Natural Anticancer Agents: Their Therapeutic Potential, Challenges and Promising Outcomes
- Authors: Tauro S.1, Dhokchawle B.1, Mohite P.1, Nahar D.1, Nadar S.1, Coutinho E.1
-
Affiliations:
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
- Issue: Vol 31, No 7 (2024)
- Pages: 848-870
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645183
- DOI: https://doi.org/10.2174/0929867330666230502113150
- ID: 645183
Cite item
Full Text
Abstract
Cancer, the second leading cause of death worldwide, is a major health problem. Chemotherapy, radiation therapy and surgery are current treatments for cancer. Most anticancer drugs have severe toxic effects and are required to be administered in cycles to reduce toxicity and prevent resistance. Plant-based drugs have shown a potential for treatment of cancer, and various plant secondary metabolites have shown promising antitumor activity against several cancer cell lines, such as leukemia, colon cancer, prostate cancer, breast cancer and lung cancer. Vincristine, etoposide, topotecan and paclitaxel, which are of natural origin, are successfully used in clinical practice, and this has generated interest in natural compounds as anticancer agents. Some phytoconstituents like curcumin, piperine, allicin, quercetin and resveratrol have been extensively researched and reviewed. In the current study, we have reviewed several plants like Athyrium hohenackerianum, Aristolochia baetica, Boswellia serrata, Panax ginseng, Berberis vulgaris, Tanacetum parthenium, Glycine max, Combretum fragrans, Persea americana, Raphanus sativus, Camellia sinensis, and Nigella sativa for their source, key phytoconstituents, and anticancer activity along with their toxicity profile. Few phytoconstituents like boswellic acid, sulforaphane and ginsenoside showed excellent anticancer activity compared to standard drugs and are potential clinical candidates.
Keywords
About the authors
Savita Tauro
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Email: info@benthamscience.net
Bharat Dhokchawle
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Email: info@benthamscience.net
Popat Mohite
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Email: info@benthamscience.net
Deepali Nahar
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Email: info@benthamscience.net
Sahaya Nadar
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Email: info@benthamscience.net
Evans Coutinho
Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research
Author for correspondence.
Email: info@benthamscience.net
References
- Kisling, L.A.; Stiegmann, R.A. Alternative Medicine; StatPearls Publishing: Treasure Island (FL), 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538520/
- Bhandariab, M.; Ravipatib Sc, A. Traditional Ayurvedic medicines: Pathway to develop anti-cancer drugs. J. Mol. Pharm. Org. Process Res., 2015, 3(3) doi: 10.4172/2329-9053.1000130
- Ayurvedic Treatment of Advanced Cancer - Ayurveda Yogashram. Available from: https://ayurvedayogashram.com/advance-cancer-ayurvedic-treatment/ (accessed 2023-01-10).
- Yamakawa, J.; Motoo, Y.; Moriya, J.; Ogawa, M.; Uenishi, H.; Akazawa, S.; Sasagawa, T.; Nishio, M.; Kobayashi, J. Role of Kampo medicine in integrative cancer therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-6. doi: 10.1155/2013/570848 PMID: 23997796
- Shimizu, M.; Takayama, S.; Kikuchi, A.; Arita, R.; Ono, R.; Ishizawa, K.; Ishii, T. Kampo medicine treatment for advanced pancreatic cancer: A case series. Front. Nutr., 2021, 8, 702812. doi: 10.3389/fnut.2021.702812 PMID: 34458306
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med., 2019, 14(1), 48. doi: 10.1186/s13020-019-0270-9 PMID: 31719837
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335. doi: 10.1021/np200906s PMID: 22316239
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Dalmartello, M.; La Vecchia, C.; Bertuccio, P.; Boffetta, P.; Levi, F.; Negri, E.; Malvezzi, M. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol., 2022, 33(3), 330-339. doi: 10.1016/j.annonc.2021.12.007 PMID: 35090748
- Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075. doi: 10.1200/GO.20.00122 PMID: 32673076
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev., 2020, 86, 102019. doi: 10.1016/j.ctrv.2020.102019 PMID: 32251926
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109. doi: 10.3390/molecules26041109 PMID: 33669817
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl 2)(Suppl. 2), 41-59. doi: 10.1159/000443404 PMID: 26679767
- Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(S5)(Suppl. 5), 87. doi: 10.1186/s12918-017-0464-7 PMID: 28984210
- Scaria, B.; Sood, S.; Raad, C.; Khanafer, J.; Jayachandiran, R.; Pupulin, A.; Grewal, S.; Okoko, M.; Arora, M.; Miles, L.; Pandey, S. Natural health products (NHPs) and natural compounds as therapeutic agents for the treatment of cancer; Mechanisms of anti-cancer activity of natural compounds and overall trends. Int. J. Mol. Sci., 2020, 21(22), 8480. doi: 10.3390/ijms21228480 PMID: 33187200
- Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-derived natural products in cancer research: extraction, mechanism of action, and drug formulation. Molecules, 2020, 25(22), 5319. doi: 10.3390/molecules25225319 PMID: 33202681
- Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589. doi: 10.3390/ijms18122589 PMID: 29194365
- Salehi, B.; Ezzat, S.M.; Tsouh Fokou, P.V.; Albayrak, S.; Vlaisavljevic, S.; Sharifi-Rad, M.; Bhatt, I.D.; Sharifi-Rad, M.; Belwal, T.; Ayatollahi, S.A.; Kobarfard, F.; Ata, A.; Baghalpour, N.; Martorell, M.; Setzer, W.N.; Sharifi-Rad, J. Athyrium plants - Review on phytopharmacy properties. J. Tradit. Complement. Med., 2019, 9(3), 201-205. doi: 10.1016/j.jtcme.2018.09.001 PMID: 31193938
- Elasbali, A. M.; Al-Soud, W. A.; Al-Oanzi, Z. H.; Qanash, H.; Alharbi, B.; Binsaleh, N. K.; Alreshidi, M.; Patel, M.; Adnan, M. Cytotoxic activity, cell cycle inhibition, and apoptosis-inducing potential of Athyrium Hohenackerianum (Lady Fern) with its phytochemical profiling. Evid.-based Complement. Altern. Med., 2022, 2022, 1-13. doi: 10.1155/2022/2055773
- Pattayil, L.; Balakrishnan-Saraswathi, H.T. In vitro evaluation of apoptotic induction of butyric acid derivatives in colorectal carcinoma cells. Anticancer Res., 2019, 39(7), 3795-3801. doi: 10.21873/anticanres.13528 PMID: 31262906
- Kamatou, G. P. P.; Viljoen, A. M. Linalool a review of a biologically active compound of commercial importance. Nat. Prod. Commun., 2008, 3(7), 1934578X0800300. doi: 10.1177/1934578X0800300727
- Pejin, B.; Kojic, V.; Bogdanovic, G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res., 2014, 28(22), 2053-2056. doi: 10.1080/14786419.2014.921686 PMID: 24896297
- Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol., 2012, 141(3), 803-809. doi: 10.1016/j.jep.2012.03.014 PMID: 22440953
- Bourhia, M.; Abdelaziz Shahat, A.; Mohammed Almarfadi, O.; Ali Naser, F.; Mostafa Abdelmageed, W.; Ait Haj Said, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater casablanca-morocco. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-9. doi: 10.1155/2019/1613457 PMID: 31687035
- Lerma-Herrera, M.A.; Beiza-Granados, L.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Navarro-Santos, P.; Herrera-Bucio, R.; Aviña-Verduzco, J.; García-Gutiérrez, H.A. Biological activities of organic extracts of the genus Aristolochia: A review from 2005 to 2021. Molecules, 2022, 27(12), 3937. doi: 10.3390/molecules27123937 PMID: 35745061
- Wang, X.; Shi, G.R.; Liu, Y.F.; Li, L.; Chen, R.Y.; Yu, D.Q. Aristolochic acid derivatives from the rhizome of Arisolochia championii. Fitoterapia, 2017, 118, 63-68. doi: 10.1016/j.fitote.2017.01.006 PMID: 28137630
- Paizanni Guillén, A.; Santana Michel, F. J. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol, 2018, 29(2), 591-605. doi: 10.21829/fb.16.2018.203
- lan, A.A.; Vidyleison, N.C.; Ana, C.S.P.A.; Karina, M.S.H.; Rosy, I.M.A.R.; lan, A.A.; Vidyleison, N.C.; Ana, C.S.P.A.; Karina, M.S.H.; Rosy, I.M.A.R.; Kamilla, M.S.; Juliana, T.M.; Jos, C.M.; Luciana, A.R.S.L.; Jaqueline, M.S.F. Antibacterial and cytotoxic antibacterial potential of ethanol extract and fractions from Aristolochia galeata Mart. ex Zucc. J. Med. Plants Res., 2014, 8(7), 326-330. doi: 10.5897/JMPR2013.5151
- Khouchlaa, A.; El Idrissi, A.E.Y.; Bouyahya, A.; Bakri, Y.; Tijane, M. Phytochemical characterization, in vitro antioxidant, cytotoxic, and antibacterial effects of Aristolochia longa L. Biointerface Res. Appl. Chem., 2020, 11(1), 8129-8140. doi: 10.33263/BRIAC111.81298140
- Izac, R.R.; Poet, S.E.; Fenical, W.; Van Engen, D.; Clardy, J. The structure of pacifigorgiol, an ichthyotoxic sesquiterpenoid from the pacific gorgonian coral. Tetrahedron Lett., 1982, 23(37), 3743-3746. doi: 10.1016/S0040-4039(00)87695-9
- Chaouki, W.; Leger, D.Y.; Eljastimi, J.; Beneytout, J.L.; Hmamouchi, M. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell line MCF-7. Pharm. Biol., 2010, 48(3), 269-274. doi: 10.3109/13880200903096588 PMID: 20645812
- Bourhia, M.; Laasri, F.E.; Moussa, S.I.; Ullah, R.; Bari, A.; Saeed Ali, S.; Kaoutar, A.; Haj Said, A.A.; El Mzibri, M.; Said, G.; Khlil, N.; Benbacer, L. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two moroccan Aristolochia species. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-8. doi: 10.1155/2019/9710876 PMID: 31885676
- Al-Barham, M.B.; Al-Jaber, H.I.; Al-Qudah, M.A.; Abu Zarga, M.H. New aristolochic acid and other chemical constituents of Aristolochia maurorum growing wild in Jordan. Nat. Prod. Res., 2017, 31(3), 245-252. doi: 10.1080/14786419.2016.1226833 PMID: 27628622
- Bourhia, M.; Haj Said, A.A.; Chaanoun, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Phytochemical screening and toxicological study of Aristolochia baetica linn roots: Histopathological and biochemical evidence. J. Toxicol., 2019, 2019, 1-7. doi: 10.1155/2019/8203832 PMID: 30853978
- Ali Abdalla, Y.O.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Naturalproducts for cancer therapy: A review of their mechanism of actions and toxicity in the past decade. J. Trop. Med., 2022, 2022, 1-20. doi: 10.1155/2022/5794350 PMID: 35309872
- Kunnumakkara, A.B.; Banik, K.; Bordoloi, D.; Harsha, C.; Sailo, B.L.; Padmavathi, G.; Roy, N.K.; Gupta, S.C.; Aggarwal, B.B. Googling the Guggul (Commiphora and Boswellia) for Prevention of Chronic Diseases. Front. Pharmacol., 2018, 9, 686. doi: 10.3389/fphar.2018.00686 PMID: 30127736
- Winterstein, A.; Stein, G. Studies in the saponin series. X. Notice. About the mono-oxy-triterpenic acids. Hoppe Seylers Z. Physiol. Chem., 1932, 208(1-3), 9-25. doi: 10.1515/bchm2.1932.208.1-3.9
- Mannino, G.; Occhipinti, A.; Maffei, M. Quantitative determination of 3-O-Acetyl-11-Keto-β Boswellic acid (AKBA) and other boswellic acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb. Molecules, 2016, 21(10), 1329. doi: 10.3390/molecules21101329 PMID: 27782055
- Niphadkar, S.S.; Rathod, V.K. Extraction of acetyl 11-keto- β -boswellic acids (AKBA) from Boswellia serrata using ultrasound. Sep. Sci. Technol., 2017, 52(6), 997-1005. doi: 10.1080/01496395.2016.1274326
- Sharma, N.; Bhardwaj, V.; Singh, S.; Ali, S.A.; Gupta, D.K.; Paul, S.; Satti, N.K.; Chandra, S.; Verma, M.K. Simultaneous quantification of triterpenoic acids by high performance liquid chromatography method in the extracts of gum resin of Boswellia serrata obtained by different extraction techniques. Chem. Cent. J., 2016, 10(1), 49. doi: 10.1186/s13065-016-0194-8 PMID: 27493682
- Niphadkar, S.S.; Bokhale, N.B.; Rathod, V.K. Extraction of acetyl 11-keto- β -boswellic acid (AKBA) from Boswellia serrata plant oleo gum resin using novel three phase partitioning (TPP) technique. J. Appl. Res. Med. Aromat. Plants, 2017, 7, 41-47. doi: 10.1016/j.jarmap.2017.04.007
- Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; Kunnumakkara, A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci., 2019, 20(17), 4101. doi: 10.3390/ijms20174101 PMID: 31443458
- Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed., 2017, 7(6), 513-523. doi: 10.1016/j.apjtb.2017.05.001
- Roy, N.K.; Deka, A.; Bordoloi, D.; Mishra, S.; Kumar, A.P.; Sethi, G.; Kunnumakkara, A.B. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett., 2016, 377(1), 74-86. doi: 10.1016/j.canlet.2016.04.017 PMID: 27091399
- Jauch, J.; Bergmann, J. An efficient method for the large-scale preparation of 3-O-acetyl-11-oxo-β-boswellic acid and other boswellic acids. Eur. J. Org. Chem., 2003, 2003(24), 4752-4756. doi: 10.1002/ejoc.200300386
- Neeta; Dureja, H. Role of boswellic acids in cancer treatment. J. Med. Sci. (Faisalabad, Pak.), 2014, 14(6-8), 261-269. doi: 10.3923/jms.2014.261.269
- Gupta, M.; Verma, S.K.; Singh, S.; Trivedi, L.; Rout, P.K.; Vasudev, P.G.; Luqman, S.; Darokar, M.P.; Bhakuni, R.S.; Misra, L. Anti-proliferative and antibacterial activity of oleo-gum-resin of Boswellia serrata extract and its isolate 3-hydroxy-11-keto-β-boswellic acid. J. Herb. Med., 2022, 32, 100546. doi: 10.1016/j.hermed.2022.100546
- Jing, Y.; Nakajo, S.; Xia, L.; Nakaya, K.; Fang, Q.; Waxman, S.; Han, R. Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines. Leuk. Res., 1999, 23(1), 43-50. doi: 10.1016/S0145-2126(98)00096-4 PMID: 9933134
- Zimmermann-Klemd, A.M.; Reinhardt, J.K.; Winker, M.; Gründemann, C. Phytotherapy in Integrative oncologyAn update of promising treatment options. Molecules, 2022, 27(10), 3209. doi: 10.3390/molecules27103209 PMID: 35630688
- Park, Y.S.; Lee, J.H.; Bondar, J.; Harwalkar, J.A.; Safayhi, H.; Golubic, M. Cytotoxic action of acetyl-11-keto-β-boswellic acid (AKBA) on meningioma cells. Planta Med., 2002, 68(5), 397-401. doi: 10.1055/s-2002-32090 PMID: 12058313
- Liu, J.J.; Huang, B.; Hooi, S.C. Acetyl-keto- β -boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br. J. Pharmacol., 2006, 148(8), 1099-1107. doi: 10.1038/sj.bjp.0706817 PMID: 16783403
- Lv, M.; Shao, S.; Zhang, Q.; Zhuang, X.; Qiao, T. Acetyl-11-keto-β-boswellic acid exerts the anti-cancer effects via cell cycle arrest, apoptosis induction and autophagy suppression in non-small cell lung cancer cells. OncoTargets Ther., 2020, 13, 733-744. doi: 10.2147/OTT.S236346 PMID: 32158225
- Li, W.; Liu, J.; Fu, W.; Zheng, X.; Ren, L.; Liu, S.; Wang, J.; Ji, T.; Du, G. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J. Exp. Clin. Cancer Res., 2018, 37(1), 132. doi: 10.1186/s13046-018-0805-4 PMID: 29970196
- Syrovets, T.; Gschwend, J.E.; Büchele, B.; Laumonnier, Y.; Zugmaier, W.; Genze, F.; Simmet, T. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J. Biol. Chem., 2005, 280(7), 6170-6180. doi: 10.1074/jbc.M409477200 PMID: 15576374
- Kiefer, D.; Pantuso, T. Panax ginseng. Am. Fam. Physician, 2003, 68(8), 1539-1542. PMID: 14596440
- Guo, M.; Shao, S.; Wang, D.; Zhao, D.; Wang, M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct., 2021, 12(2), 494-518. doi: 10.1039/D0FO01896A PMID: 33331377
- Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C.; Wang, Y. Characteristics of Panax ginseng Cultivars in Korea and China. Molecules, 2020, 25(11), 2635. doi: 10.3390/molecules25112635 PMID: 32517049
- Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res., 2020, 161, 105263. doi: 10.1016/j.phrs.2020.105263 PMID: 33127555
- Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res., 2018, 42(2), 123-132. doi: 10.1016/j.jgr.2017.01.008 PMID: 29719458
- Oh, J.; Yoon, H.J.; Jang, J.H.; Kim, D.H.; Surh, Y.J. The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem celllike properties through modulation of self-renewal signaling. J. Ginseng Res., 2019, 43(3), 421-430. doi: 10.1016/j.jgr.2018.05.004 PMID: 31308814
- Kim, H.; Choi, P.; Kim, T.; Kim, Y.; Song, B.G.; Park, Y.T.; Choi, S.J.; Yoon, C.H.; Lim, W.C.; Ko, H.; Ham, J. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J. Ginseng Res., 2021, 45(1), 134-148. doi: 10.1016/j.jgr.2020.02.005 PMID: 33437165
- Kim, Y.J.; Choi, W.I.; Jeon, B.N.; Choi, K.C.; Kim, K.; Kim, T.J.; Ham, J.; Jang, H.J.; Kang, K.S.; Ko, H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelialmesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 2014, 322, 23-33. doi: 10.1016/j.tox.2014.04.002 PMID: 24793912
- Kim, Y.J.; Joo, S.C.; Shi, J.; Hu, C.; Quan, S.; Hu, J.; Sukweenadhi, J.; Mohanan, P.; Yang, D.C.; Zhang, D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Rep., 2018, 37(3), 393-410. doi: 10.1007/s00299-017-2236-7 PMID: 29150823
- Bae, E.A.; Han, M.J.; Choo, M.K.; Park, S.Y.; Kim, D.H. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull., 2002, 25(1), 58-63. doi: 10.1248/bpb.25.58 PMID: 11824558
- Qi, L.W.; Wang, C.Z.; Du, G.J.; Zhang, Z.Y.; Calway, T.; Yuan, C.S. Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab., 2011, 12(9), 818-822. doi: 10.2174/138920011797470128 PMID: 21619519
- Wang, Y.; Wang, B.X.; Liu, T.H.; Minami, M.; Nagata, T.; Ikejima, T. Metabolism of ginsenoside Rg1 by intestinal bacteria. II. Immunological activity of ginsenoside Rg1 and Rh1. Acta Pharmacol. Sin., 2000, 21(9), 792-796. PMID: 11501159
- Ramanathan, M.R.; Penzak, S.R. Pharmacokinetic drug interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 545-557. doi: 10.1007/s13318-016-0387-5 PMID: 27864798
- Mohammadzadeh, N.; Mehri, S.; Hosseinzadeh, H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran. J. Basic Med. Sci., 2017, 20(5), 538-551. doi: 10.22038/IJBMS.2017.8678 PMID: 28656089
- Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res., 2016, 30(11), 1745-1764. doi: 10.1002/ptr.5693 PMID: 27528198
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9, 557. doi: 10.3389/fphar.2018.00557 PMID: 30186157
- Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberineA summary update. Toxins, 2020, 12(11), 713. doi: 10.3390/toxins12110713 PMID: 33198257
- Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064. doi: 10.1038/srep26064 PMID: 27263652
- Wang, K.; Yu, G.; Lin, J.; Wang, Z.; Lu, Q.; Gu, C.; Yang, T.; Liu, S.; Yang, H. Berberine sensitizes human hepatoma cells to regorafenib via modulating expression of circular RNAs. Front. Pharmacol., 2021, 12, 632201. doi: 10.3389/fphar.2021.632201 PMID: 34220494
- Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Front. Pharmacol., 2022, 13, 803717. doi: 10.3389/fphar.2022.803717 PMID: 35153781
- Zhang, P.; Wang, Q.; Lin, Z.; Yang, P.; Dou, K.; Zhang, R. Berberine inhibits growth of liver cancer cells by suppressing glutamine uptake. OncoTargets Ther., 2020, 12, 11751-11763. doi: 10.2147/OTT.S235667 PMID: 32021249
- Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71. doi: 10.7150/ijms.9982 PMID: 25552920
- Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res., 2008, 22(8), 999-1012. doi: 10.1002/ptr.2399 PMID: 18618524
- Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702. doi: 10.2147/CMAR.S242329 PMID: 32099466
- Pareek, A.; Suthar, M.; Rathore, G.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev., 2011, 5(9), 103-110. doi: 10.4103/0973-7847.79105 PMID: 22096324
- Carlisi, D.; Lauricella, M.; DAnneo, A.; De Blasio, A.; Celesia, A.; Pratelli, G.; Notaro, A.; Calvaruso, G.; Giuliano, M.; Emanuele, S. Parthenolide andits soluble analogues: Multitasking compounds with antitumor properties. Biomedicines, 2022, 10(2), 514. doi: 10.3390/biomedicines10020514 PMID: 35203723
- Sztiller-Sikorska, M.; Czyz, M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals, 2020, 13(8), 194. doi: 10.3390/ph13080194 PMID: 32823992
- Wu, C.; Chen, F.; Rushing, J.W.; Wang, X.; Kim, H.J.; Huang, G.; Haley-Zitlin, V.; He, G. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J. Med. Food, 2006, 9(1), 55-61. doi: 10.1089/jmf.2006.9.55 PMID: 16579729
- Marino, S.; Bishop, R.T.; Carrasco, G.; Logan, J.G.; Li, B.; Idris, A.I. Pharmacological inhibition of nfκb reduces prostate cancer related osteoclastogenesis in vitro and osteolysis ex vivo. Calcif. Tissue Int., 2019, 105(2), 193-204. doi: 10.1007/s00223-019-00538-9 PMID: 30929064
- Provance, O.K.; Geanes, E.S.; Lui, A.J.; Roy, A.; Holloran, S.M.; Gunewardena, S.; Hagan, C.R.; Weir, S.; Lewis-Wambi, J. Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer Lett., 2021, 514, 12-29. doi: 10.1016/j.canlet.2021.05.006 PMID: 34022283
- Liu, D.; Han, Y.; Liu, L.; Ren, X.; Zhang, H.; Fan, S.; Qin, T.; Li, L. Parthenolide inhibits the tumor characteristics of renal cell carcinoma. Int. J. Oncol., 2020, 58(1), 100-110. doi: 10.3892/ijo.2020.5148 PMID: 33367934
- Ahmad Jan, S.; Shinwari, Z.K.; Faizan, M.; Ijaz, S. Anticancer properties of soybean: An updated review. J. Cancer Prev. Curr. Res., 2022, 13(1), 22-23. doi: 10.15406/jcpcr.2022.13.00481
- El-Keiy, M. M.; Radwan, A. M.; Mohamed, T. M. Cytotoxic effect of soybean saponin against colon cancer. J. Biosci. Med., 2019, 7(7), 70-86. doi: 10.4236/jbm.2019.77006
- Kusumoningrum, D.A.; Dwira, S. Phytochemical and in vitro cytotoxicity analyses of wild bean ( Glycine soja ) ethanol extract using laryngeal cancer Hep-2 cells. J. Phys. Conf. Ser., 2018, 1073, 032043. doi: 10.1088/1742-6596/1073/3/032043
- Amaani, R.; Dwira, S. Phytochemical content an in vitro toxicity of Glycine soja ethanol extract on the A549 Lung cancer line cell. J. Phys. Conf. Ser., 2018, 1073, 032042. doi: 10.1088/1742-6596/1073/3/032042
- Wada, K.; Tsuji, M.; Tamura, T.; Konishi, K.; Kawachi, T.; Hori, A.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Soy isoflavone intake and stomach cancer risk in Japan: From the Takayama study. Int. J. Cancer, 2015, 137(4), 885-892. doi: 10.1002/ijc.29437 PMID: 25639758
- Lee, K.S.; Woo, S.Y.; Lee, M.J.; Kim, H.Y.; Ham, H.; Lee, D.J.; Choi, S.W.; Seo, W.D. Isoflavones and soyasaponins in the germ of Korean soybean Glycine max (L.) Merr. cultivars and their compound-enhanced BMP-2-induced bone formation. Appl. Biol. Chem, 2020, 63, 1-8. doi: 10.3839/jabc.2020.001
- Kim, J.M.; Kim, J.S.; Yoo, H.; Choung, M.G.; Sung, M.K. Effects of black soybean Glycine max (L.) Merr. seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J. Agric. Food Chem., 2008, 56(18), 8427-8433. doi: 10.1021/jf801342p PMID: 18710248
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Chemicalcomposition, antioxidant and biological activities of the essential oil and extract of the seeds of glycine max (soybean) from North Iran. Curr. Microbiol., 2017, 74(4), 522-531. doi: 10.1007/s00284-016-1188-4 PMID: 28255785
- Gade, I.S.; Chadeneau, C.; Simo, R.T.; Talla, E.; Atchade, A.D.T.; Seité, P.; Vannier, B.; Laurent, S.; Henoumont, C.; Nwabo Kamdje, A.H.; Muller, J.M. A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity. Open Chem., 2020, 18(1), 1523-1531. doi: 10.1515/chem-2020-0167
- Dawe, A. Phytochemical constituents of combretum loefl. (Combretaceae). Pharm. Crop., 2013, 4(1), 38-59. doi: 10.2174/2210290601304010038
- Mbiantcha, M.; Almas, J.; Dawe, A.; Faheem, A.; Sidra, Z. Analgesic, anti-inflammatory and anticancer activities of Combretin A and Combretin B isolated from Combretum fragrans F. Hoffm (Combretaceae) leaves. Inflammopharmacology, 2018, 26(6), 1429-1440. doi: 10.1007/s10787-017-0421-5 PMID: 29159717
- de Morais Lima, G.R.; de Sales, I.R.P.; Caldas Filho, M.R.D.; de Jesus, N.Z.T.; de Sousa Falcão, H.; Barbosa-Filho, J.M.; Cabral, A.G.S.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules, 2012, 17(8), 9142-9206. doi: 10.3390/molecules17089142 PMID: 22858840
- Alkhalaf, M.I.; Alansari, W.S.; Ibrahim, E.A.; ELhalwagy, M.E.A. Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. J. King Saud Univ. Sci., 2019, 31(4), 1358-1362. doi: 10.1016/j.jksus.2018.10.010
- Setyawan, H.Y.; Sukardi, S.; Puriwangi, C.A. Phytochemicals properties of avocado seed: A review. IOP Conf. Ser. Earth Environ. Sci., 2021, 733(1), 012090. doi: 10.1088/1755-1315/733/1/012090
- Karthikeyan, A.; Rajasulochana, P. A novel method to identify anticancer activity against Hepg2 liver cancer cell line and vero normal cell line of persea americana mill seeds. Annals of RSCB, 2021, 21(1), 17578-17589.
- Amoussatou, S. Comparative phytochemical analysis and antimicrobial activity of extracts of seed and leaf of Persea americana Mill. Academia J. Med. Plants, 2020, 8(5), 058-063.
- Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. Int. J. Food Sci., 2019, 2019, 1-7. doi: 10.1155/2019/6509421 PMID: 31179313
- Padilla-Camberos, E.; Martínez-Velázquez, M.; Flores-Fernández, J.M.; Villanueva-Rodríguez, S. Acute toxicity and genotoxic activity of avocado seed extract (Persea Americana Mill., c.v. Hass). ScientificWorldJournal, 2013, 2013, 1-4. doi: 10.1155/2013/245828 PMID: 24298206
- Ana, M.; Nur, I. Cytotoxic activity of ethanolic extract of Persea Americana mill. leaves on hela cervical cancer cell. Trad. Med. J., 2014, 19(1), 24-28.
- Gao, L.; Li, H.; Li, B.; Shao, H.; Yu, X.; Miao, Z.; Zhang, L.; Zhu, L.; Sheng, H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. J. Ethnopharmacol., 2022, 294, 115387. doi: 10.1016/j.jep.2022.115387 PMID: 35580770
- Ragasa, C.; Jr, E.; Virgilio, D.; Brkljaca, R.; Urban, S. Chemical constituents of Raphanus sativus. Der Pharma Chem., 2015, 7(11), 354-357.
- Sham, T.T.; Yuen, A.C.Y.; Ng, Y.F.; Chan, C.O.; Mok, D.K.W.; Chan, S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-16. doi: 10.1155/2013/636194 PMID: 23935670
- Pawlik, A.; Wała, M.; Hać, A.; Felczykowska, A.; Herman-Antosiewicz, A. Sulforaphene, an isothiocyanate present in radish plants, inhibits proliferation of human breast cancer cells. Phytomedicine, 2017, 29, 1-10. doi: 10.1016/j.phymed.2017.03.007 PMID: 28515021
- Gutiérrez, R.M.P.; Perez, R.L. Raphanus sativus (Radish): Their chemistry and biology. ScientificWorldJournal, 2004, 4, 811-837. doi: 10.1100/tsw.2004.131 PMID: 15452648
- Banihani, S. Radish (Raphanus sativus) and Diabetes. Nutrients, 2017, 9(9), 1014. doi: 10.3390/nu9091014 PMID: 28906451
- Wu, G.; Yan, Y.; Zhou, Y.; Duan, Y.; Zeng, S.; Wang, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Sulforaphane: Expected to become a novel antitumor compound. Oncol. Res., 2020, 28(4), 439-446. doi: 10.3727/096504020X15828892654385 PMID: 32111265
- Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol., 2015, 52, 3158-3168. doi: 10.1007/s13197-014-1487-3 PMID: 26028699
- Jiang, C.; Zhao, W.; Zeng, Z.; Lai, X.; Wu, C.; Yuan, S.; Huang, Y.; Zhang, X. A treasure reservoir of genetic resource of tea plant (Camellia sinensis) in Dayao Mountain. Genet. Resour. Crop Evol., 2018, 65(1), 217-227. doi: 10.1007/s10722-017-0524-2
- Cengiz, M.F.; Turan, O.; Ozdemir, D.; Albayrak, Y.; Perincek, F.; Kocabas, H. Geographical origin of imported and domestic teas ( Camellia sinensis ) from Turkey as determined by stable isotope signatures. Int. J. Food Prop., 2017, 20(12), 3234-3243. doi: 10.1080/10942912.2017.1283327
- Marcos, A.; Fisher, A.; Rea, G.; Hill, S.J. Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom., 1998, 13(6), 521-525. doi: 10.1039/a708658j
- Tontul, I.; Torun, M.; Dincer, C.; Sahin-Nadeem, H.; Topuz, A.; Turna, T.; Ozdemir, F. Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Res. Int., 2013, 53(2), 744-750. doi: 10.1016/j.foodres.2012.12.026
- Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-16. doi: 10.1155/2019/1528635 PMID: 31214267
- Kokoska, L.; Havlik, J.; Valterova, I.; Sovova, H.; Sajfrtova, M.; Jankovska, I. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods. J. Food Prot., 2008, 71(12), 2475-2480. doi: 10.4315/0362-028X-71.12.2475 PMID: 19244901
- Isik, S.; Kartal, M.; Erdem, S.A. Quantitative analysis of thymoquinone in Nigella sativa L. (black cumin) seeds and commercial seed oils and seed oil capsules from Turkey. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 2017, 41(1), 34-41. doi: 10.1501/Eczfak_0000000593
- Mehta, B.K.; Verma, M.; Gupta, M. Novel lipid constituents identified in seeds of Nigella sativa (Linn). J. Braz. Chem. Soc., 2008, 19(3), 458-462. doi: 10.1590/S0103-50532008000300012
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem., 2007, 101(2), 673-681. doi: 10.1016/j.foodchem.2006.02.022
- Abdelmeguid, N.E.; Fakhoury, R.; Kamal, S.M.; Al Wafai, R.J. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J. Diabetes, 2010, 2(4), 256-266. doi: 10.1111/j.1753-0407.2010.00091.x PMID: 20923501
- Solati, Z.; Baharin, B.S.; Bagheri, H. Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. J. Am. Oil Chem. Soc., 2014, 91(2), 295-300. doi: 10.1007/s11746-013-2362-5
- Khan, M.A.; Chen, H.; Tania, M.; Zhang, D. Anticancer activities of Nigella sativa (Black Cumin). Afr J Tradit Complement Altern Med, 2011, 8(S), 226-232. doi: 10.4314/ajtcam.v8i5S.10
- Ghahramanloo, K.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Devel. Ther., 2017, 11, 2221-2226. doi: 10.2147/DDDT.S87251 PMID: 28814830
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. doi: 10.3945/an.114.008052 PMID: 26178025
- Butt, A.J.; Roberts, C.G.; Seawright, A.A.; Oelrichs, P.B.; MacLeod, J.K.; Liaw, T.Y.E.; Kavallaris, M.; Somers-Edgar, T.J.; Lehrbach, G.M.; Watts, C.K.; Sutherland, R.L. A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells. Mol. Cancer Ther., 2006, 5(9), 2300-2309. doi: 10.1158/1535-7163.MCT-06-0170 PMID: 16985064
- Falodun, A.; Engel, N.; Kragl, U.; Nebe, B.; Langer, P. Novel anticancer alkene lactone from Persea americana. Pharm. Biol., 2013, 51(6), 700-706. doi: 10.3109/13880209.2013.764326 PMID: 23570517
- Karatoprak, G.Ş.; Küpeli Akkol, E.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules, 2020, 25(11), 2560. doi: 10.3390/molecules25112560 PMID: 32486408
- Wijewantha, N.; Eikanger, M.M.; Antony, R.M.; Potts, R.A.; Rezvani, K.; Sereda, G. Targeting colon cancer cells with enzyme-triggered casein-gated release of cargo from mesoporous silica-based nanoparticles. Bioconjug. Chem., 2021, 32(11), 2353-2365. doi: 10.1021/acs.bioconjchem.1c00416 PMID: 34672618
- Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140. doi: 10.1016/j.msec.2019.02.096 PMID: 30948047
- Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119, 111442. doi: 10.1016/j.msec.2020.111442 PMID: 33321583
- Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035. doi: 10.1016/j.msec.2020.111035 PMID: 32994029
- Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomedicine, 2018, 13, 5113-5126. doi: 10.2147/IJN.S170862 PMID: 30233175
- Mostafa, S.M.; Gamal-Eldeen, A.M.; Maksoud, N.A.E.; Fahmi, A.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. An. Acad. Bras. Cienc., 2020, 92(4), e20200574. doi: 10.1590/0001-3765202020200574 PMID: 33206791
- Thipe, V.C.; Amiri, K.P.; Bloebaum, P.; Raphael, A.K.; Khoobchandani, M.; Katti, K.K.; Jurisson, S.S.; Katti, K.V. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomedicine, 2019, 14, 4413-4428. doi: 10.2147/IJN.S204443 PMID: 31417252
- Matloubi, Z.; Hassan, Z. HSA-curcumin nanoparticles: A promising substitution for curcumin as a cancer chemoprevention and therapy. Daru, 2020, 28(1), 209-219. doi: 10.1007/s40199-020-00331-2 PMID: 32270402
- Duse, L.; Baghdan, E.; Pinnapireddy, S.R.; Engelhardt, K.H.; Jedelská, J.; Schaefer, J.; Quendt, P.; Bakowsky, U. Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy. Phys. Status Solidi., A Appl. Mater. Sci., 2018, 215(15), 1700709. a. doi: 10.1002/pssa.201700709
- Pan, K.; Chen, H.; Baek, S.J.; Zhong, Q. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem., 2018, 246, 82-89. doi: 10.1016/j.foodchem.2017.11.002 PMID: 29291882
Supplementary files
