The Efficient Activity of Glabridin and its Derivatives Against EGFRmediated Inhibition of Breast Cancer
- Authors: Ghosh A.1, Ghosh D.2, Mukerjee N.3, Maitra S.4, Das P.5, Dey A.6, Sharkawi S.7, Zouganelis G.8, Alexiou A.9, Chaudhari S.10, Sharma R.11, Waghmare S.12, Papadakis M.13, Batiha G.14
-
Affiliations:
- Microbiology Division, Department of Botany,, Gauhati Universit
- Department of Molecular Biology and Biotechnology, Cotton University
- Department of Microbiology, West Bengal State University
- Department of Microbiology, Adamas University
- Central Silk Board, Regional Office
- Department of Life Sciences, , Presidency University
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University
- School of Human Sciences, College of Life and Natural Sciences, University of Derby
- Department of Science and Engineering, Novel Global Novel Global Community Educational Foundation
- Department of Pharmaceutical Chemistry,, P.E.S Modern College of Pharmacy
- Department of Pharmaceutical Chemistry,, University Institute of Pharma Sciences Chandigarh University
- , Dr. Vithalrao Vikhe Patil College of Pharmacy,
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University
- Issue: Vol 31, No 5 (2024)
- Pages: 573-594
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645164
- DOI: https://doi.org/10.2174/0929867330666230303120942
- ID: 645164
Cite item
Full Text
Abstract
Background:Breast cancer (BC) is one of the most typical causes of cancer death in women worldwide. Activated epidermal growth factor receptor (EGFR) signaling has been increasingly associated with BC development and resistance to cytotoxic drugs. Due to its significant association with tumour metastasis and poor prognosis, EGFR-mediated signaling has emerged as an attractive therapeutic target in BC. Mainly in all BC cases, mutant cells over-expresses EGFR. Certain synthetic drugs are already used to inhibit the EGFR-mediated pathway to cease metastasis, with several phytocompounds also revealing great chemopreventive activities.
Methods:This study used chemo-informatics to predict an effective drug from some selected phytocompounds. The synthetic drugs and the organic compounds were individually screened for their binding affinities, with EGFR being the target protein using molecular docking techniques.
Results:The binding energies were compared to those of synthetic drugs. Among phytocompounds, Glabridin (phytocompound of Glycyrrhiza glabra) manifested the best dock value of -7.63 Kcal/mol, comparable to that of the highly effective anti-cancer drug Afatinib. The glabridin derivatives also exhibited comparable dock values.
Conclusion:The AMES properties deciphered the non-toxic features of the predicted compound. Pharmacophore modeling and in silico cytotoxicity predictions also exhibited a superior result assuring their drug likeliness. Therefore, Glabridin can be conceived as a promising therapeutic method to inhibit EGFR-mediated BC.
About the authors
Arabinda Ghosh
Microbiology Division, Department of Botany,, Gauhati Universit
Author for correspondence.
Email: info@benthamscience.net
Debanjana Ghosh
Department of Molecular Biology and Biotechnology, Cotton University
Email: info@benthamscience.net
Nobendu Mukerjee
Department of Microbiology, West Bengal State University
Email: info@benthamscience.net
Swastika Maitra
Department of Microbiology, Adamas University
Email: info@benthamscience.net
Padmashree Das
Central Silk Board, Regional Office
Email: info@benthamscience.net
Abhijit Dey
Department of Life Sciences, , Presidency University
Email: info@benthamscience.net
Souty Sharkawi
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University
Email: info@benthamscience.net
Georgios Zouganelis
School of Human Sciences, College of Life and Natural Sciences, University of Derby
Email: info@benthamscience.net
Athanasios Alexiou
Department of Science and Engineering, Novel Global Novel Global Community Educational Foundation
Email: info@benthamscience.net
Somdatta Chaudhari
Department of Pharmaceutical Chemistry,, P.E.S Modern College of Pharmacy
Email: info@benthamscience.net
Ritika Sharma
Department of Pharmaceutical Chemistry,, University Institute of Pharma Sciences Chandigarh University
Email: info@benthamscience.net
Sonali Waghmare
, Dr. Vithalrao Vikhe Patil College of Pharmacy,
Email: info@benthamscience.net
Marios Papadakis
Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke
Author for correspondence.
Email: info@benthamscience.net
Gaber Batiha
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University
Email: info@benthamscience.net
References
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol., 2001, 2(3), 133-140. doi: 10.1016/S1470-2045(00)00254-0 PMID: 11902563
- Schroeder, J.A.; Lee, D.C. Transgenic mice reveal roles for TGFalpha and EGF receptor in mammary gland development and neoplasia. J. Mammary Gland Biol. Neoplasia, 1997, 2(2), 119-129. doi: 10.1023/A:1026347629876 PMID: 10882298
- Hampton, K.K.; Craven, R.J. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience, 2014, 1(8), 504-512. doi: 10.18632/oncoscience.67 PMID: 25594057
- Lo, H.W.; Hsu, S.C.; Hung, M.C. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res. Treat., 2006, 95(3), 211-218. doi: 10.1007/s10549-005-9011-0 PMID: 16261406
- Bhargava, R.; Gerald, W.L.; Li, A.R.; Pan, Q.; Lal, P.; Ladanyi, M.; Chen, B. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol., 2005, 18(8), 1027-1033. doi: 10.1038/modpathol.3800438 PMID: 15920544
- Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41(41), 192-208. doi: 10.1016/j.semcancer.2016.09.001 PMID: 27609747
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055 PMID: 26852623
- Siddiqui, J.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.; Chakravarti, B. Phytochemicals for breast cancer therapy: current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135. doi: 10.2174/1568009615666141229152256 PMID: 25544650
- Aggarwal, B.B.; Sethi, G.; Baladandayuthapani, V.; Krishnan, S.; Shishodia, S. Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J. Cell Biochem., 2007, 102(3), 580-592. doi: 10.1002/jcb.21500 PMID: 17668425
- Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; Zhang, L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci., 2017, 110(110), 51-61. doi: 10.1016/j.ejps.2017.01.021 PMID: 28115222
- Burris, H.A., III Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist, 2004, 9(S3)(Suppl. 3), 10-15. doi: 10.1634/theoncologist.9-suppl_3-10 PMID: 15163842
- Bose, P.; Ozer, H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs, 2009, 18(11), 1735-1751. doi: 10.1517/13543780903305428 PMID: 19780706
- Liu, B.; Diaz Arguello, O.A.; Chen, D.; Chen, S.; Saber, A.; Haisma, H.J. CRISPR-mediated ablation of overexpressed EGFR in combination with sunitinib significantly suppresses renal cell carcinoma proliferation. PLoS One, 2020, 15(5), e0232985. doi: 10.1371/journal.pone.0232985 PMID: 32413049
- Kulke, M.H.; Blaszkowsky, L.S.; Ryan, D.P.; Clark, J.W.; Meyerhardt, J.A.; Zhu, A.X.; Enzinger, P.C.; Kwak, E.L.; Muzikansky, A.; Lawrence, C.; Fuchs, C.S. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J. Clin. Oncol., 2007, 25(30), 4787-4792. doi: 10.1200/JCO.2007.11.8521 PMID: 17947726
- Janjigian, Y.Y.; Smit, E.F.; Groen, H.J.M.; Horn, L.; Gettinger, S.; Camidge, D.R.; Riely, G.J.; Wang, B.; Fu, Y.; Chand, V.K.; Miller, V.A.; Pao, W. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov., 2014, 4(9), 1036-1045. doi: 10.1158/2159-8290.CD-14-0326 PMID: 25074459
- Hiscox, S.; Morgan, L.; Barrow, D.; Dutkowski, C.; Wakeling, A.; Nicholson, R.I. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: Inhibition by gefitinib (Iressa, ZD1839). Clin. Exp. Metastasis, 2004, 21(3), 201-212. doi: 10.1023/B:CLIN.0000037697.76011.1d PMID: 15387370
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; Mansoor, W.; Crosby, T.; Coxon, F.; Smith, D.; Waters, J.; Iveson, T.; Falk, S.; Slater, S.; Peckitt, C.; Barbachano, Y.; Barbachano, Y. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol., 2013, 14(6), 481-489. doi: 10.1016/S1470-2045(13)70096-2 PMID: 23594787
- Taurin, S.; Allen, K.M.; Scandlyn, M.J.; Rosengren, R.J. Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int. J. Oncol., 2013, 43(3), 785-792. doi: 10.3892/ijo.2013.2012 PMID: 23842642
- Dittmann, K.H.; Mayer, C.; Ohneseit, P.A.; Raju, U.; Andratschke, N.H.; Milas, L.; Rodemann, H.P. Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(1), 203-212. doi: 10.1016/j.ijrobp.2007.08.065 PMID: 17996386
- Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles- conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231. doi: 10.1002/cbf.3266 PMID: 28498520
- Starok, M.; Preira, P.; Vayssade, M.; Haupt, K.; Salomé, L.; Rossi, C. EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules, 2015, 16(5), 1634-1642. doi: 10.1021/acs.biomac.5b00229 PMID: 25893361
- Zhu, L.; Shen, X.B.; Yuan, P.C.; Shao, T.L.; Wang, G.D.; Liu, X.P. Arctigenin inhibits proliferation of ER-positive breast cancer cells through cell cycle arrest mediated by GSK3-dependent cyclin D1 degradation. Life Sci., 2020, 256, 117983. doi: 10.1016/j.lfs.2020.117983 PMID: 32565252
- Lee, J.; Kim, J.H. Kim. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One, 2016, 11(5), e0155264. doi: 10.1371/journal.pone.0155264 PMID: 27175782
- Jaman, M.S.; Sayeed, M.A. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer, 2018, 25(5), 517-528. doi: 10.1007/s12282-018-0866-4 PMID: 29725861
- Baraya, Y.S.; Wong, K.K.; Yaacob, N.S.; Nik, S.Y. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: a review. Anticancer. Agents Med. Chem., 2017, 17(6), 770-783. PMID: 27539316
- Zhang, L.; Chen, H.; Wang, M.; Song, X.; Ding, F.; Zhu, J.; Li, X. Effects of glabridin combined with 5-fluorouracil on the proliferation and apoptosis of gastric cancer cells. Oncol. Lett., 2018, 15(5), 7037-7045. doi: 10.3892/ol.2018.8260 PMID: 29725429
- Orry, A.J.W.; Abagyan, R.A.; Cavasotto, C.N. Structure-based development of target-specific compound libraries. Drug Discov. Today, 2006, 11(5-6), 261-266. doi: 10.1016/S1359-6446(05)03717-7 PMID: 16580603
- Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci., 2016, 160, 47-56. doi: 10.1016/j.lfs.2016.07.007 PMID: 27449398
- Jung, S.K.; Kim, J.E.; Lee, S.Y.; Lee, M.H.; Byun, S.; Kim, Y.A.; Lim, T.G.; Reddy, K.; Huang, Z.; Bode, A.M.; Lee, H.J.; Lee, K.W.; Dong, Z. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis, 2014, 35(1), 123-130. doi: 10.1093/carcin/bgt266 PMID: 23913940
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
- OBoyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007 PMID: 24981612
- Jiang, D.; Li, X.; Wang, H.; Shi, Y.; Xu, C.; Lu, S.; Huang, J.; Xu, Y.; Zeng, H.; Su, J.; Hou, Y.; Tan, L. The prognostic value of EGFR overexpression and amplification in Esophageal squamous cell Carcinoma. BMC Cancer, 2015, 15(1), 377. doi: 10.1186/s12885-015-1393-8 PMID: 25953424
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, , pp. 43-43. doi: 10.1109/SC.2006.54
- Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR--2008-01, 2008.
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519. doi: 10.1021/ct900587b PMID: 26615687
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935. doi: 10.1063/1.445869
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 1994, 101(5), 4177-4189. doi: 10.1063/1.467468
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. NoséHoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4), 2635-2643. doi: 10.1063/1.463940
- Toukmaji, A.Y.; Board, J.A., Jr Ewald summation techniques in perspective: A survey. Comput. Phys. Commun., 1996, 95(2-3), 73-92. doi: 10.1016/0010-4655(96)00016-1
- Kagami, L.P.; das Neves, G.M.; Timmers, L.F.S.M.; Caceres, R.A.; Eifler-Lima, V.L. Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput. Biol. Chem., 2020, 87, 107322. doi: 10.1016/j.compbiolchem.2020.107322 PMID: 32604028
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12(1), 2694-2718. doi: 10.3762/bjoc.12.267 PMID: 28144341
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398. PMID: 12680238
- Aggarwal, B.B. Nuclear factor-κB. Cancer Cell, 2004, 6(3), 203-208. doi: 10.1016/j.ccr.2004.09.003 PMID: 15380510
- Maadwar, S.; Galla, R. Cytotoxic oxindole derivatives: in vitro EGFR inhibition, pharmacophore modeling, 3D-QSAR and molecular dynamics studies. J. Recept. Signal Transduct. Res., 2019, 39(5-6), 460-469. doi: 10.1080/10799893.2019.1683865 PMID: 31814499
Supplementary files
