Curcuminoid Chalcones: Synthesis and Biological Activity against the Human Colon Carcinoma (Caco-2) Cell Line
- Authors: Olender D.1, Sowa-Kasprzak K.1, Pawełczyk A.1, Skóra B.2, Zaprutko L.3, Szychowski K.2
-
Affiliations:
- Department of Organic Chemistry, Poznan University of Medical Sciences
- Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences
- Issue: Vol 31, No 33 (2024)
- Pages: 5397-5416
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645054
- DOI: https://doi.org/10.2174/0109298673257972230919055832
- ID: 645054
Cite item
Full Text
Abstract
Background:There are many current scientific reports on the synthesis of various derivatives modelled on the structure of known small-molecular and natural bioactive compounds. Curcuminoid chalcones are an innovative class of compounds with significant therapeutic potential against various diseases and they perfectly fit into the current trends in the search for new biologically active substances.
Aims:The aim of this study was to design and synthesise a series of curcuminoid chalcones.
Objective:The objective of this scientific paper was to synthesise twelve curcuminoid chalcones and confirm their structures using spectral methods. Additionally, the biological activity of three of the synthesised compounds was evaluated using various assays, and their anticancer properties and toxicity were studied.
Methods:The proposed derivatives were obtained via the Claisen-Schmidt reaction of selected acetophenones and aldehydes in various conditions using both classical methods: the solutions and solvent-free microwave (MW) or ultrasound (US) variants. The most optimal synthetic method for the selected curcuminoid chalcones was the classical Claisen-Schmidt condensation in an alkaline (NaOH) medium. Spectral methods were used to confirm the structures of the compounds. The resazurin reduction assay, caspase-3 activity assay, and RT-qPCR method were performed, followed by measurements of the intracellular reactive oxygen species (ROS) level and the lactate dehydrogenase (LDH) release level.
Results:Twelve designed curcuminoid chalcones were successfully synthesized and structurally confirmed by NMR, MS, and IR spectroscopy. Examination of the anticancer activity was carried out for the three most interesting chalcone products.
Conclusion:The results suggested that compound 3a increased the metabolism and/or proliferation of the human colon carcinoma (Caco-2) cell line, while compounds 3b and 3f showed significant toxicity against the Caco-2 cell line. Overall, the preliminary results suggested that compound 3b exhibited the most favourable anticancer activity.
About the authors
Dorota Olender
Department of Organic Chemistry, Poznan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Katarzyna Sowa-Kasprzak
Department of Organic Chemistry, Poznan University of Medical Sciences
Email: info@benthamscience.net
Anna Pawełczyk
Department of Organic Chemistry, Poznan University of Medical Sciences
Email: info@benthamscience.net
Bartosz Skóra
Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow
Email: info@benthamscience.net
Lucjusz Zaprutko
Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences
Email: info@benthamscience.net
Konrad Szychowski
Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow
Email: info@benthamscience.net
References
- Tiwari, A.K. Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Curr. Sci., 2001, 81(9)
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156. doi: 10.3390/molecules201219753 PMID: 26633317
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res., 2005, 579(1-2), 200-213. doi: 10.1016/j.mrfmmm.2005.03.023 PMID: 16126236
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J. Funct. Foods, 2015, 18(Part B), 820-897. doi: 10.1016/j.jff.2015.06.018
- Sorolla, M.A.; Hidalgo, I.; Sorolla, A.; Montal, R.; Pallisé, O.; Salud, A.; Parisi, E. Microenvironmental reactive oxygen species in colorectal cancer: Involved processes and therapeutic opportunities. Cancers, 2021, 13(20), 5037. doi: 10.3390/cancers13205037 PMID: 34680186
- Mishra, S.; Kapoor, N.; Mubarak Ali, A.; Pardhasaradhi, B.V.V.; Kumari, A.L.; Khar, A.; Misra, K. Differential apoptotic and redox regulatory activities of curcumin and its derivatives. Free Radic. Biol. Med., 2005, 38(10), 1353-1360. doi: 10.1016/j.freeradbiomed.2005.01.022 PMID: 15855053
- Shiels, M.S.; Haque, A.T.; Berrington de González, A.; Freedman, N.D. Leading causes of death in the US during the COVID-19 pandemic, March 2020 to October 2021. JAMA Intern. Med., 2022, 182(8), 883-886. doi: 10.1001/jamainternmed.2022.2476 PMID: 35788262
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
- Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci., 2018, 19(4), 1104. doi: 10.3390/ijms19041104 PMID: 29642417
- Edwards, R.L.; Luis, P.B.; Varuzza, P.V.; Joseph, A.I.; Presley, S.H.; Chaturvedi, R.; Schneider, C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem., 2017, 292(52), 21243-21252. doi: 10.1074/jbc.RA117.000123 PMID: 29097552
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12. doi: 10.1186/1476-4598-10-12 PMID: 21299897
- Llano, S.; Gómez, S.; Londoño, J.; Restrepo, A. Antioxidant activity of curcuminoids. Phys. Chem. Chem. Phys., 2019, 21(7), 3752-3760. doi: 10.1039/C8CP06708B PMID: 30702098
- Chainoglou, E.; Hadjipavlou-Litina, D. Curcumin in health and diseases: Alzheimers disease and curcumin analogues, derivatives, and hybrids. Int. J. Mol. Sci., 2020, 21(6), 1975. doi: 10.3390/ijms21061975 PMID: 32183162
- Burgos-Morón, E.; Calderón-Montaño, J.M.; Salvador, J.; Robles, A.; López-Lázaro, M. The dark side of curcumin. Int. J. Cancer, 2010, 126(7), NA. doi: 10.1002/ijc.24967 PMID: 19830693
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637. doi: 10.1021/acs.jmedchem.6b00975 PMID: 28074653
- Elias, G.; Jacob, P.J.; Hareeshbabu, E.; Mathew, V.B.; Krishnan, B.; Krishnakumar, K. Curcumin: Transforming the spice to a wonder drug. Int. J. Pharm. Sci. Res., 2015, 6, 2671-2680. doi: 10.13040/IJPSR.0975-8232.6(7).2671-80
- Chainoglou, E.; Siskos, A.; Pontiki, E.; Hadjipavlou-Litina, D. Hybridization of curcumin analogues with cinnamic acid derivatives as multi-target agents against Alzheimers disease targets. Molecules, 2020, 25(21), 4958. doi: 10.3390/molecules25214958 PMID: 33114751
- Ding, L.; Ma, S.; Lou, H.; Sun, L.; Ji, M. Synthesis and biological evaluation of curcumin derivatives with water-soluble groups as potential antitumor agents: An in vitro investigation using tumor cell lines. Molecules, 2015, 20(12), 21501-21514. doi: 10.3390/molecules201219772 PMID: 26633344
- Cao, Y.K.; Li, H.J.; Song, Z.F.; Li, Y.; Huai, Q.Y. Synthesis and biological evaluation of novel curcuminoid derivatives. Molecules, 2014, 19(10), 16349-16372. doi: 10.3390/molecules191016349 PMID: 25314599
- Cazarolli, L.H.; Demarchi Kappel, D.; Zanatta, A.P.; Hisayasu Suzuki, D.O.; Yunes, R.A.; Nunes, R.J.; Pizzolatti, M.G.; Mena Barreto Silva, F.R. Chapter 2 - Natural and synthetic chalcones: Tools for the study of targets of actioninsulin secretagogue or insulin mimetic? In: Studies in Natural Products Chemistry; Elsevier, 2013; 39, pp. 47-89. doi: 10.1016/B978-0-444-62615-8.00002-3
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177. doi: 10.3390/molecules26237177 PMID: 34885754
- Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654. doi: 10.3389/fphar.2020.592654 PMID: 33536909
- Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of chalcones derivatives and their biological activities: A review. ACS Omega, 2022, 7(32), 27769-27786. doi: 10.1021/acsomega.2c01779 PMID: 35990442
- Tekale, S.; Mashele, S.; Pooe, O.; Thore, S.; Kendrekar, P.; Pawar, R. Biological Role of Chalcones in Medicinal Chemistry. In: Vector-Borne Diseases; IntechOpen, 2020. doi: 10.5772/intechopen.91626
- Janaki, P.; Bhadraiah, B.; Nagarjuna, P.A.; Subhashini, N.J.P. Synthesis and antibacterial activity of novel chalcone derivatives of apocynin. Lett. Drug Des. Discov., 2013, 10(10), 923-927. doi: 10.2174/15701808113109990081
- Kamel, M.G.; Sroor, F.M.; Othman, A.M.; Mahrous, K.F.; Saleh, F.M.; Hassaneen, H.M.; Abdallah, T.A.; Abdelhamid, I.A.; Teleb, M.A.M. Structure-based design of novel pyrazolylchalcones as anti-cancer and antimicrobial agents: Synthesis and in vitro studies. Monatsh. Chem., 2022, 153(2), 211-221. doi: 10.1007/s00706-021-02886-5
- Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(2), 433-458. doi: 10.1007/s10311-019-00959-w
- Kumar, N.; Drabu, S.; Shalini, K. Synthesis and pharmacological screening of 4, 6-substituted di-(phenyl) pyrimidin-2-amines. Arab. J. Chem., 2017, 10, S877-S880. doi: 10.1016/j.arabjc.2012.12.023
- Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Nagane, S.S.; Bandgar, B.P. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2017, 27(7), 1502-1507. doi: 10.1016/j.bmcl.2017.02.052 PMID: 28258796
- Ahmed, M.F.; Santali, E.Y.; El-Haggar, R. Novel piperazinechalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 308-319. doi: 10.1080/14756366.2020.1861606 PMID: 33349069
- Asiri, A.M.; Al-Amari, M.M.; Ullah, Q.; Khan, S.A. Ultrasound-assisted synthesis and photophysical investigation of a heterocyclic alkylated chalcone: A sensitive and selective fluorescent chemosensor for Fe3+ in aqueous media. J. Coord. Chem., 2020, 73(20-22), 2987-3002. doi: 10.1080/00958972.2020.1838490
- Asiri, A.M.; Khan, S.A. Synthesis, characterization and optical properties of mono- and bis-chalcone. Mater. Lett., 2011, 65(12), 1749-1752. doi: 10.1016/j.matlet.2011.03.059
- Alfaifi, S.Y.; Khan, S.A. Multi-step synthesis, photophysical and physicochemical properties of novel push- π -Pull AADC chromophores. Polycycl. Aromat. Compd., 2023, 43(2), 1219-1231. doi: 10.1080/10406638.2022.2026985
- Mellado, M.; Reyna-Jeldes, M.; Weinstein-Oppenheimer, C.; Coddou, C.; Jara-Gutierrez, C.; Villena, J.; Aguilar, L.F. Inhibition of Caco-2 and MCF-7 cancer cells using chalcones: Synthesis, biological evaluation and computational study. Nat. Prod. Res., 2022, 36(17), 4404-4410. doi: 10.1080/14786419.2021.1984465 PMID: 34583595
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: role in anticancer therapy. Biomolecules, 2021, 11, 894. doi: 10.3390/biom11060894
- Mulugeta, D. A review of synthesis methods of chalcones, flavonoids, and coumarins. Sci. J. Chem., 2022, 10(2), 41-52. doi: 10.11648/j.sjc.20221002.12
- Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077. doi: 10.1007/s11164-017-2977-5
- Farooq, S.; Ngaini, Z. Recent synthetic methodologies for chalcone synthesis (2013-2018). Curr. Organocatal., 2019, 6(3), 184-192. doi: 10.2174/2213337206666190306155140
- Yadav, G.D.; Wagh, D.P. Claisen‐schmidt condensation using green catalytic processes: A critical review. ChemistrySelect, 2020, 5(29), 9059-9085. doi: 10.1002/slct.202001737
- Evranos Aksöz, B.; Ertan, R. Chemical and structural properties of chalcones I. FABAD. J. Pharm. Sci., 2011, 36, 223-242.
- Patil, C.B.; Mahajan, S.K.; Katti, S.A. Chalcone: A versatile molecule. J. Pharm. Sci. Res., 2009, 1(3), 11-22.
- Weber, W.M.; Hunsaker, L.A.; Abcouwer, S.F.; Deck, L.M.; Vander Jagt, D.L. Anti-oxidant activities of curcumin and related enones. Bioorg. Med. Chem., 2005, 13(11), 3811-3820. doi: 10.1016/j.bmc.2005.03.035 PMID: 15863007
- Watanabe, K.; Imazawa, A. Aldol condensations catalyzed by Co (II) complexes of pyridine-containing copolymers. Bull. Chem. Soc. Jpn., 1982, 55(10), 3208-3211. doi: 10.1246/bcsj.55.3208
- Raghavan, S.; Manogaran, P.; Kalpattu Kuppuswami, B.; Venkatraman, G.; Gadepalli Narasimha, K.K. Synthesis and anticancer activity of chalcones derived from vanillin and isovanillin. Med. Chem. Res., 2015, 24(12), 4157-4165. doi: 10.1007/s00044-015-1453-2
- Kumar, S.N.; Bavikar, S.R.; Pavan Kumar, C.N.S.S.; Yu, I.F.; Chein, R.J. From carbamate to chalcone: Consecutive anionic fries rearrangement, anionic Si → C alkyl rearrangement, and claisenschmidt condensation. Org. Lett., 2018, 20(17), 5362-5366. doi: 10.1021/acs.orglett.8b02269 PMID: 30148638
- Szychowski, K.A.; Leja, M.L.; Kaminskyy, D.V.; Kryshchyshyn, A.P.; Binduga, U.E.; Pinyazhko, O.R.; Lesyk, R.B.; Tobiasz, J.; Gmiński, J. Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). Eur. J. Med. Chem., 2017, 141, 162-168. doi: 10.1016/j.ejmech.2017.09.071 PMID: 29031063
- Skóra, B.; Matuszewska, P.; Masicz, M.; Sikora, K.; Słomczewska, M.; Sołtysek, P.; Szychowski, K.A. Crosstalk between the aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor gamma (PPARγ) as a key factor in the metabolism of silver nanoparticles in neuroblastoma (SH-SY5Y) cells in vitro. Toxicol. Appl. Pharmacol., 2023, 458, 116339. doi: 10.1016/j.taap.2022.116339 PMID: 36473513
- Bar, M.; Skóra, B.; Tabęcka-Łonczyńska, A.; Holota, S.; Khyluk, D.; Roman, O.; Lesyk, R.; Szychowski, K.A. New 4-thiazolidinone-based molecules Les-2769 and Les-3266 as possible PPARγ modulators. Bioorg. Chem., 2022, 128, 106075. doi: 10.1016/j.bioorg.2022.106075 PMID: 35952447
- Skóra, B.; Lewińska, A.; Kryshchyshyn-Dylevych, A.; Kaminskyy, D.; Lesyk, R.; Szychowski, K.A. Evaluation of anticancer and antibacterial activity of four 4-thiazolidinone-based derivatives. Molecules, 2022, 27(3), 894. doi: 10.3390/molecules27030894 PMID: 35164157
- Skóra, B.; Szychowski, K.A. Molecular mechanism of the uptake and toxicity of EGF-LipoAgNPs in EGFR-overexpressing cancer cells. Biomed. Pharmacother., 2022, 150, 113085. doi: 10.1016/j.biopha.2022.113085 PMID: 35658239
- Mellado-García, M.; Reyna, M.; Weinstein-Oppenheimer, C.; Cuellar, M.; Aguilar, L.F. Preliminary evaluation of cytotoxicity for small chalcones on breast and colorectal cancer cell lines: Synthesis and structure - activity relationship. J. Pharmacol. Ther. Forecast., 2018, 1(1), 1003.
- Anwar, C.; Prasetyo, Y.D.; Matsjeh, S.; Haryadi, W.; Sholikhah, E.N.; Nendrowati, N. Synthesis of chalcone derivatives and their in vitro anticancer test against breast (T47D) and Colon (WiDr) cancer cell line. Indian J. Chem., 2018, 18(1), 102-107. doi: 10.22146/ijc.26864
- Palleros, D.R. Solvent-free synthesis of chalcones. J. Chem. Educ., 2004, 81(9), 1345-1347. doi: 10.1021/ed081p1345
- Jayapal, M.R.; Sreedhar, N.Y. Anhydrous K2CO3 as catalyst for the synthesis of chalcones under microwave irradiation. J. Pharm. Sci. Res., 2010, 2(10), 644-647.
- Aksöz, B.E.; Ertan, R. Spectral properties of chalcones II. FABAD J. Pharm. Sci., 2012, 37(4), 205-216.
- Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44(5), 2211-2218. doi: 10.1016/j.ejmech.2008.05.010 PMID: 18584918
- Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418. doi: 10.1023/A:1009616228304 PMID: 11256882
- Berghe, T.V.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ., 2010, 17(6), 922-930. doi: 10.1038/cdd.2009.184 PMID: 20010783
- Park, J.E.; Ahn, C.H.; Lee, H.J.; Sim, D.Y.; Park, S.Y.; Kim, B.; Shim, B.S.; Lee, D.Y.; Kim, S.H. Antioxidant-based preventive effect of phytochemicals on anticancer drug-induced hepatotoxicity. Antioxid. Redox Signal., 2023, 38(16-18), 1101-1121. doi: 10.1089/ars.2022.0144 PMID: 36242510
Supplementary files
