Novel Synthesized Tyrosinase Inhibitors: A Systematic Patent Review (2012-Present)


Cite item

Full Text

Abstract

Tyrosine is an enzyme responsible for melanin production. Its abnormal accumulation in different parts of the body is known as hyperpigmentation. Tyrosinase inhibitors have been used as one of the main approaches to treat these kinds of cosmetic and medical issues. This review aimed to discuss the advances in patents for this class of inhibitors, focusing on synthetic ones, by studying recent patent applications (2012-2022). We performed a screening using the European Patent Office’s Espacenet database, from which 15 inventions were selected and fully studied. China has more patent applications, all of them were focused on synthetic methods and the majority declared at least two additional applications as antibrowning agents for fruits and vegetables, biological pesticides, and medicine to treat diseases like Parkinson’s or melanoma. The strategies employed by the investigators focused on the examination of previous literature, which oriented on the type of structures that have been found to show good inhibitory activity; the study also examined aspects of their reaction mechanisms and information about the structureactivity relationship. For some groups of inhibitors, such as benzaldehyde and anthraquinone derivatives, the data were meaningful and extensive. In contrast, arginyl and troponoids compounds were difficult to analyze due to the limited research works.

About the authors

Erika Beltran

Departamento de Farmacia, Facultad de Ciencias,, Universidad Nacional de Colombia

Email: info@benthamscience.net

Mairim Serafini

Pharmacy Department, Federal University of Sergipe

Email: info@benthamscience.net

Izabel Alves

Department of Pharmacy, Federal University of Bahi

Email: info@benthamscience.net

Diana Aragón Novoa

Departamento de Farmacia, Facultad de Ciencias,, Universidad Nacional de Colombia

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723. doi: 10.1007/s00018-005-5054-y PMID: 15968468
  2. Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475. doi: 10.3390/ijms10062440 PMID: 19582213
  3. Schallreuter, K.U.; Kothari, S.; Chavan, B.; Spencer, J.D. Regulation of melanogenesis - controversies and new concepts. Exp. Dermatol., 2008, 17(5), 395-404. doi: 10.1111/j.1600-0625.2007.00675.x PMID: 18177348
  4. Sánchez-Ferrer, Á.; Rodríguez-López, N.J.; García-Cánovas, F.; García-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1995, 1247(1), 1-11. doi: 10.1016/0167-4838(94)00204-T
  5. Zeng, H.; Sun, D.; Chu, S.; Zhang, J.; Hu, G.; Yang, R. Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. Int. J. Biol. Macromol., 2020, 160, 153-163. doi: 10.1016/j.ijbiomac.2020.05.193 PMID: 32464200
  6. Knight, H. Patent strategy for researchers and research managers, (3rd ed.); Willy: New Jersey, USA, 2013.
  7. Peters, P. Mind the gap: Spanning the divide between patents and journal articles. 2019. Available from: https://www.cas.org/resources/blog/mind-gap-spanning-divide-between-patents-and-journal-articles accessed Aug 12, 2022.
  8. Chen, C.; Lin, L.; Yang, W.; Bordon, J.; Wang, D.H. An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Org. Chem., 2015, 19(1), 4-18. doi: 10.2174/1385272819666141107224806
  9. Chen, L.H.; Hu, Y.H.; Song, W.; Song, K.K.; Liu, X.; Jia, Y.L.; Zhuang, J.X.; Chen, Q.X. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: Novel tyrosinase inhibitors. J. Agric. Food Chem., 2012, 60(6), 1542-1547. doi: 10.1021/jf204420x PMID: 22250887
  10. Lee, S.Y.; Baek, N.; Nam, T. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 1-13. doi: 10.3109/14756366.2015.1004058 PMID: 25683082
  11. Kubo, I.; Chen, Q.X.; Nihei, K. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 2003, 81(2), 241-247. doi: 10.1016/S0308-8146(02)00418-1
  12. Yi, W.; Wu, X.; Cao, R.; Song, H.; Ma, L. Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants. Food Chem., 2009, 117(3), 381-386. doi: 10.1016/j.foodchem.2009.03.108
  13. Ullah, S.; Son, S.; Yun, H.; Kim, D.; Chun, P.; Moon, H. Tyrosinase inhibitors: A patent review (2011-2015). Expert Opin. Ther. Pat., 2016, 26(3), 347-362. doi: 10.1517/13543776.2016.1146253 PMID: 26815044
  14. Peng, Z.; Wang, G.; Zeng, Q.H.; Li, Y.; Liu, H.; Wang, J.J.; Zhao, Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2022, 62(15), 4053-4094. doi: 10.1080/10408398.2021.1871724 PMID: 33459057
  15. Tokudome, Y.; Hoshi, T.; Mori, S.; Hijikuro, I. Synthesis of resorcinol derivatives and their effects on melanin production. Cosmetics, 2020, 7(3), 55. doi: 10.3390/cosmetics7030055
  16. Khatib, S.; Nerya, O.; Musa, R.; Tamir, S.; Peter, T.; Vaya, J. Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. J. Med. Chem., 2007, 50(11), 2676-2681. doi: 10.1021/jm061361d PMID: 17447749
  17. Shimizu, K.; Kondo, R.; Sakai, K.; Takeda, N.; Nagahata, T.; Oniki, T. Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids, 2001, 36(12), 1321-1326. doi: 10.1007/s11745-001-0847-9 PMID: 11834083
  18. Ha, K.S.; Jo, S.H.; Kang, B.H.; Apostolidis, E.; Lee, M.S.; Jang, H.D.; Kwon, Y.I. In vitro and in vivo antihyperglycemic effect of 2 amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose. J. Food Sci., 2011, 76(8), H188-H193. doi: 10.1111/j.1750-3841.2011.02361.x PMID: 22417590
  19. Zhao, J.; Zhao, J. Plant troponoids: Chemistry, biological activity, and biosynthesis. Curr. Med. Chem., 2007, 14(24), 2597-2621. doi: 10.2174/092986707782023253 PMID: 17979713
  20. Pereira, D.M.; Valentão, P.; Andrade, P.B. Marine natural pigments: Chemistry, distribution and analysis. Dyes Pigments, 2014, 111, 124-134. doi: 10.1016/j.dyepig.2014.06.011
  21. Phutim-Mangkhalthon, A.; Teerakapong, A.; Tippayawat, P.; Morales, N.P.; Morkmued, S.; Puasiri, S.; Priprem, A.; Damrongrungruang, T. Anti-inflammatory effect of photodynamic therapy using guaiazulene and red lasers on peripheral blood mononuclear cells. Photodiagn. Photodyn. Ther., 2020, 31, 101747. doi: 10.1016/j.pdpdt.2020.101747 PMID: 32200021
  22. Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309. doi: 10.1080/14756366.2018.1545767 PMID: 30734608
  23. Yaari, Z.; Cheung, J.M.; Baker, H.A.; Frederiksen, R.S.; Jena, P.V.; Horoszko, C.P.; Jiao, F.; Scheuring, S.; Luo, M.; Heller, D.A. Nanoreporter of an enzymatic suicide inactivation pathway. Nano Lett., 2020, 20(11), 7819-7827. doi: 10.1021/acs.nanolett.0c01858 PMID: 33119310
  24. Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 2021, 11(36), 22159-22198. doi: 10.1039/D1RA03196A PMID: 35480807
  25. Tseng, T.S.; Tsai, K.C.; Chen, W.C.; Wang, Y.T.; Lee, Y.C.; Lu, C.K.; Don, M.J.; Chang, C.Y.; Lee, C.H.; Lin, H.H.; Hsu, H.J.; Hsiao, N.W. Discovery of potent cysteine-containing dipeptide inhibitors against tyrosinase: A comprehensive investigation of 20 × 20 dipeptides in inhibiting dopachrome formation. J. Agric. Food Chem., 2015, 63(27), 6181-6188. doi: 10.1021/acs.jafc.5b01026 PMID: 26083974
  26. García-Molina, F.; Muñoz, J.L.; Varón, R.; Rodríguez-López, J.N.; García-Cánovas, F.; Tudela, J. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J. Agric. Food Chem., 2007, 55(24), 9739-9749. doi: 10.1021/jf0712301 PMID: 17958393
  27. Bassiri, E. Molecular biology of life laboratory, Available from: https://www.sas.upenn.edu/labmanuals/biol123/Table _of_Contents_files/8b-EnzymeKinetics-Spec.pdf accessed Aug 12, 2022.
  28. Raynie, D. The vital role of blanks in sample preparation. LC GC N. Am., 2018, 36(8), 494-497.
  29. Mukherjee, P. Quality control and evaluation of herbal drugs. Evaluating Natural Products and Traditional Medicine, (1st Ed.); Elsevier: Amsterdam, 2019, pp. 515-537. doi: 10.1016/B978-0-12-813374-3.00013-2
  30. Caldwell, G.W.; Yan, Z.; Lang, W.; Masucci, J.A. The IC(50) concept revisited. Curr. Top. Med. Chem., 2012, 12(11), 1282-1290. doi: 10.2174/156802612800672844 PMID: 22571790

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers