A Review on Shikonin and its Derivatives as Potent Anticancer Agents Targeted against Topoisomerases


Cite item

Full Text

Abstract

The topoisomerases (TOPO) play indispensable roles in DNA metabolism, by regulating the topological state of DNA. Topoisomerase I and II are the well-established drug-targets for the development of anticancer agents and antibiotics. These drugs-targeting enzymes have been used to establish the relationship between drug-stimulated DNA cleavable complex formation and cytotoxicity. Some anticancer drugs (such as camptothecin, anthracyclines, mitoxantrone) are also widely used as Topo I and Topo II inhibitors, but the poor water solubility, myeloma suppression, dose-dependent cardiotoxicity, and multidrug resistance (MDR) limited their prolong use as therapeutics. Also, most of these agents displayed selective inhibition only against Topo I or II. In recent years, researchers focus on the design and synthesis of the dual Topo I and II inhibitors, or the discovery of the dual Topo I and II inhibitors from natural products. Shikonin (a natural compound with anthraquinone skeleton, isolated from the roots of Lithospermum erythrorhizon) has drawn much attention due to its wide spectrum of anticancer activities, especially due to its dual Topo inhibitive performance, and without the adverse side effects, and different kinds of shikonin derivatives have been synthesized as TOPO inhibitors for the development of anticancer agents. In this review, the progress of the shikonin and its derivatives together with their anticancer activities, anticancer mechanism, and their structure-activity relationship (SAR) was comprehensively summarized by searching the CNKI, PubMed, Web of Science, Scopus, and Google Scholar databases.

About the authors

Olagoke Olatunde

Fujian Institute of Research on the Structure of Matte, Chinese Academy of Sciences

Email: info@benthamscience.net

Jianping Yong

Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences

Author for correspondence.
Email: info@benthamscience.net

Canzhong Lu

Fujian Institute of Research on the Structure of Matter,, Chinese Academy of Sciences

Author for correspondence.
Email: info@benthamscience.net

Yanlin Ming

, Fujian Institute of Subtropical Botany

Email: info@benthamscience.net

References

  1. Li, T.K.; Liu, L.F. Tumor cell death induced by topoisomerase-targeting drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 53-77. doi: 10.1146/annurev.pharmtox.41.1.53 PMID: 11264450
  2. Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802. doi: 10.1038/nrc1977 PMID: 16990856
  3. McClendon, A.K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res., 2007, 623(1-2), 83-97. doi: 10.1016/j.mrfmmm.2007.06.009 PMID: 17681352
  4. Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350. doi: 10.1038/nrc2607 PMID: 19377506
  5. Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer, 2009, 9(5), 327-337. doi: 10.1038/nrc2608 PMID: 19377505
  6. Schoeffler, A.J.; Berger, J.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys., 2008, 41(1), 41-101. doi: 10.1017/S003358350800468X PMID: 18755053
  7. Drake, F.H.; Zimmerman, J.P.; McCabe, F.L.; Bartus, H.F.; Per, S.R.; Sullivan, D.M.; Ross, W.E.; Mattern, M.R.; Johnson, R.K.; Crooke, S.T. Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem., 1987, 262(34), 16739-16747. doi: 10.1016/S0021-9258(18)49317-9 PMID: 2824504
  8. Drake, F.H.; Hofmann, G.A.; Bartus, H.F.; Mattern, M.R.; Crooke, S.T.; Mirabelli, C.K. Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry, 1989, 28(20), 8154-8160. doi: 10.1021/bi00446a029 PMID: 2557897
  9. Vicker, N.; Burgess, L.; Chuckowree, I.S.; Dodd, R.; Folkes, A.J.; Hardick, D.J.; Hancox, T.C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S.P.; Charlton, P.A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A.J.; Denny, W.A. Novel angular benzophenazines: Dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J. Med. Chem., 2002, 45(3), 721-739. doi: 10.1021/jm010329a PMID: 11806724
  10. Arepalli, S.K.; Lee, C.; Sim, S.; Lee, K.; Jo, H.; Jun, K.Y.; Kwon, Y.; Kang, J.S.; Jung, J.K.; Lee, H. Development of 13H-benzofchromeno4,3-b1,7naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg. Med. Chem., 2018, 26(18), 5181-5193. doi: 10.1016/j.bmc.2018.09.019 PMID: 30253887
  11. Khadka, D.B.; Cho, W.J. Topoisomerase inhibitors as anticancer agents: A patent update. Expert Opin. Ther. Pat., 2013, 23(8), 1033-1056. doi: 10.1517/13543776.2013.790958 PMID: 23611704
  12. Tan, K.B.; Dorman, T.E.; Falls, K.M.; Chung, T.D.; Mirabelli, C.K.; Crooke, S.T.; Mao, J. Topoisomerase II α and topoisomerase II β genes: Characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res., 1992, 52(1), 231-234. PMID: 1309226
  13. Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: How cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol., 2011, 12(12), 827-841. doi: 10.1038/nrm3228 PMID: 22108601
  14. Woessner, R.D.; Mattern, M.R.; Mirabelli, C.K.; Johnson, R.K.; Drake, F.H. Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ., 1991, 2(4), 209-214. PMID: 1651102
  15. Velez-Cruz, R.; Osheroff, N. DNA topoisomerases: Type II. In: Encyclopedia of Biological Chemistry; Elsevier: San Diego, United States, 2004; pp. 806-811. doi: 10.1016/B0-12-443710-9/00680-3
  16. Lisby, M.; Olesen, J.R.; Skouboe, C.; Krogh, B.O.; Straub, T.; Boege, F.; Velmurugan, S.; Martensen, P.M.; Andersen, A.H.; Jayaram, M.; Westergaard, O.; Knudsen, B.R. Residues within the N-terminal domain of human topoisomerase I play a direct role in relaxation. J. Biol. Chem., 2001, 276(23), 20220-20227. doi: 10.1074/jbc.M010991200 PMID: 11283003
  17. Kim, K.H.; Kanbe, T.; Akashi, T.; Mizuguchi, I.; Kikuchi, A. Identification of a single nuclear localization signal in the C-terminal domain of an Aspergillus DNA topoisomerase II. Mol. Genet. Genomics, 2002, 268(3), 287-297. doi: 10.1007/s00438-002-0758-2 PMID: 12436251
  18. Berger, J.M.; Gamblin, S.J.; Harrison, S.C.; Wang, J.C. Structure and mechanism of DNA topoisomerase II. Nature, 1996, 379(6562), 225-232. doi: 10.1038/379225a0 PMID: 8538787
  19. Dutta, R.; Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci., 2000, 25(1), 24-28. doi: 10.1016/S0968-0004(99)01503-0 PMID: 10637609
  20. Lindsey, R.H., Jr; Pendleton, M.; Ashley, R.E.; Mercer, S.L.; Deweese, J.E.; Osheroff, N. Catalytic core of human topoisomerase IIα: Insights into enzyme-DNA interactions and drug mechanism. Biochemistry, 2014, 53(41), 6595-6602. doi: 10.1021/bi5010816 PMID: 25280269
  21. Lee, S.; Jung, S.R.; Heo, K.; Byl, J.A.W.; Deweese, J.E.; Osheroff, N.; Hohng, S. DNA cleavage and opening reactions of human topoisomerase IIα are regulated via Mg2+ -mediated dynamic bending of gate-DNA. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2925-2930. doi: 10.1073/pnas.1115704109 PMID: 22323612
  22. Chen, S.F.; Huang, N.L.; Lin, J.H.; Wu, C.C.; Wang, Y.R.; Yu, Y.J.; Gilson, M.K.; Chan, N.L. Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat. Commun., 2018, 9(1), 3085. doi: 10.1038/s41467-018-05406-y PMID: 30082834
  23. Dong, K.C.; Berger, J.M. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature, 2007, 450(7173), 1201-1205. doi: 10.1038/nature06396 PMID: 18097402
  24. Leroy, D.; Alghist, G.C.; Roberts, E.; Filhol-Cochet, O.; Gasser, S.M. Mutations in the C-terminal domain of topoisomerase II affect meiotic function and interaction with the casein kinase 2 beta subunit. Mol. Cell. Biochem., 1999, 191(1/2), 85-95. doi: 10.1023/A:1006858210835 PMID: 10094396
  25. Cowell, I.G.; Willmore, E.; Chalton, D.; Marsh, K.L.; Jazrawi, E.; Fisher, L.M.; Austin, C.A. Nuclear distribution of human DNA topoisomerase IIbeta: A nuclear targeting signal resides in the 116-residue C-terminal tail. Exp. Cell Res., 1998, 243(2), 232-240. doi: 10.1006/excr.1998.4150 PMID: 9743583
  26. Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413. doi: 10.1146/annurev.biochem.70.1.369 PMID: 11395412
  27. Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440. doi: 10.1038/nrm831 PMID: 12042765
  28. Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878. doi: 10.1016/S0021-9258(17)38654-4 PMID: 2997227
  29. Nitiss, J.; Wang, J.C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc. Natl. Acad. Sci. USA, 1988, 85(20), 7501-7505. doi: 10.1073/pnas.85.20.7501 PMID: 2845409
  30. Lee, M.P.; Brown, S.D.; Chen, A.; Hsieh, T.S. DNA topoisomerase I is essential in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6656-6660. doi: 10.1073/pnas.90.14.6656 PMID: 8393572
  31. Kretzschmar, M.; Meisterernst, M.; Roeder, R.G. Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11508-11512. doi: 10.1073/pnas.90.24.11508 PMID: 8265582
  32. Mialon, A.; Sankinen, M.; Söderström, H.; Junttila, T.T.; Holmström, T.; Koivusalo, R.; Papageorgiou, A.C.; Johnson, R.S.; Hietanen, S.; Elenius, K.; Westermarck, J. DNA topoisomerase I is a cofactor for c-Jun in the regulation of epidermal growth factor receptor expression and cancer cell proliferation. Mol. Cell. Biol., 2005, 25(12), 5040-5051. doi: 10.1128/MCB.25.12.5040-5051.2005 PMID: 15923621
  33. Soret, J.; Gabut, M.; Dupon, C.; Kohlhagen, G.; Stévenin, J.; Pommier, Y.; Tazi, J. Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in Mammalian cells lacking topoisomerase I. Cancer Res., 2003, 63(23), 8203-8211. PMID: 14678976
  34. Fortune, J.M.; Osheroff, N. Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol., 2000, 64, 221-253. doi: 10.1016/S0079-6603(00)64006-0 PMID: 10697411
  35. Radaeva, M.; Dong, X.; Cherkasov, A. The use of methods of computer-aided drug discovery in the development of topoisomerase II inhibitors: Applications and future directions. J. Chem. Inf. Model., 2020, 60(8), 3703-3721. doi: 10.1021/acs.jcim.0c00325 PMID: 32687346
  36. Ketron, A.C.; Osheroff, N. Phytochemicals as anticancer and chemopreventive topoisomerase II poisons. Phytochem. Rev., 2014, 13(1), 19-35. doi: 10.1007/s11101-013-9291-7 PMID: 24678287
  37. Deweese, J.E.; Osheroff, N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res., 2009, 37(3), 738-748. doi: 10.1093/nar/gkn937 PMID: 19042970
  38. Yang, X.; Li, W.; Prescott, E.D.; Burden, S.J.; Wang, J.C. DNA topoisomerase IIbeta and neural development. Science, 2000, 287(5450), 131-134. doi: 10.1126/science.287.5450.131 PMID: 10615047
  39. Linka, R.M.; Porter, A.C.G.; Volkov, A.; Mielke, C.; Boege, F.; Christensen, M.O. C-Terminal regions of topoisomerase II and II determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res., 2007, 35(11), 3810-3822. doi: 10.1093/nar/gkm102 PMID: 17526531
  40. Haince, J.F.; Rouleau, M.; Poirier, G.G. Transcription. Gene expression needs a break to unwind before carrying on. Science, 2006, 312(5781), 1752-1753. doi: 10.1126/science.1129808 PMID: 16794066
  41. Ju, B.G.; Lunyak, V.V.; Perissi, V.; Garcia-Bassets, I.; Rose, D.W.; Glass, C.K.; Rosenfeld, M.G. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science, 2006, 312(5781), 1798-1802. doi: 10.1126/science.1127196 PMID: 16794079
  42. Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev., 2012, 112(7), 3611-3640. doi: 10.1021/cr200325f PMID: 22397403
  43. Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95. doi: 10.1021/cb300648v PMID: 23259582
  44. Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433. doi: 10.1016/j.chembiol.2010.04.012 PMID: 20534341
  45. Chen, W.; Qiu, J.; Shen, Y.M. Topoisomerase IIα, rather than IIβ, is a promising target in development of anti- cancer drugs. Drug Discov. Ther., 2012, 6(5), 230-237. doi: 10.5582/ddt.2012.v6.5.230 PMID: 23229142
  46. Fortune, J.M.; Osheroff, N. Merbarone inhibits the catalytic activity of human topoisomerase IIalpha by blocking DNA cleavage. J. Biol. Chem., 1998, 273(28), 17643-17650. doi: 10.1074/jbc.273.28.17643 PMID: 9651360
  47. Ohno, R.; Okada, K.; Masaoka, T.; Kuramoto, A.; Arima, T.; Yoshida, Y.; Ariyoshi, H.; Ichimaru, M.; Sakai, Y.; Oguro, M. An early phase II study of CPT-11: A new derivative of camptothecin, for the treatment of leukemia and lymphoma. J. Clin. Oncol., 1990, 8(11), 1907-1912. doi: 10.1200/JCO.1990.8.11.1907 PMID: 2230878
  48. Houghton, P.J.; Cheshire, P.J.; Myers, L.; Stewart, C.F.; Synold, T.W.; Houghton, J.A. Evaluation of 9-dimethylaminomethyl-10-hydroxycamptothecin against xenografts derived from adult and childhood solid tumors. Cancer Chemother. Pharmacol., 1992, 31(3), 229-239. doi: 10.1007/BF00685553 PMID: 1464161
  49. Johnson, R.K. SK&F 10864, Water soluble analogs of camptothecin with broad-spectrum activity in preclinical tumor models. Proc. Am. Assoc. Cancer Res., 1989, 30, 623.
  50. O’Connor, P.M.; Kerrigan, D.; Bertrand, R.; Kohn, K.W.; Pommier, Y. 10,11-Methylenedioxycamptothecin, a topoisomerase I inhibitor of increased potency: DNA damage and correlation to cytotoxicity in human colon carcinoma (HT-29) cells. Cancer Commun., 1990, 2(12), 395-400. doi: 10.3727/095535490820873912 PMID: 2176090
  51. Young, R.C.; Ozols, R.F.; Myers, C.E. The anthracycline antineoplastic drugs. N. Engl. J. Med., 1981, 305(3), 139-153. doi: 10.1056/NEJM198107163050305 PMID: 7017406
  52. D’Arpa, P.; Liu, L.F. Topoisomerase-targeting antitumor drugs. Biochim. Biophys. Acta, 1989, 989(2), 163-177. PMID: 2557085
  53. David Foglesong, P.; Reckord, C.; Swink, S. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother. Pharmacol., 1992, 30(2), 123-125. doi: 10.1007/BF00686403 PMID: 1318169
  54. Buzdar, A.U.; Marcus, C.; Blumenschein, G.R.; Smith, T.L. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer, 1985, 55(12), 2761-2765. doi: 10.1002/1097-0142(19850615)55:123.0.CO;2-P PMID: 3922612
  55. Lee, J. H.; Ahn, B. Z. cytotoxic activity against L1210 cells of some raw drugs from the oriental medicine and folklore. Korean J. Pharmacogn., 1986, 17(4), 286-291.
  56. Kim, H.; Ahn, B.Z. Antitumor effects of acetylshikonin and some synthesized naphtharazin on L1210 and S-180 systems. Yakhak Hoeji, 1990, 34(4), 262-266.
  57. Murdock, K.C.; Child, R.G.; Fabio, P.F.; Angier, R.D.; Wallace, R.E.; Durr, F.E.; Citarella, R.V. Antitumor agents. 1. 1,4-Bis(aminoalkyl)amino-9,10-anthracenediones. J. Med. Chem., 1979, 22(9), 1024-1030. doi: 10.1021/jm00195a002 PMID: 490545
  58. Bodley, A.; Liu, L.F.; Israel, M.; Seshadri, R.; Koseki, Y.; Giuliani, F.C.; Kirschenbaum, S.; Silber, R.; Potmesil, M. DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res., 1989, 49(21), 5969-5978. PMID: 2551497
  59. Ahn, B.Z.; Baik, K.U.; Kweon, G.R.; Lim, K.; Hwang, B.D. Acylshikonin analogues: Synthesis and inhibition of DNA topoisomerase-I. J. Med. Chem., 1995, 38(6), 1044-1047. doi: 10.1021/jm00006a025 PMID: 7699697
  60. Evison, B.J.; Sleebs, B.E.; Watson, K.G.; Phillips, D.R.; Cutts, S.M. Mitoxantrone, more than just another topoisomerase II poison. Med. Res. Rev., 2016, 36(2), 248-299. doi: 10.1002/med.21364 PMID: 26286294
  61. De Isabella, P.; Capranico, G.; Palumbo, M.; Sissi, C.; Krapcho, A.P.; Zunino, F. Sequence selectivity of topoisomerase II DNA cleavage stimulated by mitoxantrone derivatives: Relationships to drug DNA binding and cellular effects. Mol. Pharmacol., 1993, 43(5), 715-721. PMID: 8388987
  62. Capranico, G.; Binaschi, M.; Borgnetto, M.E.; Zunino, F.; Palumbo, M. A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. Trends Pharmacol. Sci., 1997, 18(9), 323-329. doi: 10.1016/S0165-6147(97)01095-X PMID: 9345851
  63. Capranico, G.; De Isabella, P.; Tinelli, S.; Bigioni, M.; Zunino, F. Similar sequence specificity of mitoxantrone and VM-26 stimulation of in vitro DNA cleavage by mammalian DNA topoisomerase II. Biochemistry, 1993, 32(12), 3038-3046. doi: 10.1021/bi00063a015 PMID: 8384486
  64. Wu, C.C.; Li, Y.C.; Wang, Y.R.; Li, T.K.; Chan, N.L. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res., 2013, 41(22), 10630-10640. doi: 10.1093/nar/gkt828 PMID: 24038465
  65. Crespi, M.D.; Ivanier, S.E.; Genovese, J.; Baldi, A. Mitoxantrone affects topoisomerase activities in human breast cancer cells. Biochem. Biophys. Res. Commun., 1986, 136(2), 521-528. doi: 10.1016/0006-291X(86)90471-7 PMID: 3010982
  66. Bhalla, K.; Ibrado, A.M.; Tourkina, E.; Tang, C.; Grant, S.; Bullock, G.; Huang, Y.; Ponnathpur, V.; Mahoney, M.E. High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells. Blood, 1993, 82(10), 3133-3140. doi: 10.1182/blood.V82.10.3133.3133 PMID: 8219202
  67. Bellosillo, B.; Colomer, D.; Pons, G.; Gil, J. Mitoxantrone, a topoisomerase II inhibitor, induces apoptosis of B-chronic lymphocytic leukaemia cells. Br. J. Haematol., 1998, 100(1), 142-146. doi: 10.1046/j.1365-2141.1998.00520.x PMID: 9450803
  68. Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T.H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 2012, 18(11), 1639-1642. doi: 10.1038/nm.2919 PMID: 23104132
  69. Achmatowicz, O.; Szechner, B. Synthesis of enantiomerically pure anthracyclinones. Top. Curr. Chem., 2007, 282, 143-186. doi: 10.1007/128_2007_146
  70. Gottesman, M.M. How cancer cells evade chemotherapy: Sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res., 1993, 53(4), 747-754. PMID: 8094031
  71. Kaye, S.B. The multidrug resistance phenotype. Br. J. Cancer, 1988, 58(6), 691-694. doi: 10.1038/bjc.1988.291 PMID: 3066393
  72. Aligiannis, N.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Florent, J.C.; Perchellet, E.M.; Sperfslage, B.J.; McILVAIN, C.J.; Perchellet, J.P. Preparation and cytotoxic activity of some new rhodomycin derivatives bearing modifications in the sugar moiety. J. Antibiot. (Tokyo), 2002, 55(2), 181-190. doi: 10.7164/antibiotics.55.181 PMID: 12003000
  73. Sut, S.; Pavela, R.; Kolarčik, V.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Dall’Acqua, S.; Benelli, G. Identification of onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against tetranychus urticae. Molecules, 2017, 22(6), 1002. doi: 10.3390/molecules22061002 PMID: 28621748
  74. Majima, R.; Kuroda, C. On the colouring matter of lithospermum erythrorhizon. Acta Phytochim. (Tokyo), 1922, 1, 43-65.
  75. Brockmann, H. Die Konstitution des alkannins, shikonins and alkannans. Justus Liebigs Ann. Chem., 1936, 521(1), 1-47. doi: 10.1002/jlac.19365210102
  76. Papageorgiou, V.P.; Assimopoulou, A.N.; Couladouros, E.A.; Hepworth, D.; Nicolaou, K.C. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew. Chem. Int. Ed., 1999, 38(3), 270-301. doi: 10.1002/(SICI)1521-3773(19990201)38:33.0.CO;2-0 PMID: 29711637
  77. Yang, F.; Chen, Y.; Duan, W.; Zhang, C.; Zhu, H.; Ding, J. SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor. Int. J. Cancer, 2006, 119(5), 1184-1193. doi: 10.1002/ijc.21943 PMID: 16570288
  78. Yoshida, L.S.; Kawada, T.; Irie, K.; Yuda, Y.; Himi, T.; Ikemoto, F.; Takano-Ohmuro, H. Shikonin directly inhibits nitric oxide synthases: Possible targets that affect thoracic aorta relaxation response and nitric oxide release from RAW 264.7 macrophages. J. Pharmacol. Sci., 2010, 112(3), 343-351. doi: 10.1254/jphs.09340FP PMID: 20197636
  79. Liang, W.; Cai, A.; Chen, G.; Xi, H.; Wu, X.; Cui, J.; Zhang, K.; Zhao, X.; Yu, J.; Wei, B.; Chen, L. Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep., 2016, 6(1), 38267-38278. doi: 10.1038/srep38267 PMID: 27905569
  80. Mao, X.; Rong Yu, C.; Hua Li, W.; Xin Li, W. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res., 2008, 18(8), 879-888. doi: 10.1038/cr.2008.86 PMID: 18663379
  81. Baloch, S.K.; Ling, L.J.; Qiu, H.Y.; Ma, L.; Lin, H.Y.; Huang, S.C.; Qi, J.L.; Wang, X.M.; Lu, G.H.; Yang, Y.H. Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Adv., 2014, 4(67), 35588-35596. doi: 10.1039/C4RA05610H
  82. Kim, S.H.; Kang, I.C.; Yoon, T.J.; Park, Y.M.; Kang, K.S.; Song, G.Y.; Ahn, B.Z. Antitumor activities of a newly synthesized shikonin derivative, 2-hyim-DMNQ-S-33. Cancer Lett., 2001, 172(2), 171-175. doi: 10.1016/S0304-3835(01)00665-6 PMID: 11566493
  83. Lu, Q.; Liu, W.; Ding, J.; Cai, J.; Duan, W. Shikonin derivatives: Synthesis and inhibition of human telomerase. Bioorg. Med. Chem. Lett., 2002, 12(10), 1375-1378. doi: 10.1016/S0960-894X(02)00158-0 PMID: 11992780
  84. Hashimoto, S.; Xu, Y.; Masuda, Y.; Aiuchi, T.; Nakajo, S.; Uehara, Y.; Shibuya, M.; Yamori, T.; Nakaya, K. β-hydroxyisovalerylshikonin is a novel and potent inhibitor of protein tyrosine kinases. Jpn. J. Cancer Res., 2002, 93(8), 944-951. doi: 10.1111/j.1349-7006.2002.tb01341.x PMID: 12716473
  85. Wang, W.; Dai, M.; Zhu, C.; Zhang, J.; Lin, L.; Ding, J.; Duan, W. Synthesis and biological activity of novel shikonin analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 735-737. doi: 10.1016/j.bmcl.2008.12.032 PMID: 19111464
  86. Su, Y.; Xie, J.; Wang, Y.; Hu, X.; Lin, X. Synthesis and antitumor activity of new shikonin glycosides. Eur. J. Med. Chem., 2010, 45(7), 2713-2718. doi: 10.1016/j.ejmech.2010.02.002 PMID: 20403646
  87. Zhou, W.; Peng, Y.; Li, S.S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2010, 45(12), 6005-6011. doi: 10.1016/j.ejmech.2010.09.068 PMID: 20970893
  88. Zhou, W.; Zhang, X.; Xiao, L.; Ding, J.; Liu, Q.H.; Li, S.S. Semi-synthesis and antitumor activity of 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2011, 46(8), 3420-3427. doi: 10.1016/j.ejmech.2011.05.006 PMID: 21620530
  89. Wu, Y.; Wan, L.; Zheng, X.; Shao, Z.; Chen, J.; Chen, X.; Liu, L.; Kuang, W.; Tan, X.; Zhou, L. Inhibitory effects of β,β-dimethylacrylshikonin on hepatocellular carcinoma in vitro and in vivo. Phytother. Res., 2012, 26(5), 764-771. doi: 10.1002/ptr.3623 PMID: 22109831
  90. Shen, X.J.; Wang, H.B.; Ma, X.Q.; Chen, J.H. β,β-Dimethylacrylshikonin induces mitochondria dependent apoptosis through ERK pathway in human gastric cancer SGC-7901 cells. PLoS One, 2012, 7(7), e41773. doi: 10.1371/journal.pone.0041773 PMID: 22848597
  91. Rao, Z.; Liu, X.; Zhou, W.; Yi, J.; Li, S.S. Synthesis and antitumour activity of β-hydroxyisovalerylshikonin analogues. Eur. J. Med. Chem., 2011, 46(9), 3934-3941. doi: 10.1016/j.ejmech.2011.05.065 PMID: 21689869
  92. He, H.; Bai, L.P.; Jiang, Z.H. Synthesis and human telomeric G-quadruplex DNA-binding activity of glucosaminosides of shikonin/alkannin. Bioorg. Med. Chem. Lett., 2012, 22(4), 1582-1586. doi: 10.1016/j.bmcl.2011.12.143 PMID: 22281188
  93. Kretschmer, N.; Rinner, B.; Deutsch, A.J.A.; Lohberger, B.; Knausz, H.; Kunert, O.; Blunder, M.; Boechzelt, H.; Schaider, H.; Bauer, R. Naphthoquinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma Cells. J. Nat. Prod., 2012, 75(5), 865-869. doi: 10.1021/np2006499 PMID: 22530779
  94. Lin, H.Y.; Chen, W.; Shi, J.; Kong, W.Y.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design, synthesis and biological evaluation of cinnamic acyl shikonin derivatives. Chem. Biol. Drug Des., 2013, 81(2), 275-283. doi: 10.1111/cbdd.12077 PMID: 23066914
  95. Wang, X.M.; Lin, H.Y.; Kong, W.Y.; Guo, J.; Shi, J.; Huang, S.C.; Qi, J.L.; Yang, R.W.; Gu, H.W.; Yang, Y.H. Synthesis and biological evaluation of heterocyclic carboxylic acyl shikonin derivatives. Chem. Biol. Drug Des., 2014, 83(3), 334-343. doi: 10.1111/cbdd.12247 PMID: 24118825
  96. Guo, J.; Chen, X.F.; Liu, J.; Lin, H.Y.; Han, H.W.; Liu, H.C.; Huang, S.C.; Shahla, B.K.; Kulek, A.; Qi, J.L.; Wang, X.M.; Ling, L.J.; Yang, Y.H. Novel shikonin derivatives targeting tubulin as anticancer agents. Chem. Biol. Drug Des., 2014, 84(5), 603-615. doi: 10.1111/cbdd.12353 PMID: 24797889
  97. Lin, H.Y.; Han, H.W.; Bai, L.F.; Qiu, H.Y.; Yin, D.Z.; Qi, J.L.; Wang, X.M.; Gu, H.W.; Yang, Y.H. Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: New anti-tubulin agents. RSC Adv., 2014, 4(91), 49796-49805. doi: 10.1039/C4RA08810G
  98. Baloch, S.K.; Ma, L.; Xu, G.H.; Bai, L.F.; Zhao, H.; Tang, C.Y.; Pang, Y.J.; Yang, R.W.; Wang, X.M.; Lu, G.H.; Yang, Y.H. A potent anticancer agent of shikonin derivative targeting tubulin. Chirality, 2015, 27(3), 274-280. doi: 10.1002/chir.22425 PMID: 25663187
  99. Lin, H.Y.; Li, Z.K.; Bai, L.F.; Baloch, S.K.; Wang, F.; Qiu, H.Y.; Wang, X.; Qi, J.L.; Yang, R.W.; Wang, X.M.; Yang, Y.H. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochem. Pharmacol., 2015, 96(2), 93-106. doi: 10.1016/j.bcp.2015.04.021 PMID: 25957661
  100. Durchschein, C.; Hufner, A.; Rinner, B.; Stallinger, A.; Deutsch, A.; Lohberger, B.; Bauer, R.; Kretschmer, N. Synthesis of novel shikonin derivatives and pharmacological effects of cyclopropylacetylshikonin on melanoma cells. Molecules, 2018, 23(11), 2820. doi: 10.3390/molecules23112820 PMID: 30380765
  101. Park, D.G.; Kim, D.J.; Woo, B.H.; Kim, H.J.; Choi, Y.W.; Park, H.R. Isobutyrylshikonin has a potentially stronger cytotoxic effect in oral cancer cells than its analogue shikonin in vitro. Arch. Oral Biol., 2020, 116, 104774. doi: 10.1016/j.archoralbio.2020.104774 PMID: 32470830
  102. Shao, Y.Y.; Yin, Y.; Lian, B.P.; Leng, J.F.; Xia, Y.Z.; Kong, L.Y. Synthesis and biological evaluation of novel shikonin-benzobfuran derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2020, 190, 112105. doi: 10.1016/j.ejmech.2020.112105 PMID: 32035399
  103. Ross, W.; Rowe, T.; Glisson, B.; Yalowich, J.; Liu, L. Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res., 1984, 44(12 Pt 1), 5857-5860. PMID: 6094001
  104. Atwell, G.J.; Rewcastle, G.W.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-2-(dimethylamino)ethylacridine-4-carboxamide. J. Med. Chem., 1987, 30(4), 664-669. doi: 10.1021/jm00387a014 PMID: 3560161
  105. Fortune, J.M.; Velea, L.; Graves, D.E.; Utsugi, T.; Yamada, Y.; Osheroff, N. DNA topoisomerases as targets for the anticancer drug TAS-103: DNA interactions and topoisomerase catalytic inhibition. Biochemistry, 1999, 38(47), 15580-15586. doi: 10.1021/bi991792g PMID: 10569942
  106. Lhoste, J.M.; Lavelle, F.; Bissery, M.C.; Bisagni, E.; Bisagni, E. Synthesis and antitumor activity of 1-(dialkylamino)alkylamino-4-methyl-5H-pyrido4,3-bbenzoe- and -benzog)indoles. A new class of antineoplastic agents. J. Med. Chem., 1990, 33(5), 1519-1528. doi: 10.1021/jm00167a037 PMID: 2329575
  107. Perrin, D.; van Hille, B.; Barret, J.M.; Kruczynski, A.; Etiévant, C.; Imbert, T.; Hill, B.T. F 11782, a novel epipodophylloid non-intercalating dual catalytic inhibitor of topoisomerases I and II with an original mechanism of action. Biochem. Pharmacol., 2000, 59(7), 807-819. doi: 10.1016/S0006-2952(99)00382-2 PMID: 10718339
  108. Adjei, A.A.; Charron, M.; Rowinsky, E.K.; Svingen, P.A.; Miller, J.; Reid, J.M.; Sebolt-Leopold, J.; Ames, M.M.; Kaufmann, S.H. Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II. Clin. Cancer Res., 1998, 4(3), 683-691. PMID: 9533538
  109. Salerno, S.; Da Settimo, F.; Taliani, S.; Simorini, F.; La Motta, C.; Fornaciari, G.; Marini, A.M. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr. Med. Chem., 2010, 17(35), 4270-4290. doi: 10.2174/092986710793361252 PMID: 20939813
  110. Denny, W.; Baguley, B. Dual topoisomerase I/II inhibitors in cancer therapy. Curr. Top. Med. Chem., 2003, 3(3), 339-353. doi: 10.2174/1568026033452555 PMID: 12570767
  111. Tseng, C.H.; Tzeng, C.C.; Yang, C.L.; Lu, P.J.; Chen, H.L.; Li, H.Y.; Chuang, Y.C.; Yang, C.N.; Chen, Y.L. Synthesis and antiproliferative evaluation of certain indeno1,2-cquinoline derivatives. Part 2. J. Med. Chem., 2010, 53(16), 6164-6179. doi: 10.1021/jm1005447 PMID: 20662543
  112. Karki, R.; Thapa, P.; Yoo, H.Y.; Kadayat, T.M.; Park, P.H.; Na, Y.; Lee, E.; Jeon, K.H.; Cho, W.J.; Choi, H.; Kwon, Y.; Lee, E.S. Dihydroxylated 2,4,6-triphenyl pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study. Eur. J. Med. Chem., 2012, 49, 219-228. doi: 10.1016/j.ejmech.2012.01.015 PMID: 22318164
  113. Abdel-Aziz, M.; Park, S.E.; Abuo-Rahma, G.E.D.A.A.; Sayed, M.A.; Kwon, Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur. J. Med. Chem., 2013, 69, 427-438. doi: 10.1016/j.ejmech.2013.08.040 PMID: 24090914
  114. Dalla Via, L.; Marzaro, G.; Ferrarese, A.; Gia, O.; Chilin, A. Pyrroloquinolinone-based dual topoisomerase I/II inhibitor. Eur. J. Med. Chem., 2014, 77, 103-109. doi: 10.1016/j.ejmech.2014.02.064 PMID: 24631729
  115. Yao, B.L.; Mai, Y.W.; Chen, S.B.; Xie, H.T.; Yao, P.F.; Ou, T.M.; Tan, J.H.; Wang, H.G.; Li, D.; Huang, S.L.; Gu, L.Q.; Huang, Z.S. Design, synthesis and biological evaluation of novel 7-alkylamino substituted benzoaphenazin derivatives as dual topoisomerase I/II inhibitors. Eur. J. Med. Chem., 2015, 92, 540-553. doi: 10.1016/j.ejmech.2015.01.024 PMID: 25599951
  116. Karki, R.; Jun, K.Y.; Kadayat, T.M.; Shin, S.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study. Eur. J. Med. Chem., 2016, 113, 228-245. doi: 10.1016/j.ejmech.2016.02.050 PMID: 26945111
  117. Fujii, N.; Yamashita, Y.; Arima, Y.; Nagashima, M.; Nakano, H. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob. Agents Chemother., 1992, 36(12), 2589-2594. doi: 10.1128/AAC.36.12.2589 PMID: 1336338
  118. Plyta, Z.F.; Li, T.; Papageorgiou, V.P.; Mellidis, A.S.; Assimopoulou, A.N.; Pitsinos, E.N.; Couladouros, E.A. Inhibition of topoisomerase I by naphthoquinone derivatives. Bioorg. Med. Chem. Lett., 1998, 8(23), 3385-3390. doi: 10.1016/S0960-894X(98)00600-3 PMID: 9873739
  119. Zhang, F.L.; Wang, P.; Liu, Y.H.; Liu, L.; Liu, X.B.; Li, Z.; Xue, Y.X. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One, 2013, 8(11), e81815. doi: 10.1371/journal.pone.0081815 PMID: 24303074
  120. Ogawa, Y.; Kawano, Y.; Yamazaki, Y.; Onishi, Y. Shikonin shortens the circadian period: Possible involvement of Top2 inhibition. Biochem. Biophys. Res. Commun., 2014, 443(1), 339-343. doi: 10.1016/j.bbrc.2013.11.116 PMID: 24321095
  121. Su, L.; Liu, L.; Wang, Y.; Yan, G.; Zhang, Y. Long-term systemic toxicity of shikonin derivatives in Wistar rats. Pharm. Biol., 2014, 52(4), 486-490. doi: 10.3109/13880209.2013.846913 PMID: 24192282

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers