 PMID: 28951562
  94. Shah, N.N.; Maatman, T.; Hari, P.; Johnson, B. Multi targeted CAR-T cell therapies for b-cell malignancies. Front. Oncol., 2019, 9, 146. doi: 10.3389/fonc.2019.00146 PMID: 30915277
  95. Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; Doerr, T.; DeVries, T.; Wong, S.W.K. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol., 2020, 38(15_suppl)(Suppl.), 8504. doi: 10.1200/JCO.2020.38.15_suppl.8504
  96. Li C, Zhou J, Wang J, Hu G, Du A, Zhou X, Meng L, Hong Z, Chen L, Mao X. Clinical responses and pharmacokinetics of fully human BCMA targeting CAR T-cell therapy in relapsed/refractory multiple myeloma. J. Clin. Oncol., 2019, 37(15)(Suppl.), 8013.
  97. Mikkilineni, L.; Manasanch, E.E.; Vanasse, D.; Brudno, J.N.; Mann, J.; Sherry, R.; Goff, S.L.; Yang, J.C.; Lam, N.; Maric, I.; Stetler-Stevenson, M.; Wang, H.W.; Yuan, C.M.; Stroncek, D.F.; Highfill, S.L.; Fellowes, V.; Ganadan, M.; Patel, R.; Rosenberg, S.A.; Kochenderfer, J.N. Deep and durable remissions of relapsed multiple myeloma on a first-in-humans clinical trial of T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) with a fully-human heavy-chain-only antigen recognition domain. Blood, 2020, 136(Suppl. 1), 50-51. doi: 10.1182/blood-2020-138839
  98. Ivics, Z. Potent CAR-T cells engineered with sleeping beauty transposon vectors display a central memory phenotype. Gene Ther., 2021, 28(1-2), 3-5. doi: 10.1038/s41434-020-0138-8 PMID: 32139891
  99. McLellan, A.D.; Ali Hosseini Rad, S.M. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol. Cell Biol., 2019, 97(7), 664-674. doi: 10.1111/imcb.12254 PMID: 31009109
  100. Shah, N.; Alsina, M.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Turka, A.; Lam, L.P.; Massaro, M.; Hege, K.; Petrocca, F.; Berdeja, J.G.; Raje, N. Initial results from a phase 1 clinical study of bb21217, a next-generation anti bcma CAR T therapy. Blood, 2018, 132(Suppl. 1), 488. doi: 10.1182/blood-2018-99-116953
  101. Duan, D.; Wang, K.; Wei, C.; Feng, D.; Liu, Y.; He, Q.; Xu, X.; Wang, C.; Zhao, S.; Lv, L.; Long, J.; Lin, D.; Zhao, A.; Fang, B.; Jiang, J.; Tang, S.; Gao, J. The BCMA-targeted fourth-generation CAR-T cells secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma. Front. Immunol., 2021, 12, 609421. doi: 10.3389/fimmu.2021.609421 PMID: 33767695
  102. Hu, B.; Ren, J.; Luo, Y.; Keith, B.; Young, R.M.; Scholler, J.; Zhao, Y.; June, C.H. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep., 2017, 20(13), 3025-3033. doi: 10.1016/j.celrep.2017.09.002 PMID: 28954221
  103. Lanitis, E.; Rota, G.; Kosti, P.; Ronet, C.; Spill, A.; Seijo, B.; Romero, P.; Dangaj, D.; Coukos, G.; Irving, M. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J. Exp. Med., 2021, 218(2), e20192203. doi: 10.1084/jem.20192203 PMID: 33156338
  104. Das, R.K.; Vernau, L.; Grupp, S.A.; Barrett, D.M. Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov., 2019, 9(4), 492-499. doi: 10.1158/2159-8290.CD-18-1314 PMID: 30630850
  105. Dancy, E.; Garfall, A.L.; Cohen, A.D.; Fraietta, J.A.; Davis, M.; Levine, B.L.; Siegel, D.L.; Stadtmauer, E.A.; Vogl, D.T.; Waxman, A.; Rapoport, A.P.; Milone, M.C.; June, C.H.; Melenhorst, J.J. Clinical predictors of T cell fitness for CAR T cell manufacturing and efficacy in multiple myeloma. Blood, 2018, 132(Suppl. 1), 1886. doi: 10.1182/blood-2018-99-115319
  106. Swan, D.; Routledge, D.; Harrison, S. The evolving status of immunotherapies in multiple myeloma: The future role of bispecific antibodies. Br. J. Haematol., 2022, 196(3), 488-506. doi: 10.1111/bjh.17805 PMID: 34472091
  107. Kwon, M.; Kim, C.G.; Lee, H.; Cho, H.; Kim, Y.; Lee, E.C.; Choi, S.J.; Park, J.; Seo, I.H.; Bogen, B.; Song, I.C.; Jo, D.Y.; Kim, J.S.; Park, S.H.; Choi, I.; Choi, Y.S.; Shin, E.C. PD-1 blockade reinvigorates bone marrow CD8+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors. Clin. Cancer Res., 2020, 26(7), 1644-1655. doi: 10.1158/1078-0432.CCR-19-0267 PMID: 31941832
  108. Benson, D.M., Jr; Bakan, C.E.; Mishra, A.; Hofmeister, C.C.; Efebera, Y.; Becknell, B.; Baiocchi, R.A.; Zhang, J.; Yu, J.; Smith, M.K.; Greenfield, C.N.; Porcu, P.; Devine, S.M.; Rotem-Yehudar, R.; Lozanski, G.; Byrd, J.C.; Caligiuri, M.A. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood, 2010, 116(13), 2286-2294. doi: 10.1182/blood-2010-02-271874 PMID: 20460501
  109. Menger, L.; Sledzinska, A.; Bergerhoff, K.; Vargas, F.A.; Smith, J.; Poirot, L.; Pule, M.; Herrero, J.; Peggs, K.S.; Quezada, S.A. TALEN-Mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res., 2016, 76(8), 2087-2093. doi: 10.1158/0008-5472.CAN-15-3352 PMID: 27197251
  110. Rupp, L.J.; Schumann, K.; Roybal, K.T.; Gate, R.E.; Ye, C.J.; Lim, W.A.; Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep., 2017, 7(1), 737. doi: 10.1038/s41598-017-00462-8 PMID: 28389661
  111. Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; Tian, L.; Gonzalez, V.E.; Xu, J.; Jung, I.; Melenhorst, J.J.; Plesa, G.; Shea, J.; Matlawski, T.; Cervini, A.; Gaymon, A.L.; Desjardins, S.; Lamontagne, A.; Salas-Mckee, J.; Fesnak, A.; Siegel, D.L.; Levine, B.L.; Jadlowsky, J.K.; Young, R.M.; Chew, A.; Hwang, W.T.; Hexner, E.O.; Carreno, B.M.; Nobles, C.L.; Bushman, F.D.; Parker, K.R.; Qi, Y.; Satpathy, A.T.; Chang, H.Y.; Zhao, Y.; Lacey, S.F.; June, C.H. CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367(6481), eaba7365. doi: 10.1126/science.aba7365 PMID: 32029687
  112. Liu, X.; Zhang, Y.; Cheng, C.; Cheng, A.W.; Zhang, X.; Li, N.; Xia, C.; Wei, X.; Liu, X.; Wang, H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res., 2017, 27(1), 154-157. doi: 10.1038/cr.2016.142 PMID: 27910851
  113. Ren, J.; Zhang, X.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017, 8(10), 17002-17011. doi: 10.18632/oncotarget.15218 PMID: 28199983
  114. Li, H.; Zhao, L.; Sun, Z.; Yao, Y.; Li, L.; Wang, J.; Hua, T.; Ji, S.; Wang, S.; Cheng, H.; Shi, M.; Li, Z.; Zeng, L.; Wu, Q.; Qiao, J.; Chen, C.; Zheng, J.; Cao, J.; Xu, K. Prolonged hematological toxicity in patients receiving BCMA/CD19 CAR-T-cell therapy for relapsed or refractory multiple myeloma. Front. Immunol., 2022, 13, 1019548. doi: 10.3389/fimmu.2022.1019548 PMID: 36330523
  115. Hanamura, I.; Stewart, J.P.; Huang, Y.; Zhan, F.; Santra, M.; Sawyer, J.R.; Hollmig, K.; Zangarri, M.; Pineda-Roman, M.; van Rhee, F.; Cavallo, F.; Burington, B.; Crowley, J.; Tricot, G.; Barlogie, B.; Shaughnessy, J.D., Jr Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood, 2006, 108(5), 1724-1732. doi: 10.1182/blood-2006-03-009910 PMID: 16705089
  116. Xiong, W.; Wu, X.; Starnes, S.; Johnson, S.K.; Haessler, J.; Wang, S.; Chen, L.; Barlogie, B.; Shaughnessy, J.D., Jr; Zhan, F. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood, 2008, 112(10), 4235-4246. doi: 10.1182/blood-2007-10-119123 PMID: 18337559
  117. Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Greipp, P.R.; Litzow, M.R.; Henderson, K.J.; Van Wier, S.A.; Ahmann, G.J.; Fonseca, R. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood, 2005, 106(8), 2837-2840. doi: 10.1182/blood-2005-04-1411 PMID: 15976175
  118. Yang, Q.; Li, X.; Zhang, F.; Yang, Q.; Zhou, W.; Liu, J. Efficacy and safety of CAR-T therapy for relapse or refractory multiple myeloma: A systematic review and meta-analysis. Int. J. Med. Sci., 2021, 18(8), 1786-1797. doi: 10.7150/ijms.46811 PMID: 33746596
  119. Gagelmann, N.; Ayuk, F.; Atanackovic, D.; Kröger, N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: A meta-analysis. Eur. J. Haematol., 2020, 104(4), 318-327. doi: 10.1111/ejh.13380 PMID: 31883150
  120. Van Oekelen, O.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.M.; Giralt, S.A.; Thibaud, S.; Rossi, A.; Rodriguez, C.; Sanchez, L.; Richter, J.; Richard, S.; Cho, H.J.; Chari, A.; Usmani, S.Z.; Jagannath, S.; Shah, U.A.; Mailankody, S.; Parekh, S. Interventions and outcomes of multiple myeloma patients receiving salvage treatment after BCMA-directed CAR T therapy. Blood, 2022.
  121. Casucci, M.; Ciceri, F. A second CD19 CAR T-cell infusion: Yes or no? Blood, 2021, 137(3), 284-286. doi: 10.1182/blood.2020009206 PMID: 33475747
  122. Gauthier, J.; Bezerra, E.D.; Hirayama, A.V.; Fiorenza, S.; Sheih, A.; Chou, C.K.; Kimble, E.L.; Pender, B.S.; Hawkins, R.M.; Vakil, A.; Phi, T.D.; Steinmetz, R.N.; Jamieson, A.W.; Bar, M.; Cassaday, R.D.; Chapuis, A.G.; Cowan, A.J.; Green, D.J.; Kiem, H.P.; Milano, F.; Shadman, M.; Till, B.G.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood, 2021, 137(3), 323-335. doi: 10.1182/blood.2020006770 PMID: 32967009
  123. Fernández de Larrea, C.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.G.; Brentjens, R.J.; Smith, E.L. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent bcma escape–driven relapse in multiple myeloma. Blood Cancer Discov., 2020, 1(2), 146-154. doi: 10.1158/2643-3230.BCD-20-0020 PMID: 33089218
  124. Popat, R.; Zweegman, S.; Cavet, J.; Yong, K.; Lee, L.; Faulkner, J.; Kotsopoulou, E.; Al-Hajj, M.; Thomas, S.; Cordoba, S.P.; Pule, M.; Cerec, V.; Peddareddigari, V.G.R.; Khokhar, N.Z.; Menne, T.F. Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell targeting APRIL for patients with relapsed/refractory multiple myeloma (RRMM). Blood, 2019, 134(Suppl. 1), 3112. doi: 10.1182/blood-2019-126689
  125. Tanaka, J.; Miller, J.S. Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Rev., 2020, 44, 100678. doi: 10.1016/j.blre.2020.100678 PMID: 32229065
  126. Leivas, A.; Valeri, A.; Córdoba, L.; García-Ortiz, A.; Ortiz, A.; Sánchez-Vega, L.; Graña-Castro, O.; Fernández, L.; Carreño-Tarragona, G.; Pérez, M.; Megías, D.; Paciello, M.L.; Sánchez-Pina, J.; Pérez-Martínez, A.; Lee, D.A.; Powell, D.J., Jr; Río, P.; Martínez-López, J. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J., 2021, 11(8), 146. doi: 10.1038/s41408-021-00537-w PMID: 34392311
  127. Chu, J.; Deng, Y.; Benson, D.M.; He, S.; Hughes, T.; Zhang, J.; Peng, Y.; Mao, H.; Yi, L.; Ghoshal, K.; He, X.; Devine, S.M.; Zhang, X.; Caligiuri, M.A.; Hofmeister, C.C.; Yu, J. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia, 2014, 28(4), 917-927. doi: 10.1038/leu.2013.279 PMID: 24067492
  128. Radhakrishnan, S.V.; Luetkens, T.; Scherer, S.D.; Davis, P.; Vander Mause, E.R.; Olson, M.L.; Yousef, S.; Panse, J.; Abdiche, Y.; Li, K.D.; Miles, R.R.; Matsui, W.; Welm, A.L.; Atanackovic, D. CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nat. Commun., 2020, 11(1), 798. doi: 10.1038/s41467-020-14619-z PMID: 32034142
  129. Casucci, M.; Nicolis di Robilant, B.; Falcone, L.; Camisa, B.; Norelli, M.; Genovese, P.; Gentner, B.; Gullotta, F.; Ponzoni, M.; Bernardi, M.; Marcatti, M.; Saudemont, A.; Bordignon, C.; Savoldo, B.; Ciceri, F.; Naldini, L.; Dotti, G.; Bonini, C.; Bondanza, A. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122(20), 3461-3472. doi: 10.1182/blood-2013-04-493361 PMID: 24016461
  130. O’Neal, J.; Ritchey, J.K.; Cooper, M.L.; Niswonger, J.; Sofía González, L.; Street, E.; Rettig, M.P.; Gladney, S.W.; Gehrs, L.; Abboud, R.; Prior, J.L.; Haas, G.J.; Jayasinghe, R.G.; Ding, L.; Ghobadi, A.; Vij, R.; DiPersio, J.F. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+ CS1 expressing CAR-T cells. Leukemia, 2022, 36(6), 1625-1634. doi: 10.1038/s41375-022-01559-4 PMID: 35422095
  131. Wang, Y.; Cao, J.; Gu, W.; Shi, M.; Lan, J.; Yan, Z.; Jin, L.; Xia, J.; Ma, S.; Liu, Y.; Li, H.; Pan, B.; Chen, W.; Fei, X.; Wang, C.; Xie, X.; Yu, L.; Wang, G.; Li, H.; Jing, G.; Cheng, H.; Zhu, F.; Sun, H.; Sang, W.; Li, D.; Li, Z.; Zheng, J.; Xu, K. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. J. Clin. Oncol., 2022, 40(20), 2246-2256. doi: 10.1200/JCO.21.01676 PMID: 35333600
  132. Tang, Y.; Yin, H.; Zhao, X.; Jin, D.; Liang, Y.; Xiong, T.; Li, L.; Tang, W.; Zhang, J.; Liu, M.; Yu, Z.; Liu, H.; Zang, S.; Huang, Z. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. J. Exp. Clin. Cancer Res., 2022, 41(1), 2. doi: 10.1186/s13046-021-02214-z PMID: 34980210
  133. García-Guerrero, E.; Rodríguez-Lobato, L.G.; Sierro-Martínez, B.; Danhof, S.; Bates, S.; Frenz, S.; Härtle, L.; Götz, R.; Sauer, M.; Rasche, L.; Kortüm, K.M.; Pérez-Simón, J.A.; Einsele, H.; Hudecek, M.; Prommersberger, S.R. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica, 2022, 108(2), 568-580. doi: 10.3324/haematol.2022.281339 PMID: 36722406
  134. Zhang, X.; Zhang, C.; Qiao, M.; Cheng, C.; Tang, N.; Lu, S.; Sun, W.; Xu, B.; Cao, Y.; Wei, X.; Wang, Y.; Han, W.; Wang, H. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell, 2022, 40(11), 1407-1422.e7. doi: 10.1016/j.ccell.2022.09.013 PMID: 36240777
  135. Liu, X.; Zhang, Y.; Li, K.; Liu, Y.; Xu, J.; Ma, J.; An, L.; Wang, H.; Chu, X. A novel dominant-negative PD-1 armored anti-CD19 CAR T cell is safe and effective against refractory/relapsed B cell lymphoma. Transl. Oncol., 2021, 14(7), 101085. doi: 10.1016/j.tranon.2021.101085 PMID: 33813229
  136. Zheng, W.; O’Hear, C.E.; Alli, R.; Basham, J.H.; Abdelsamed, H.A.; Palmer, L.E.; Jones, L.L.; Youngblood, B.; Geiger, T.L. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 2018, 32(5), 1157-1167. doi: 10.1038/s41375-017-0008-6 PMID: 29479065
  137. Yeku, O.O.; Brentjens, R.J. Armored CAR T-cells: Utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans., 2016, 44(2), 412-418. doi: 10.1042/BST20150291 PMID: 27068948
  138. Zhang, X.; Zhang, H.; Lan, H.; Wu, J.; Xiao, Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front. Immunol., 2023, 14, 1101495. doi: 10.3389/fimmu.2023.1101495 PMID: 36891310
  139. Zhang, H.; Hu, Y.; Shao, M.; Teng, X.; Jiang, P.; Wang, X.; Wang, H.; Cui, J.; Yu, J.; Liang, Z.; Ding, L.; Han, Y.; Wei, J.; Xu, Y.; Li, X.; Shan, W.; Shi, J.; Luo, Y.; Qian, P.; Huang, H. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J. Hematol. Oncol., 2021, 14(1), 113. doi: 10.1186/s13045-021-01117-y PMID: 34289897
  140. Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol., 2020, 17(3), 147-167. doi: 10.1038/s41571-019-0297-y PMID: 31848460
  141. Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer, 2018, 17(1), 129. doi: 10.1186/s12943-018-0864-3 PMID: 30139382
  142. Liu, H.; Lei, W.; Zhang, C.; Yang, C.; Wei, J.; Guo, Q.; Guo, X.; Chen, Z.; Lu, Y.; Young, K.H.; Lu, Z.; Qian, W. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1–positive B-cell lymphoma. Clin. Cancer Res., 2021, 27(2), 473-484. doi: 10.1158/1078-0432.CCR-20-1457 PMID: 33028589
  143. Tomasik, J.; Jasiński, M.; Basak, G.W. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front. Immunol., 2022, 13, 1034707. doi: 10.3389/fimmu.2022.1034707 PMID: 36389658
  144. Kim, W.S.; Kim, S.J.; Yoon, S.; Kim, J.R. Phase 1/2 study of anbalcabtagene autoleucel, novel anti-CD19 CAR-T cell therapy with dual silencing of PD-1 and TIGIT in relapsed or refractory large B-cell lymphoma. J. Clin. Oncol., 2022, 40(16_suppl)(Suppl.), 7522. doi: 10.1200/JCO.2022.40.16_suppl.7522
  145. Moghanloo, E.; Mollanoori, H.; Talebi, M.; Pashangzadeh, S.; Faraji, F.; Hadjilooei, F.; Mahmoodzadeh, H. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl. Oncol., 2021, 14(6), 101070. doi: 10.1016/j.tranon.2021.101070 PMID: 33789222
  146. Gagelmann, N.; Sureda, A.; Montoto, S.; Murray, J.; Bolaños, N.; Kenyon, M.; Beksac, M.; Schönland, S.; Hayden, P.; Scheurer, H.; Morgan, K.; Garderet, L.; McLornan, D.P.; Ruggeri, A. Access to and affordability of CAR T-cell therapy in multiple myeloma: An EBMT position paper. Lancet Haematol., 2022, 9(10), e786-e795. doi: 10.1016/S2352-3026(22)00226-5 PMID: 36174641
  147. Kapinos, K.A.; Hu, E.; Trivedi, J.; Geethakumari, P.R.; Kansagra, A. Cost-effectiveness analysis of CAR T-cell therapies vs antibody drug conjugates for patients with advanced multiple myeloma. Cancer Contr., 2023, 30 doi: 10.1177/10732748221142945 PMID: 36651055
  148. Lenhoff, S.; Hjorth, M.; Turesson, I.; Westin, J.; Gimsing, P.; Wislöff, F.; Ahlberg, L.; Carlson, K.; Christiansen, I.; Dahl, I.M.; Forsberg, K.; Brinch, L.; Hammerström, J.; Johnsen, H.E.; Knudsen, L.M.; Linder, O.; Mellqvist, U.H.; Nesthus, I.; Nielsen, J.L. Intensive therapy for multiple myeloma in patients younger than 60 years. Long-term results focusing on the effect of the degree of response on survival and relapse pattern after transplantation. Haematologica, 2006, 91(9), 1228-1233. PMID: 16956822
  149. Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; Gregory, W.M. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma. JAMA Oncol., 2017, 3(1), 28-35. doi: 10.1001/jamaoncol.2016.3160 PMID: 27632282
  150. Landgren, O.; Devlin, S.; Boulad, M.; Mailankody, S. Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: A meta-analysis. Bone Marrow Transplant., 2016, 51(12), 1565-1568. doi: 10.1038/bmt.2016.222 PMID: 27595280
  151. Klausen, U.; Jørgensen, N.G.D.; Grauslund, J.H.; Holmström, M.O.; Andersen, M.H. Cancer immune therapy for lymphoid malignancies: Recent advances. Semin. Immunopathol., 2019, 41(1), 111-124. doi: 10.1007/s00281-018-0696-7 PMID: 30006739
  152. Rosenblatt, J.; Avigan, D. Targeting the PD-1/PD-L1 axis in multiple myeloma: A dream or a reality? Blood, 2017, 129(3), 275-279. doi: 10.1182/blood-2016-08-731885 PMID: 27919908
  153. Chung, D.J.; Pronschinske, K.B.; Shyer, J.A.; Sharma, S.; Leung, S.; Curran, S.A.; Lesokhin, A.M.; Devlin, S.M.; Giralt, S.A.; Young, J.W. T-cell exhaustion in multiple myeloma relapse after autotransplant: Optimal timing of immunotherapy. Cancer Immunol. Res., 2016, 4(1), 61-71. doi: 10.1158/2326-6066.CIR-15-0055 PMID: 26464015
  154. Prabhala, R.H.; Neri, P.; Bae, J.E.; Tassone, P.; Shammas, M.A.; Allam, C.K.; Daley, J.F.; Chauhan, D.; Blanchard, E.; Thatte, H.S.; Anderson, K.C.; Munshi, N.C. Dysfunctional T regulatory cells in multiple myeloma. Blood, 2006, 107(1), 301-304. doi: 10.1182/blood-2005-08-3101 PMID: 16150935
  155. Leone, P.; Berardi, S.; Frassanito, M.A.; Ria, R.; De Re, V.; Cicco, S.; Battaglia, S.; Ditonno, P.; Dammacco, F.; Vacca, A.; Racanelli, V. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing. Blood, 2015, 126(12), 1443-1451. doi: 10.1182/blood-2015-01-623975 PMID: 26185130

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers