Research Progress in Small Molecules as Anti-vitiligo Agents
- Authors: Wu H.1, Niu C.1, Aisa H.A.1
-
Affiliations:
- Key Laboratory of Chemistry of Plant Resources in Arid Regions,Xinjiang Technical Institute of Physics and Chemistry,, Chinese Academy of Sciences
- Issue: Vol 31, No 8 (2024)
- Pages: 995-1035
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645193
- DOI: https://doi.org/10.2174/0929867330666230214103054
- ID: 645193
Cite item
Full Text
Abstract
Vitiligo is a disease characterized by skin discoloration, and no safe and effective drugs have been developed until now. New drug research and development are imminent. This article reviews the research on small-molecule drugs for vitiligo from 1990 to 2021 at home and abroad. They are classified according to their structures and mechanisms of action, including natural products and derivatives, anti-oxidative stress drugs, immunosuppressants, prostaglandins, etc. The research on their anti-vitiligo activity, structural modification, new dosage forms, clinical trials, and the development trend in new anti-vitiligo drugs are reviewed, which provides important references for the development of new drugs.
About the authors
Heng Wu
Key Laboratory of Chemistry of Plant Resources in Arid Regions,Xinjiang Technical Institute of Physics and Chemistry,, Chinese Academy of Sciences
Email: info@benthamscience.net
Chao Niu
Key Laboratory of Chemistry of Plant Resources in Arid Regions,Xinjiang Technical Institute of Physics and Chemistry,, Chinese Academy of Sciences
Author for correspondence.
Email: info@benthamscience.net
Haji Akber Aisa
Key Laboratory of Chemistry of Plant Resources in Arid Regions,Xinjiang Technical Institute of Physics and Chemistry,, Chinese Academy of Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Ezzedine, K.; Lim, H.W.; Suzuki, T.; Katayama, I.; Hamzavi, I.; Lan, C.C.E.; Goh, B.K.; Anbar, T.; Silva de Castro, C.; Lee, A.Y.; Parsad, D.; van Geel, N.; Le Poole, I.C.; Oiso, N.; Benzekri, L.; Spritz, R.; Gauthier, Y.; Hann, S.K.; Picardo, M.; Taieb, A. Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res., 2012, 25(3), E1-E13. doi: 10.1111/j.1755-148X.2012.00997.x PMID: 22417114
- Castanedo-Cazares, J.P.; Lepe, V.; Moncada, B. Repigmentation of chronic vitiligo lesions by following tacrolimus plus ultraviolet-B-narrow-band. Photodermatol. Photoimmunol. Photomed., 2003, 19(1), 35-36. doi: 10.1034/j.1600-0781.2003.00005.x PMID: 12713553
- Cheng, A.H.; Han, M.H.; Han, X. Research Progress on the pathogenesis of vitiligo. World Latest Med. Info., 2017, 17(46), 33-34.
- Ebanks, J.; Wickett, R.; Boissy, R. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int. J. Mol. Sci., 2009, 10(9), 4066-4087. doi: 10.3390/ijms10094066 PMID: 19865532
- Wang, L.; Liu, J. Research progress on molecular mechanism in the formation of melanin. J. Xinjiang Univ., 2019, 36(4), 468-474+499.
- Pillaiyar, T.; Manickam, M.; Jung, S.H. Recent development of signaling pathways inhibitors of melanogenesis. Cell. Signal., 2017, 40, 99-115. doi: 10.1016/j.cellsig.2017.09.004 PMID: 28911859
- Gianfaldoni, S.; Tchernev, G.; Lotti, J.; Wollina, U.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Unconventional treatments for vitiligo: Are they (un) satisfactory? Open Access Maced. J. Med. Sci., 2018, 6(1), 170-175. doi: 10.3889/oamjms.2018.038 PMID: 29484020
- Annamalai, R.; Subhan, S.A.; Vasantha, M.; Lal, M.B.S. Trimethoxypsoralen in vitiligo. Int. J. Dermatol., 1976, 15(9), 690-693. doi: 10.1111/j.1365-4362.1976.tb01830.x PMID: 977211
- Chodurek, E.; Orchel, A.; Orchel, J.; Kurkiewicz, S.; Gawlik, N. Dzierżewicz, Z.; Stępień, K. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid. Cell. Mol. Biol. Lett., 2012, 17(4), 616-632. doi: 10.2478/s11658-012-0033-4 PMID: 23001511
- Pang, G.X.; Niu, C.; Mamat, N.; Aisa, H.A. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg. Med. Chem. Lett., 2017, 27(12), 2674-2677. doi: 10.1016/j.bmcl.2017.04.039 PMID: 28476568
- Kim, D.S.; Cha, S.B.; Park, M.C.; Park, S.A.; Kim, H.S.; Woo, W.H.; Mun, Y.J. Scopoletin stimulates melanogenesis via cAMP/PKA pathway and partially p38 activation. Biol. Pharm. Bull., 2017, 40(12), 2068-2074. doi: 10.1248/bpb.b16-00690 PMID: 28943528
- Matsuda, H.; Hirata, N.; Kawaguchi, Y.; Yamazaki, M.; Naruto, S.; Shibano, M.; Taniguchi, M.; Baba, K.; Kubo, M. Melanogenesis stimulation in murine b16 melanoma cells by umberiferae plant extracts and their coumarin constituents. Biol. Pharm. Bull., 2005, 28(7), 1229-1233. doi: 10.1248/bpb.28.1229 PMID: 15997104
- Yang, X.Y.; Liu, R.; Dou, T.; Wang, J.; He, H.Z.; Lu, W. Furocoumarin from radix angelica dahurica and synthetic analogue as potential agent for treatment of vitiligo. Int. J. Pharmacol., 2018, 14(4), 595-600. doi: 10.3923/ijp.2018.595.600
- Niu, C.; Lu, X.; Aisa, H.A. Preparation of novel 1,2,3-triazole furocoumarin derivatives via click chemistry and their anti-vitiligo activity. RSC Advances, 2019, 9(3), 1671-1678. doi: 10.1039/C8RA09755K PMID: 35518056
- Niu, C.; Zang, D.; Aisa, H.A. Design, synthesis and biological activity of novel furocoumarin derivatives as stimulators of melanogenesis and tyrosinase in b16 cells. Chem. Res. Chin. Univ., 2018, 34(3), 408-414. doi: 10.1007/s40242-018-7338-4
- Niu, C.; Pang, G.X.; Li, G.; Dou, J.; Nie, L.F.; Himit, H.; Kabas, M.; Aisa, H.A. Synthesis and biological evaluation of furocoumarin derivatives on melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(22), 5960-5968. doi: 10.1016/j.bmc.2016.09.056 PMID: 27713014
- Xie, H.; Niu, C.; Chao, Z.; Mamat, N.; Akber, A.H. Synthesis and activity of new schiff bases of furocoumarin. Heterocycl. Commun., 2020, 26(1), 176-184. doi: 10.1515/hc-2020-0115
- Yang, S.Q.; He, W. Study of melanogenesis and MDA on the anmial models of leukodermia induced by psoralen liposome gel. Zhongguo Yiyuan Yaoxue Zazhi, 2005, (12), 1111-1113.
- Xu, J.G.; Shang, J. Activation of tyrosinase by psoralen. Chin. Tradit. Herbal Drugs, 1991, 22(4), 168-169.
- Liu, Z.l.; Li, Y.L.; Liu, L.; Shi, Y.J. The study on the effects of ethanol extracts from six traditional Chinese herb prescr iptions on the activity of tyrosinase and melanogenesis in vivo and in vitro. Chin. J. Dermtol., 2005, (10), 18-21.
- Sun, X.K.; Xu, A.E. Effects of alcoholic extracts of seven traditional Chinese medicines and psoralen on tyrosinase in human YUGEN8 melanoma cell. Chin. J. Dermtol., 2006, 06, 328-330.
- Wu, K.K.; Xu, Q.; Chen, L.F.; Tu, C.X.; Liu, J.F.; Wang, K. Activation analysis for water and ethanolic extracts of eight traditional Chinese medicine on tyrusinase. J. Dalian Inst. Lt. Ind., 2000, 01, 21-24.
- Xu, A.E.; Wang, S.Q.; Zhou, W.H. Activation of tyrosinase by traditional Chinese medicine. Chin. J. Dermtol., 1998, (01), 46.
- Yin, L.; Pang, G.; Niu, C.; Habasi, M.; Dou, J.; Aisa, H. A novel psoralen derivative-MPFC enhances melanogenesis via activation of p38 MAPK and PKA signaling pathways in B16 cells. Int. J. Mol. Med., 2018, 41(6), 3727-3735. doi: 10.3892/ijmm.2018.3529 PMID: 29512683
- Zang, D.; Niu, C.; Aisa, H.A. Amine derivatives of furocoumarin induce melanogenesis by activating Akt/GSK-3β/β-catenin signal pathway. Drug Des. Devel. Ther., 2019, 13, 623-632. doi: 10.2147/DDDT.S180960 PMID: 30858693
- Serrano-Pérez, J.J.; González-Luque, R.; Merchán, M.; Serrano-Andrés, L. The family of furocoumarins: Looking for the best photosensitizer for phototherapy. J. Photochem. Photobiol. Chem., 2008, 199(1), 34-41. doi: 10.1016/j.jphotochem.2008.04.013
- Ye, Y.; Chou, G.X.; Wang, H.; Chu, J.H.; Yu, Z.L. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine, 2010, 18(1), 32-35. doi: 10.1016/j.phymed.2010.06.004 PMID: 20638260
- Takekoshi, S.; Nagata, H.; Kitatani, K. Flavonoids enhance melanogenesis in human melanoma cells. Tokai J. Exp. Clin. Med., 2014, 39(3), 116-121. PMID: 25248426
- Tuerxuntayi, A.; Liu, Y-q.; Tulake, A.; Kabas, M.; Eblimit, A.; Aisa, H.A. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med., 2014, 2014, 14.
- Wang, J.Y.; Chen, H.; Wang, Y.Y.; Wang, X.Q.; Chen, H.Y.; Zhang, M.; Tang, Y.; Zhang, B. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC Syst. Biol., 2017, 11(1), 103. doi: 10.1186/s12918-017-0486-1 PMID: 29145845
- Wang, J.Y.; Wang, X.Q.; Tang, Y.; Zhang, B. The network pharmacological mechanisms of four anti-vitiligo Uyghur medicines based on Phlegmatic temperament theory. Zhongguo Zhongyao Zazhi, 2018, 43(9), 1780-1788. doi: 10.19540/j.cnki.cjcmm.2018.0061 PMID: 29902886
- Yu, L.; Tang, H. H, Y.; C; Wang, X.Q.; Zhang, B. Pharmacodynamic evaluation and mechanism of methoxyflavone to promote melanin production in zebrafish. Chin. Tradit. Herbal Drugs, 2020, 51(23), 6023-6034.
- Cai, L.M.; Huo, S.X.; Lin, J.; Wu, P.P.; Yan, M.; Abudoukeremu, K. Chemical constituents of Vernonia anthelmintica (L.). Willd. Chin. Trad. Patent Med., 2012, 34(11), 2159-2161.
- Liu, Y.; Wang, W.; Chen, T.; Xuan, L. New flavonoid glycosides from seeds of Baccharoides anthelmintica. Nat. Prod. Res., 2020, 34(2), 284-289. doi: 10.1080/14786419.2018.1530230 PMID: 30580615
- Heriniaina, R.M.; Dong, J.; Kalavagunta, P.K.; Wu, H.L.; Yan, D.S.; Shang, J. Effects of six compounds with different chemical structures on melanogenesis. Chin. J. Nat. Med., 2018, 16(10), 766-773. doi: 10.1016/S1875-5364(18)30116-X PMID: 30322610
- Lin, M.; Lu, S.; Wang, A.; Qi, X.; Zhao, D.; Wang, Z.; Man, M.Q.; Tu, C. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling. J. Dermatol. Sci., 2011, 63(1), 10-16. doi: 10.1016/j.jdermsci.2011.03.007 PMID: 21514118
- HOEJI. Y. Role of K+ -Cl - -cotransporter in the apigenin-induced stimulation of melanogenesis in b16 melanoma cells. Yakhak Hoeji, 2008, 52(6), 500-506.
- Debowska, R.; Pasikowska, M.; Bazela, K.; Szczepanowska, J.; Ciescinska, C.; Vincent, C.; Napierala, M.; Szewczyk, A.; Lewandowska, M.; Eris, I. 526 Plant flavonoid activating potassium channels naringenin for vitiligo skin care. J. Invest. Dermatol., 2016, 136(9), S250. doi: 10.1016/j.jid.2016.06.549
- Crocenzi, F.A.; Basiglio, C.L.; Pérez, L.M.; Portesio, M.S.; Pozzi, E.J.S.; Roma, M.G. Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: Possible involvement of cAMP. Biochem. Pharmacol., 2005, 69(7), 1113-1120. doi: 10.1016/j.bcp.2005.01.009 PMID: 15763547
- Feily, A.; Namazi, M.R. Silymarin as a potential novel addition to the limited anti-vitiligo weaponry: An untested hypothesis. Int. J. Clin. Pharmacol. Ther., 2011, 49(7), 467-468. doi: 10.5414/CP201557 PMID: 21726498
- Feily, A.; Saboktakin, M. Caffeine as a novel addition to the antivitiligo ammunition. G. Ital. Dermatol. Venereol., 2010, 145(1), 139-139. PMID: 20197754
- Huo, S.X.; Liu, X.M.; Ge, C.H.; Gao, L.; Peng, X.M.; Zhao, P.P.; Yan, M. The effects of galangin on a mouse model of vitiligo induced by hydroquinone. Phytother. Res., 2014, 28(10), 1533-1538. doi: 10.1002/ptr.5161 PMID: 24820380
- Sun, X.C.; Guan, C.P.; Hong, W.S.; Lin, F.Q.; Xu, A.E. Quereetin7s protective effect against oxidative stress in and impact On biological activity of BIOBR,all immortal mouse melanocyte cell line. Chin. J. Dermtol., 2010, (03), 178-180.
- Takeyama, R.; Takekoshi, S.; Nagata, H.; Yoshiyuki Osamura, R.; Kawana, S. Quercetin-induced melanogenesis in a reconstituted three-dimensional human epidermal model. J. Mol. Histol., 2003, 35(2), 157-165. doi: 10.1023/B:HIJO.0000023388.51625.6c PMID: 15328920
- Ma, J.; Li, S.; Zhu, L.; Guo, S.; Yi, X.; Cui, T.; He, Y.; Chang, Y.; Liu, B.; Li, C.; Jian, Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic. Biol. Med., 2018, 129, 492-503. doi: 10.1016/j.freeradbiomed.2018.10.421 PMID: 30342186
- Zhu, Y.; Zhong, L.; Peng, J.; Yuan, Q.; Xu, A. The therapeutic effects of baicalin on vitiligo mice. Biol. Pharm. Bull., 2019, 42(9), 1450-1455. doi: 10.1248/bpb.b19-00319 PMID: 31217369
- Jung, E.; Kim, J.H.; Kim, M.O.; Lee, S.Y.; Lee, J. Melanocyte-protective effect of afzelin is mediated by the Nrf2-ARE signalling pathway via GSK-3β inactivation. Exp. Dermatol., 2017, 26(9), 764-770. doi: 10.1111/exd.13277 PMID: 27992083
- Mir-Palomo, S.; Nácher, A.; Ofelia Vila Busó, M.A.; Caddeo, C.; Manca, M.L.; Manconi, M.; Díez-Sales, O. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf. B Biointerfaces, 2019, 175, 654-662. doi: 10.1016/j.colsurfb.2018.12.055 PMID: 30590326
- Shivasaraun, U.V.; Sureshkumar, R.; Karthika, C.; Puttappa, N. Flavonoids as adjuvant in psoralen based photochemotherapy in the management of vitiligo/leucoderma. Med. Hypotheses, 2018, 121, 26-30. doi: 10.1016/j.mehy.2018.09.011 PMID: 30396481
- Carlie, G.; Ntusi, N.B.A.; Hulley, P.A.; Kidson, S.H. KUVA (khellin plus ultraviolet A) stimulates proliferation and melanogenesis in normal human melanocytes and melanoma cells in vitro. Br. J. Dermatol., 2003, 149(4), 707-717. doi: 10.1046/j.1365-2133.2003.05577.x PMID: 14616361
- de Leeuw, J.; van der Beek, N.; Maierhofer, G.; Neugebauer, W.D. A case study to evaluate the treatment of vitiligo with khellin encapsulated in L-phenylalanin stabilized phosphatidylcholine liposomes in combination with ultraviolet light therapy. Eur. J. Dermatol., 2003, 13(5), 474-477. PMID: 14693493
- De Leeuw, J.; Assen, Y.J.; Van Der Beek, N.; Bjerring, P.; Martino Neumann, H.A. Treatment of vitiligo with khellin liposomes, ultraviolet light and blister roof transplantation. J. Eur. Acad. Dermatol. Venereol., 2011, 25(1), 74-81. doi: 10.1111/j.1468-3083.2010.03701.x PMID: 20477914
- Pereira, J.; Gonçalves, R.; Barreto, M.; Dias, C.; Carvalho, F.; Almeida, A.J.; Ribeiro, H.M.; Marto, J. Development of gel-in-oil emulsions for khellin topical delivery. Pharmaceutics, 2020, 12(5), 398. doi: 10.3390/pharmaceutics12050398 PMID: 32357441
- Bagherani, N. The efficacy of 308 nm UV excimer light as monotherapy and combination therapy with topical khellin 4% and/or tacrolimus 0.1% in the treatment of vitiligo. Dermatol. Ther., 2016, 29(2), 137-138. doi: 10.1111/dth.12274 PMID: 26279072
- Fenniche, S.; Zaouak, A.; Tanfous, A.B.; Jrad, M.; Hammami, H. Successful treatment of refractory vitiligo with a combination of khellin and 308-nm excimer lamp: An open-label, 1-year prospective study. Dermatol. Ther., 2018, 8(1), 127-135. doi: 10.1007/s13555-017-0218-x PMID: 29282672
- Saraceno, R.; Nisticò, S.P.; Capriotti, E.; Chimenti, S. Monochromatic excimer light 308 nm in monotherapy and combined with topical khellin 4% in the treatment of vitiligo: a controlled study. Dermatol. Ther., 2009, 22(4), 391-394. doi: 10.1111/j.1529-8019.2009.01252.x PMID: 19580584
- Niu, C.; Li, G. Madina; Haji Akber, A.K. Synthesis and activity on tyrosinase of novel chalcone derivatives. Chem. J. Chin. Univ., 2014, 35(06), 1204-1211. doi: 10.7503/cjcu20131033
- Niu, C.; Li, G.; Tuerxuntayi, A.; Aisa, H.A. Synthesis and bioactivity of new chalcone derivatives as potential tyrosinase activator based on the click chemistry. Chin. J. Chem., 2015, 33(4), 486-494. doi: 10.1002/cjoc.201400820
- Niu, C.; Yin, L.; Nie, L.F.; Dou, J.; Zhao, J.Y.; Li, G.; Aisa, H.A. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(21), 5440-5448. doi: 10.1016/j.bmc.2016.08.066 PMID: 27622747
- Niu, C.; Tuerxuntayi, A.; Li, G.; Kabas, M.; Dong, C.Z.; Aisa, H.A. Design, synthesis and bioactivity of chalcones and its analogues. Chin. Chem. Lett., 2017, 28(7), 1533-1538. doi: 10.1016/j.cclet.2017.03.018
- Yin, L.; Niu, C.; Liao, L.; Dou, J.; Habasi, M.; Aisa, H. An isoxazole chalcone derivative enhances melanogenesis in b16 melanoma cells via the akt/gsk3β/β-catenin signaling pathways. Molecules, 2017, 22(12), 2077. doi: 10.3390/molecules22122077 PMID: 29182558
- Allam, A. Stimulation of melanogenesis by polyphenolic compounds from citharexyllum quadrangulare in b16f1 murine melanoma cells. Bull. Pharm. Sci., 2014, 37(2), 105-115. doi: 10.21608/bfsa.2014.65793
- Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules, 2014, 19(9), 12940-12948. doi: 10.3390/molecules190912940 PMID: 25157464
- Mamat, N.; Dou, J.; Lu, X.; Eblimit, A.; Haji Akber, A. Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway. Acta Biochim. Biophys. Sin., 2017, 49(9), 800-807. doi: 10.1093/abbs/gmx072 PMID: 28910976
- Kim, H.J.; Kim, J.S.; Woo, J.T.; Lee, I.S.; Cha, B.Y. Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and MITF induction of tyrosinase. Acta Biochim. Biophys. Sin., 2015, 47(7), 548-556. doi: 10.1093/abbs/gmv040 PMID: 26018825
- Lee, J.Y.; Choi, H.J.; Chung, T.W.; Kim, C.H.; Jeong, H.S.; Ha, K.T. Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor. J. Nat. Prod., 2013, 76(8), 1399-1405. doi: 10.1021/np400129z PMID: 23876066
- Ning, W.; Wang, S.; Dong, X.; Liu, D.; Fu, L.; Jin, R.; Xu, A. Epigallocatechin-3-gallate (EGCG) suppresses the trafficking of lymphocytes to epidermal melanocytes via inhibition of JAK2: Its implication for vitiligo treatment. Biol. Pharm. Bull., 2015, 38(11), 1700-1706. doi: 10.1248/bpb.b15-00331 PMID: 26345342
- Ning, W.; Wang, S.; Liu, D.; Fu, L.; Jin, R.; Xu, A. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin. Exp. Dermatol., 2016, 41(6), 616-624. doi: 10.1111/ced.12855 PMID: 27339454
- Zhu, Y.; Wang, S.; Lin, F.; Li, Q.; Xu, A. The therapeutic effects of EGCG on vitiligo. Fitoterapia, 2014, 99, 243-251. doi: 10.1016/j.fitote.2014.08.007 PMID: 25128425
- Ouyang, J.; Wu, J.L.; Zhou, M.N.; Fu, L.F.; Xu, A.E. Protective effects of tea polyphenols against the destruction of melanocytes by CD8+T cells from vitiligo patients. Zhonghua Pifuke Zazhi, 2013, 01, 20-23.
- Li, Q.; Zhu, Y.P.; Xu, A.E. Comparison of topical application of tea polyphenol versus pimecrolimus versus tacrolimus for the treatment of monobenzone-induced vitiligo-like depigmentation in a mouse model. Zhonghua Pifuke Zazhi, 2015, 48(01), 41-44.
- Becatti, M.; Fiorillo, C.; Barygina, V.; Cecchi, C.; Lotti, T.; Prignano, F.; Silvestro, A.; Nassi, P.; Taddei, N. SIRT 1 regulates MAPK pathways in vitiligo skin: Insight into the molecular pathways of cell survival. J. Cell. Mol. Med., 2014, 18(3), 514-529. doi: 10.1111/jcmm.12206 PMID: 24410795
- Ito, S.; Fujiki, Y.; Matsui, N.; Ojika, M.; Wakamatsu, K. Tyrosinase-catalyzed oxidation of resveratrol produces a highly reactive ortho-quinone: Implications for melanocyte toxicity. Pigment Cell Melanoma Res., 2019, 32(6), 766-776. doi: 10.1111/pcmr.12808 PMID: 31264351
- Moleephan, W.; Wittayalertpanya, S.; Ruangrungsi, N.; Limpanasithikul, W. Effect of xanthoxylin on melanin content and melanogenic protein expression in B16F10 melanoma. Asian Biomed., 2012, 6(3), 413-422.
- Lee, J.; Kim, Y.S.; Park, D. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem. Pharmacol., 2007, 74(7), 960-968. doi: 10.1016/j.bcp.2007.06.007 PMID: 17651699
- Jiang, W.; Li, S.; Chen, X.; Zhang, W.; Chang, Y.; He, Y.; Zhang, S.; Su, X.; Gao, T.; Li, C.; Jian, Z. Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. J. Dermatol. Sci., 2019, 94(1), 236-243. doi: 10.1016/j.jdermsci.2019.03.007 PMID: 30987854
- Lin, Z.; Hoult, J.R.S.; Bennett, D.C.; Raman, A. Stimulation of mouse melanocyte proliferation by Piper nigrum fruit extract and its main alkaloid, piperine. Planta Med., 1999, 65(7), 600-603. doi: 10.1055/s-1999-14031 PMID: 10575373
- Mihăilă, B.; Dinică, R.M.; Tatu, A.L.; Buzia, O.D. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med., 2019, 17(2), 1039-1044. PMID: 30679971
- Lin, Z.; Liao, Y.; Venkatasamy, R.; Hider, R.C.; Soumyanath, A. Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro. J. Pharm. Pharmacol., 2010, 59(4), 529-536. doi: 10.1211/jpp.59.4.0007 PMID: 17430636
- Venkatasamy, R.; Faas, L.; Young, A.R.; Raman, A.; Hider, R.C. Effects of piperine analogues on stimulation of melanocyte proliferation and melanocyte differentiation. Bioorg. Med. Chem., 2004, 12(8), 1905-1920. doi: 10.1016/j.bmc.2004.01.036 PMID: 15051059
- Soumyanath, A.; Venkatasamy, R.; Joshi, M.; Faas, L.; Adejuyigbe, B.; Drake, A.F.; Hider, R.C.; Young, A.R. UV irradiation affects melanocyte stimulatory activity and protein binding of piperine. Photochem. Photobiol., 2006, 82(6), 1541-1548. PMID: 17387768
- Shafiee, A.; Hoormand, M.; Shahidi-Dadras, M.; Abadi, A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother. Res., 2018, 32(9), 1812-1817. doi: 10.1002/ptr.6116 PMID: 29781089
- Alomrani, A.H.; Alhazza, F.I.; AlGhamdi, K.M.; El Maghraby, G.M. Effect of neat and binary vehicle systems on the solubility and cutaneous delivery of piperine. Saudi Pharm. J., 2018, 26(2), 162-168. doi: 10.1016/j.jsps.2017.12.015 PMID: 30166912
- Badran, M.; Alhazza, F.I.; Alomrani, A.H. Development of piperine loaded deformable liposomes-a new vesicular carrier of piperine: Characterization and ex vivo skin penetration studies. Lat. Am. J. Pharm., 2015, 34(2), 244-252.
- Li, D.; Liang, G.; Calderone, R.; Bellanti, J.A. Vitiligo and hashimotos thyroiditis: autoimmune diseases linked by clinical presentation, biochemical commonality, and autoimmune/oxidative stress-mediated toxicity pathogenesis. Med. Hypotheses, 2019, 128, 69-75. doi: 10.1016/j.mehy.2019.05.010 PMID: 31203913
- Ali, S.A.; Meitei, K.V. Nigella sativa seed extract and its bioactive compound thymoquinone: the new melanogens causing hyperpigmentation in the wall lizard melanophores. J. Pharm. Pharmacol., 2011, 63(5), 741-746. doi: 10.1111/j.2042-7158.2011.01271.x PMID: 21492177
- Zaidi, K.U.; Khan, F.N.; Ali, S.A.; Khan, K.P. Insight into mechanistic action of thymoquinone induced melanogenesis in cultured melanocytes. Protein Pept. Lett., 2019, 26(12), 910-918. doi: 10.2174/0929866526666190506114604 PMID: 31057097
- Xing, Y.L. Review of vitamin d3 derivatives in the treatment of vitiligo. Heilongjiang Med. J., 2019, 43(06), 695- 696+699.
- Chiavérini, C.; Passeron, T.; Ortonne, J.P. Treatment of vitiligo by topical calcipotriol. J. Eur. Acad. Dermatol. Venereol., 2002, 16(2), 137-138. doi: 10.1046/j.1468-3083.2002.00407.x PMID: 12046816
- Khullar, G.; Kanwar, A.J.; Singh, S.; Parsad, D. Comparison of efficacy and safety profile of topical calcipotriol ointment in combination with NB-UVB vs. NB-UVB alone in the treatment of vitiligo: a 24-week prospective right-left comparative clinical trial. J. Eur. Acad. Dermatol. Venereol., 2015, 29(5), 925-932. doi: 10.1111/jdv.12726 PMID: 25220387
- Ada, S.; Sahin, S.; Boztepe, G.; Karaduman, A.; Kölemen, F. No additional effect of topical calcipotriol on narrow-band UVB phototherapy in patients with generalized vitiligo. Photodermatol. Photoimmunol. Photomed., 2005, 21(2), 79-83. doi: 10.1111/j.1600-0781.2005.00139.x PMID: 15752125
- Parsad, D.; Saini, R.; Verma, N. Combination of PUVAsol and topical calcipotriol in vitiligo. Dermatology, 1998, 197(2), 167-170. doi: 10.1159/000017991 PMID: 9732168
- Kumaran, M.S.; Kaur, I.; Kumar, B. Effect of topical calcipotriol, betamethasone dipropionate and their combination in the treatment of localized vitiligo. J. Eur. Acad. Dermatol. Venereol., 2006, 20(3), 269-273. doi: 10.1111/j.1468-3083.2006.01420.x PMID: 16503885
- Zhang, Q.L.; Chang, J.M. Update of the relationship between vitiligo and vitamin B12, folic and trace element. Chn. J. Lepr. Skin Dise., 2015, 31(03), 164-166.
- Jung, E.; Lee, J.; Huh, S.; Lee, J.; Kim, Y.S.; Kim, G.; Park, D. Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem. Toxicol., 2009, 47(10), 2436-2440. doi: 10.1016/j.fct.2009.06.039 PMID: 19576939
- Lee, J.; Jung, E.; Park, J.; Jung, K.; Park, E.; Kim, J.; Hong, S.; Park, J.; Park, S.; Lee, S.; Park, D. Glycyrrhizin induces melanogenesis by elevating a cAMP level in b16 melanoma cells. J. Invest. Dermatol., 2005, 124(2), 405-411. doi: 10.1111/j.0022-202X.2004.23606.x PMID: 15675961
- Turak, A.; Maimaiti, Z.; Ma, H.; Aisa, H.A. Pseudo-disesquiterpenoids from seeds of Vernonia anthelmintica and their biological activities. Phytochem. Lett., 2017, 21, 163-168. doi: 10.1016/j.phytol.2017.06.017
- Bytyqi-Damoni, A.; Genç, H.; Zengin, M.; Demir, D.; Gençer, N.; Arslan, O. Novel β-lactam compounds as activators for polyphenoloxidase. ChemistrySelect, 2020, 5(25), 7671-7674. doi: 10.1002/slct.202001120
- Li, H.; Zheng, H.Y.; Li, Q.L. Advances in the application of antioxidants in the treatment of vitiligo. J. Diag. Ther., 2020, 27(05), 362-365.
- Zhao, X.F.; Liu, G.Y. Update of the oxidative stress in the pathogenesis of vitiligo. Chn. J. Lepr. Skin Dise., 2016, 32(03), 189-191.
- Mohamadin, A.M.; Elberry, A.A.; Abdel Gawad, H.S.; Morsy, G.M.; Al-Abbasi, F.A. Protective effects of simvastatin, a lipid lowering agent, against oxidative damage in experimental diabetic rats. J. Lipids, 2011, 2011, 1-13. doi: 10.1155/2011/167958 PMID: 22191036
- Maeda, T.; Horiuchi, N. Simvastatin suppresses leptin expression in 3T3-L1 adipocytes via activation of the cyclic AMP-PKA pathway induced by inhibition of protein prenylation. J. Biochem., 2009, 145(6), 771-781. doi: 10.1093/jb/mvp035 PMID: 19254925
- Chang, Y.; Li, S.; Guo, W.; Yang, Y.; Zhang, W.; Zhang, Q.; He, Y.; Yi, X.; Cui, T.; An, Y.; Song, P.; Jian, Z.; Liu, L.; Li, K.; Wang, G.; Gao, T.; Wang, L.; Li, C. Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J. Invest. Dermatol., 2017, 137(6), 1286-1296. doi: 10.1016/j.jid.2017.01.020 PMID: 28174051
- Park, E.S.; Kim, S.Y.; Na, J.I.; Ryu, H.S.; Youn, S.W.; Kim, D.S.; Yun, H.Y.; Park, K.C. Glutathione prevented dopamine-induced apoptosis of melanocytes and its signaling. J. Dermatol. Sci., 2007, 47(2), 141-149. doi: 10.1016/j.jdermsci.2007.03.009 PMID: 17481858
- Ding, S.H.; Shi, J.Q.; Zhao, W.E.; Hou, X.Y.; Xiu, Y.Y.; Li, X.; Lu, Y. Alpha-lipoic acid protects human melanocytes against oxidative stress by inhibiting autophagy. J. Clin. Dermatol., 2019, 48(06), 346-351.
- Schallreuter, K.U.; Moore, J.; Behrens-Williams, S.; Panske, A.; Harari, M. Rapid initiation of repigmentation in vitiligo with Dead Sea climatotherapy in combination with pseudocatalase (PC-KUS). Int. J. Dermatol., 2002, 41(8), 482-487. doi: 10.1046/j.1365-4362.2002.01463.x PMID: 12207762
- DellAnna, M.L.; Mastrofrancesco, A.; Sala, R.; Venturini, M.; Ottaviani, M.; Vidolin, A.P.; Leone, G.; Calzavara, P.G.; Westerhof, W.; Picardo, M. Antioxidants and narrow band-UVB in the treatment of vitiligo: A double-blind placebo controlled trial. Clin. Exp. Dermatol., 2007, 32(6), 631-636. doi: 10.1111/j.1365-2230.2007.02514.x PMID: 17953631
- Boissy, R.E.; Moellmann, G.; Trainer, A.T. Smyth, Lerner, A.B. Delayed-amelanotic (dam smyth) chicken - melanocyte function in vivo and in vitro. J. Invest. atol., 1986, 86(2), 149-156. doi: 10.1111/1523-1747.ep12284190
- Plettenberg, H.; Assmann, T.; Ruzicka, T. Childhood vitiligo and tacrolimus: Immunomodulating treatment for an autoimmune disease. Arch. Dermatol., 2003, 139(5), 651-654. doi: 10.1001/archderm.139.5.651 PMID: 12756103
- Lo, Y.H.; Cheng, G.S.; Huang, C.C.; Chang, W.Y.; Wu, C.S. Efficacy and safety of topical tacrolimus for the treatment of face and neck vitiligo. J. Dermatol., 2010, 37(2), 125-129. doi: 10.1111/j.1346-8138.2009.00774.x PMID: 20175845
- Grimes, P.E.; Morris, R.; Avaniss-Aghajani, E.; Soriano, T.; Meraz, M.; Metzger, A. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J. Am. Acad. Dermatol., 2004, 51(1), 52-61. doi: 10.1016/j.jaad.2003.12.031 PMID: 15243524
- Taher, Z.A.; Lauzon, G.; Maguiness, S.; Dytoc, M.T. Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br. J. Dermatol., 2009, 161(3), 654-659. doi: 10.1111/j.1365-2133.2009.09217.x PMID: 19438859
- Jung, H.; Oh, E.S. FK506 positively regulates the migratory potential of melanocyte-derived cells by enhancing syndecan-2 expression. Pigment Cell Melanoma Res., 2016, 29(4), 434-443. doi: 10.1111/pcmr.12480 PMID: 27060922
- Lee, K.Y.; Jeon, S.Y.; Hong, J.W.; Choi, K.W.; Lee, C.Y.; Choi, S.J.; Kim, J.H.; Song, K.H.; Kim, K.H. Endothelin-1 enhances the proliferation of normal human melanocytes in a paradoxical manner from the TNF-α-inhibited condition, but tacrolimus promotes exclusively the cellular migration without proliferation: a proposed action mechanism for combination t. J. Eur. Acad. Dermatol. Venereol., 2013, 27(5), 609-616. doi: 10.1111/j.1468-3083.2012.04498.x PMID: 22404745
- Lan, C.C.E.; Wu, C.S.; Chen, G.S.; Yu, H.S. FK506 (tacrolimus) and endothelin combined treatment induces mobility of melanoblasts: New insights into follicular vitiligo repigmentation induced by topical tacrolimus on sun-exposed skin. Br. J. Dermatol., 2011, 164(3), 10113. doi: 10.1111/j.1365-2133.2010.10113.x PMID: 21039414
- Khaitan, B.K.; Sharma, V.K.; Kathuria, S.; Ramam, M. Segmental vitiligo: A randomized controlled trial to evaluate efficacy and safety of 0.1% tacrolimus ointment vs. 0.05% fluticasone propionate cream. Indian J. Dermatol. Venereol. Leprol., 2012, 78(1), 68-73. doi: 10.4103/0378-6323.90949 PMID: 22199063
- Leite, S.R.M.; Craveiro, L.A.A. Two herapeutic challenges: Periocular and genital vitiligo n children successfully treated with pimecrolimus cream. Int. J. Dermatol., 2007, 46(9), 986-989. doi: 10.1111/j.1365-4632.2007.03282.x PMID: 17822508
- Vano-Galvan, S.; Fernandez-Guarino, M.; Beà-Ardebol, S.; Perez, B.; Harto, A.; Jaen, P. Successful treatment of erosive vulvar lichen sclerosus with methylaminolaevulinic acid and laser-mediated photodynamic therapy. J. Eur. Acad. Dermatol. Venereol., 2009, 23(1), 71-72. doi: 10.1111/j.1468-3083.2008.02667.x PMID: 18355206
- Farajzadeh, S.; Daraei, Z.; Esfandiarpour, I.; Hosseini, S.H. The efficacy of pimecrolimus 1% cream combined with microdermabrasion in the treatment of nonsegmental childhood vitiligo: A randomized placebo-controlled study. Pediatr. Dermatol., 2009, 26(3), 286-291. doi: 10.1111/j.1525-1470.2009.00926.x PMID: 19706089
- Oiso, N.; Kawada, A. Idiopathic eruptive macular pigmentation following a Christmas tree pattern. J. Dermatol., 2013, 40(11), 934-935. doi: 10.1111/1346-8138.12270 PMID: 24127666
- Boone, B.; Ongenae, K.; Van Geel, N.; Vernijns, S.; De Keyser, S.; Naeyaert, J.M. Topical pimecrolimus in the treatment of vitiligo. Eur. J. Dermatol., 2007, 17(1), 55-61. PMID: 17324829
- Cavalié, M.; Ezzedine, K.; Fontas, E.; Montaudié, H.; Castela, E.; Bahadoran, P.; Taïeb, A.; Lacour, J.P.; Passeron, T. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study. J. Invest. Dermatol., 2015, 135(4), 970-974. doi: 10.1038/jid.2014.527 PMID: 25521460
- Hartmann, A.; Bröcker, E.; Hamm, H. Occlusive treatment enhances efficacy of tacrolimus 0.1% ointment in adult patients with vitiligo: Results of a placebo-controlled 12-month prospective study. Acta Derm. Venereol., 2008, 88(5), 474-479. doi: 10.2340/00015555-0464 PMID: 18779885
- Hartmann, A.; Bröcker, E.B.; Hamm, H. Repigmentation of pretibial vitiligo with calcineurin inhibitors under occlusion. J. Dtsch. Dermatol. Ges., 2008, 6(5), 383-385. doi: 10.1111/j.1610-0387.2007.06455.x PMID: 18042249
- Silverberg, N.B.; Lin, P.; Travis, L.; Farley-Li, J.; Mancini, A.J.; Wagner, A.M.; Chamlin, S.L.; Paller, A.S. Tacrolimus ointment promotes repigmentation of vitiligo in children: A review of 57 cases. J. Am. Acad. Dermatol., 2004, 51(5), 760-766. doi: 10.1016/j.jaad.2004.05.036 PMID: 15523355
- Hu, W.; Xu, Y.; Ma, Y.; Lei, J.; Lin, F.; Xu, A.E. Efficacy of the topical calcineurin inhibitors tacrolimus and pimecrolimus in the treatment of vitiligo in infants under 2 years of age: A randomized, open-label pilot study. Clin. Drug Investig., 2019, 39(12), 1233-1238. doi: 10.1007/s40261-019-00845-x PMID: 31522334
- Nisticò, S.; Chiricozzi, A.; Saraceno, R.; Schipani, C.; Chimenti, S. Vitiligo treatment with monochromatic excimer light and tacrolimus: Results of an open randomized controlled study. Photomed. Laser Surg., 2012, 30(1), 26-30. doi: 10.1089/pho.2011.3029 PMID: 22054204
- Zhang, S. Zdravković, T.P.; Wang, T.; Liu, Y.; Jin, H. Efficacy and safety of oral simvastatin in the treatment of patients with vitiligo. J. Investig. Med., 2021, 69(2), 393-396. doi: 10.1136/jim-2020-001390 PMID: 33093072
- Sisti, A.; Sisti, G.; Oranges, C.M. Effectiveness and safety of topical tacrolimus monotherapy for repigmentation in vitiligo: a comprehensive literature review. An. Bras. Dermatol., 2016, 91(2), 187-195. doi: 10.1590/abd1806-4841.20164012 PMID: 27192518
- Balestri, R.; Sechi, A.; Tengattini, V.; Magnano, M.; Bardazzi, F. Focus on pemphigoid associated with malignancies. G. Ital. Dermatol. Venereol., 2017, 152(4), 402. PMID: 28621123
- Dayal, S.; Sahu, P.; Gupta, N. Treatment of childhood vitiligo using tacrolimus ointment with narrowband ultraviolet b phototherapy. Pediatr. Dermatol., 2016, 33(6), 646-651. doi: 10.1111/pde.12991 PMID: 27699846
- Sehgal, V.N. Role of tacrolimus (FK506) 0.1% ointment WW in vitiligo in children and imperatives of combine therapy with Trioxsalen and Silymarin suspension in progressive vitiligo. J. Eur. Acad. Dermatol. Venereol., 2009, 23(10), 1218-1219. doi: 10.1111/j.1468-3083.2009.03128.x PMID: 19192018
- Park, O.J.; Park, G.H.; Choi, J.R.; Jung, H.J.; Oh, E.S.; Choi, J.H.; Lee, M.W.; Chang, S.E. A combination of excimer laser treatment and topical tacrolimus is more effective in treating vitiligo than either therapy alone for the initial 6 months, but not thereafter. Clin. Exp. Dermatol., 2016, 41(3), 236-241. doi: 10.1111/ced.12742 PMID: 26299799
- Hartmann, A.; Löhberg, L.; Keikavoussi, P.; Eichner, S.; Schuler, G. Treatment of generalised vitiligo with tacrolimus 0.1% ointment vs. UVB intense pulsed light phototherapy: A pilot study. Acta Derm. Venereol., 2014, 94(5), 585-587. doi: 10.2340/00015555-1740 PMID: 24473666
- Ebrahim, H.M.; Albalate, W. Efficacy of microneedling combined with tacrolimus versus either one alone for vitiligo treatment. J. Cosmet. Dermatol., 2020, 19(4), 855-862. doi: 10.1111/jocd.13304 PMID: 32030880
- Mina, M.; Elgarhy, L.; Al-saeid, H.; Ibrahim, Z. Comparison between the efficacy of microneedling combined with 5-fluorouracil vs. microneedling with tacrolimus in the treatment of vitiligo. J. Cosmet. Dermatol., 2018, 17(5), 744-751. doi: 10.1111/jocd.12440 PMID: 29532621
- Abd-Elazim, N.E.; Yassa, H.A.; Mahran, A.M. Microdermabrasion and topical tacrolimus: A novel combination therapy of vitiligo. J. Cosmet. Dermatol., 2020, 19(6), 1447-1455. doi: 10.1111/jocd.13193 PMID: 31668003
- Sharma, C.K.; Sharma, M.; Aggarwal, B.; Sharma, V. Different advanced therapeutic approaches to treat vitiligo. J. Environ. Pathol. Toxicol. Oncol., 2015, 34(4), 321-334. doi: 10.1615/JEnvironPatholToxicolOncol.2015014168 PMID: 26756425
- Lepe, V.; Moncada, B.; Castanedo-Cazares, J.P.; Torres-Alvarez, M.B.; Ortiz, C.A.; Torres-Rubalcava, A.B. A double-blind randomized trial of 0.1% tacrolimus vs. 0.05% clobetasol for the treatment of childhood vitiligo. Arch. Dermatol., 2003, 139(5), 581-585. doi: 10.1001/archderm.139.5.581 PMID: 12756094
- Banerjee, K.; Barbhuiya, J.N.; Ghosh, A.P.; Dey, S.K.; Karmakar, P.R. The efficacy of low-dose oral corticosteroids in the treatment of vitiligo patient. Indian J. Dermatol. Venereol. Leprol., 2003, 69(2), 135-137. PMID: 17642858
- Lee, Y.; Seo, Y.J.; Lee, J.H.; Park, J.K. High-dose prednisolone and psoralen ultraviolet A combination therapy in 36 patients with vitiligo. Clin. Exp. Dermatol., 2007, 32(5), 499-501. doi: 10.1111/j.1365-2230.2007.02387.x PMID: 17608760
- Mokhtari, F.; Bostakian, A.; Shahmoradi, Z.; Jafari-Koshki, T.; Iraji, F.; Faghihi, G.; Hosseini, S.M.; Bafandeh, B. Potential emerging treatment in vitiligo using Er:YAG in combination with 5FU and clobetasol. J. Cosmet. Dermatol., 2018, 17(2), 165-170. doi: 10.1111/jocd.12373 PMID: 28722334
- Lotti, T.; Buggiani, G.; Troiano, M.; Assad, G.B.; Delescluse, J.; De Giorgi, V.; Hercogova, J. Targeted and combination treatments for vitiligo Comparative evaluation of different current modalities in 458 subjects. Dermatol. Ther., 2008, 21(S1), S20-S26. doi: 10.1111/j.1529-8019.2008.00198.x PMID: 18727812
- Menchini, G.; Tsoureli-Nikita, E.; Hercogova, J. Narrow-band UV-B micro-phototherapy: A new treatment for vitiligo. J. Eur. Acad. Dermatol. Venereol., 2003, 17(2), 171-177. doi: 10.1046/j.1468-3083.2003.00743.x PMID: 12705746
- Seiter, S.; Ugurel, S.; Pföhler, C.; Tilgen, W.; Reinhold, U. Successful treatment of progressive vitiligo with high-dose intravenous methylprednisolone pulse therapy. Dermatology, 1999, 199(3), 261-262. doi: 10.1159/000018260 PMID: 10592410
- Wada-Irimada, M.; Tsuchiyama, K.; Sasaki, R.; Hatchome, N.; Watabe, A.; Kimura, Y.; Yamasaki, K.; Aiba, S. Efficacy and safety of i.v. methylprednisolone pulse therapy for vitiligo: A retrospective study of 58 therapy experiences for 33 vitiligo patients. J. Dermatol., 2021, 48(7), 1090-1093. doi: 10.1111/1346-8138.15858 PMID: 33768620
- Shrestha, S.; Jha, A.K.; Thapa, D.P.; Bhattarai, C.K.; Ghimire, A. An open label study to compare the efficacy of topical mometasone furoate with topical placental extract versus topical mometasone furoate with topical tacrolimus in patients with vitiligo involving less than 10% body surface area. Nepal Med. Coll. J., 2014, 16(1), 1-4. PMID: 25799800
- Karagaiah, P.; Valle, Y.; Sigova, J.; Zerbinati, N.; Vojvodic, P.; Parsad, D.; Schwartz, R.A.; Grabbe, S.; Goldust, M.; Lotti, T. Emerging drugs for the treatment of vitiligo. Expert Opin. Emerg. Drugs, 2020, 25(1), 7-24. doi: 10.1080/14728214.2020.1712358 PMID: 31958256
- Abdel Motaleb, A.A.; Tawfik, Y.M.; El-Mokhtar, M.A.; Elkady, S.; El-Gazzar, A.F.; ElSayed, S.K.; Awad, S.M. Cutaneous JAK expression in vitiligo. J. Cutan. Med. Surg., 2021, 25(2), 157-162. doi: 10.1177/1203475420972340 PMID: 33174479
- Samaka, R.M.; Basha, M.A.; Menesy, D. Role of Janus kinase 1 and signal transducer and activator of transcription 3 in vitiligo. Clin. Cosmet. Investig. Dermatol., 2019, 12, 469-480. doi: 10.2147/CCID.S210106 PMID: 31303777
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; OShea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov., 2017, 16(12), 843-862. doi: 10.1038/nrd.2017.201 PMID: 29104284
- Nguyen, J.K.; Schlichte, M.J.; Jogi, R.; Alikhan, M.; Patel, A.B. A case of new-onset vitiligo in a patient on tofacitinib and brief review of paradoxical presentations with other novel targeted therapies. Dermatol. Online J., 2020, 26(3), 13030. PMID: 32609446
- Phan, K.; Phan, S.; Shumack, S.; Gupta, M. Repigmentation in vitiligo using janus kinase (JAK) nhibitors with phototherapy: Systematic review and Meta-analysis. J. Dermatolog. Treat., 2020, 2020(1735615) doi: 10.1080/09546634.2020.1735615 PMID: 32096671
- Joshipura, D.; Plotnikova, N.; Goldminz, A.; Deverapalli, S.; Turkowski, Y.; Gottlieb, A.; Rosmarin, D. Importance of light in the treatment of vitiligo with JAK-inhibitors. J. Dermatolog. Treat., 2018, 29(1), 98-99. doi: 10.1080/09546634.2017.1339013 PMID: 28581823
- Urso, B. Jak-inhibitors and UV-B: Potential combined therapy for vitiligo. Dermatol. Ther., 2017, 30(5), e12531. doi: 10.1111/dth.12531 PMID: 28833974
- Nada, H.R.; El Sharkawy, D.A.; Elmasry, M.F.; Rashed, L.A.; Mamdouh, S. Expression of janus kinase 1 in vitiligo & psoriasis before and after narrow band uvb: A casecontrol study. Arch. Dermatol. Res., 2018, 310(1), 39-46. doi: 10.1007/s00403-017-1792-6 PMID: 29127481
- Rothstein, B.; Joshipura, D.; Saraiya, A.; Abdat, R.; Ashkar, H.; Turkowski, Y.; Sheth, V.; Huang, V.; Au, S.C.; Kachuk, C.; Dumont, N.; Gottlieb, A.B.; Rosmarin, D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J. Am. Acad. Dermatol., 2017, 76(6), 1054-1060.e1. doi: 10.1016/j.jaad.2017.02.049 PMID: 28390737
- Rosmarin, D.; Pandya, A.G.; Lebwohl, M.; Grimes, P.; Hamzavi, I.; Gottlieb, A.B.; Butler, K.; Kuo, F.; Sun, K.; Ji, T.; Howell, M.D.; Harris, J.E. Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial. Lancet, 2020, 396(10244), 110-120. doi: 10.1016/S0140-6736(20)30609-7 PMID: 32653055
- David, R.A.P.; Mark, L.; Pearl, G.; Iltefat, H.; Alice, B.G.; Kathleen, B.; Fiona, K.; Michael, D.H.; Kang, S.; Harris, O.E. Efficacy and safety of ruxolitinib cream for the treatment of vitiligo: results of a 24-week randomized, doubleblind, dose-ranging, vehicle-controlled study. 24th World Congress of Dermatology, June 10-15Milan, Italy2019.
- Harris, J.E.; Rashighi, M.; Nguyen, N.; Jabbari, A.; Ulerio, G.; Clynes, R.; Christiano, A.M.; Mackay-Wiggan, J. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J. Am. Acad. Dermatol., 2016, 74(2), 370-371. doi: 10.1016/j.jaad.2015.09.073 PMID: 26685721
- Joshipura, D.; Alomran, A.; Zancanaro, P.; Rosmarin, D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib: A 32-week open-label extension study with optional narrow-band ultraviolet B. J. Am. Acad. Dermatol., 2018, 78(6), 1205-1207.e1. doi: 10.1016/j.jaad.2018.02.023 PMID: 29438765
- Mobasher, P.; Guerra, R.; Li, S.J.; Frangos, J.; Ganesan, A.K.; Huang, V. Open-label pilot study of tofacitinib 2% for the treatment of refractory vitiligo. Br. J. Dermatol., 2020, 182(4), 1047-1049. doi: 10.1111/bjd.18606 PMID: 31605536
- Azzolino, V.; Zapata, L., Jr; Garg, M.; Gjoni, M.; Riding, R.L.; Strassner, J.P.; Richmond, J.M.; Harris, J.E. Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory t cells. J. Invest. Dermatol., 2021, 141(1), 182-184.e1. doi: 10.1016/j.jid.2020.04.027 PMID: 32464150
- Liu, L.Y.; Strassner, J.P.; Refat, M.A.; Harris, J.E.; King, B.A. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J. Am. Acad. Dermatol., 2017, 77(4), 675-682.e1. doi: 10.1016/j.jaad.2017.05.043 PMID: 28823882
- Kim, S.R.; Heaton, H.; Liu, L.Y.; King, B.A. Rapid repigmentation of vitiligo using tofacitinib plus low-dose, narrowband uv-b phototherapy. JAMA Dermatol., 2018, 154(3), 370-371. doi: 10.1001/jamadermatol.2017.5778 PMID: 29387870
- Craiglow, B.G.; King, B.A. Tofacitinib citrate for the treatment of vitiligo. JAMA Dermatol., 2015, 151(10), 1110-1112. doi: 10.1001/jamadermatol.2015.1520 PMID: 26107994
- Vu, M.; Heyes, C.; Robertson, S.J.; Varigos, G.A.; Ross, G. Oral tofacitinib: A promising treatment in atopic dermatitis, alopecia areata and vitiligo. Clin. Exp. Dermatol., 2017, 42(8), 942-944. doi: 10.1111/ced.13290 PMID: 29034491
- Gianfaldoni, S.; Tchernev, G.; Wollina, U.; Roccia, M.G.; Fioranelli, M.; Lotti, J.; Rovesti, M.; Satolli, F.; Valle, Y.; Goren, A.; Tirant, M.; Situm, M.; Kovacevic, M.; França, K.; Lotti, T. Micro - focused phototherapy associated to janus kinase inhibitor: A promising valid therapeutic option for patients with localized vitiligo. Open Access Maced. J. Med. Sci., 2018, 6(1), 46-48. doi: 10.3889/oamjms.2018.042 PMID: 29483979
- Kim, K.I.; Jo, J.W.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Induction of pigmentation by a small molecule tyrosine kinase inhibitor nilotinib. Biochem. Biophys. Res. Commun., 2018, 503(4), 2271-2276. doi: 10.1016/j.bbrc.2018.06.148 PMID: 29959921
- Mumford, B.P.; Gibson, A.; Chong, A.H. Repigmentation of vitiligo with oral baricitinib. Australas. J. Dermatol., 2020, 61(4), 374-376. doi: 10.1111/ajd.13348 PMID: 32491188
- Peeva, E.; Hodge, M.R.; Kieras, E.; Vazquez, M.L.; Goteti, K.; Tarabar, S.G.; Alvey, C.W.; Banfield, C. Evaluation of a janus kinase 1 inhibitor, pf-04965842, in healthy subjects: A phase 1, randomized, placebo-controlled, dose-escalation study. Br. J. Clin. Pharmacol., 2018, 84(8), 1776-1788. doi: 10.1111/bcp.13612 PMID: 29672897
- Agarwal, P.; Rashighi, M.; Essien, K.I.; Richmond, J.M.; Randall, L.; Pazoki-Toroudi, H.; Hunter, C.A.; Harris, J.E. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J. Invest. Dermatol., 2015, 135(4), 1080-1088. doi: 10.1038/jid.2014.529 PMID: 25521459
- Kwak, B.; Mulhaupt, F.; Veillard, N.; Pelli, G.; Mach, F. The HMG-CoA reductase inhibitor simvastatin nhibits IFN-gamma induced MHC class II expression in human vascular endothelial cells - Statins as a potential novel immunosuppressive agent. Swiss Med. Wkly., 2001, 131(3-4), 41-46. PMID: 11219190
- Feily, A.; Baktash, D.; Mohebbipour, A.; Feily, A. Potential advantages of simvastatin as a novel anti-vitiligo arsenal. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(14), 1982-1983. PMID: 23877867
- Galus, R.; Sajjad, E.; Niderla, J.; Borowska, K. Włodarski, K.; Włodarski, P.; Jóźwiak, J. Fluvastatin increases tyrosinase synthesis induced by UVB irradiation of B16F10 melanoma cells. Folia Histochem. Cytobiol., 2009, 47(3), 363-365. PMID: 20164019
- Galus, R. Niderla, J.; Śladowski, D.; Sajjad, E.; Włodarski, K.; Jóźwiak, J. Fluvastatin increases tyrosinase synthesis induced by α-melanocyte-stimulating hormone in B16F10 melanoma cells. Pharmacol. Rep., 2010, 62(1), 164-169. doi: 10.1016/S1734-1140(10)70253-X PMID: 20360626
- Noël, M.; Gagné, C.; Bergeron, J.; Jobin, J.; Poirier, P. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo. Lipids Health Dis., 2004, 3(1), 7. doi: 10.1186/1476-511X-3-7 PMID: 15134579
- Niezgoda, A.; Winnicki, A.; Kosmalski, T.; Kowaliszyn, B. Krysiński, J.; Czajkowski, R. The evaluation of vitiligous lesions repigmentation after the administration of atorvastatin calcium salt and simvastatin-acid sodium salt in patients with active vitiligo (evraas), a pilot study: Study protocol for a randomized controlled trial. Trials, 2019, 20(1), 78. doi: 10.1186/s13063-018-3168-4 PMID: 30683146
- Yazdani Ashtiani, S.; Ahmad Nasrollahi, S.; Naeimifar, A.; Nassiri Kashani, A.; Samadi, A.; Yadangi, S.; Aboutaleb, E.; Abdolmaleki, P.; Dinarvand, R.; Firooz, A. Preparation and safety evaluation of topical simvastatin loaded nlcs for vitiligo. Adv. Pharm. Bull., 2020, 11(1), 104-110. doi: 10.34172/apb.2021.011 PMID: 33747857
- Vanderweil, S.G.; Amano, S.; Ko, W.C.; Richmond, J.M.; Kelley, M.; Senna, M.M.; Pearson, A.; Chowdary, S.; Hartigan, C.; Barton, B.; Harris, J.E. A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. J. Am. Acad. Dermatol., 2017, 76(1), 150-151.e3. doi: 10.1016/j.jaad.2016.06.015 PMID: 27986135
- Nguyen, S.; Chuah, S.Y.; Fontas, E.; Khemis, A.; Jhingan, A.; Thng, S.T.G.; Passeron, T. Atorvastatin in combination with narrowband uv-b in adult patients with active vitiligo. JAMA Dermatol., 2018, 154(6), 725-726. doi: 10.1001/jamadermatol.2017.6401 PMID: 29617528
- Mittal, A.K.; Taneja, A.; Kumari, A.; Vyas, K.; Khare, A.K.; Gupta, L.K. Cyclosporine in treatment of progressive vitiligo: An open-label, single-arm interventional study. Indian J. Dermatol. Venereol. Leprol., 2019, 85(5), 528-531. doi: 10.4103/ijdvl.IJDVL_656_18 PMID: 31389371
- Mehta, H.; Kumar, S.; Parsad, D.; Bishnoi, A.; Vinay, K.; Kumaran, M.S. Oral cyclosporine is effective in stabilizing active vitiligo: Results of a randomized controlled trial. Dermatol. Ther., 2021, 34(5), e15033. doi: 10.1111/dth.15033 PMID: 34151493
- Parsad, D.; Kanwar, A. Oral minocycline in the treatment of vitiligo - A preliminary study. Dermatol. Ther., 2010, 23(3), 305-307. doi: 10.1111/j.1529-8019.2010.01328.x PMID: 20597950
- Singh, A.; Kanwar, A.J.; Parsad, D.; Mahajan, R. Randomized controlled study to evaluate the effectiveness of dexamethasone oral minipulse therapy versus oral minocycline in patients with active vitiligo vulgaris. Indian J. Dermatol. Venereol. Leprol., 2014, 80(1), 29-35. doi: 10.4103/0378-6323.148562 PMID: 24448120
- Siadat, A.H.; Zeinali, N.; Iraji, F.; Abtahi-Naeini, B.; Nilforoushzadeh, M.A.; Jamshidi, K.; Khosravani, P. Narrow-band ultraviolet b versus oral minocycline in treatment of unstable vitiligo: A prospective comparative trial. Dermatol. Res. Pract., 2014, 2014, 1-4. doi: 10.1155/2014/240856 PMID: 25221600
- Pasricha, J.S.; Khera, V. Effect of prolonged treatment with levamisole on vitiligo with limited and slow-spreading disease. Int. J. Dermatol., 1994, 33(8), 584-587. doi: 10.1111/j.1365-4362.1994.tb02903.x PMID: 7960359
- Agarwal, S.; Ramam, M.; Sharma, V.K.; Khandpur, S.; Pal, H.; Pandey, R.M. A randomized placebo-controlled double-blind study of levamisole in the treatment of limited and slowly spreading vitiligo. Br. J. Dermatol., 2005, 153(1), 163-166. doi: 10.1111/j.1365-2133.2005.06556.x PMID: 16029343
- Li, D.G.; Hu, W.Z.; Ma, H.J.; Liu, W.; Yang, Q.Q.; Zhao, G. Hydroxychloroquine protects melanocytes from autoantibody-induced injury by reducing the binding of antigen-antibody complexes. Mol. Med. Rep., 2016, 14(2), 1275-1282. doi: 10.3892/mmr.2016.5354 PMID: 27277530
- Huff, S.B.; Gottwald, L.D. Repigmentation of tenacious vitiligo on apremilast. Case Rep. Dermatol. Med., 2017, 2017, 2386234. doi: 10.1155/2017/2386234
- Majid, I.; Imran, S.; Batool, S. Apremilast is effective in controlling the progression of adult vitiligo: A case series. Dermatol. Ther., 2019, 32(4), e12923. doi: 10.1111/dth.12923 PMID: 30977956
- Guan, C.; Li, Q.; Song, X.; Xu, W.; Li, L.; Xu, A. Antroquinonol exerts immunosuppressive effect on cd8+ t cell proliferation and activation to resist depigmentation induced by H2O2. Oxid. Med. Cell. Longev., 2017, 2017, 9303054. doi: 10.1155/2017/9303054 PMID: 29456788
- Radmanesh, M.; Saedi, K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J. Dermatolog. Treat., 2006, 17(3), 151-153. doi: 10.1080/09546630600791442 PMID: 16854754
- Abd El-Samad, Z.; Shaaban, D. Treatment of localized non-segmental vitiligo with intradermal 5-flurouracil injection combined with narrow-band ultraviolet B: A preliminary study. J. Dermatolog. Treat., 2012, 23(6), 443-448. doi: 10.3109/09546634.2011.579084 PMID: 21781011
- Gandhi, S.; Shashikiran, A.R.; Murugesh, S.B.; Kusagur, M. Sugareddy, Efficacy of topical 5% fluorouracil needling in vitiligo. Indian J. Dermatol. Venereol. Leprol., 2018, 84(2), 203-205. doi: 10.4103/ijdvl.IJDVL_386_16 PMID: 29380751
- Bishnoi, A.; Vinay, K.; Kumaran, M.S.; Parsad, D. Oral mycophenolate mofetil as a stabilizing treatment for progressive non-segmental vitiligo: Results from a prospective, randomized, investigator-blinded pilot study. Arch. Dermatol. Res., 2021, 313(5), 357-365. doi: 10.1007/s00403-020-02108-8 PMID: 32737577
- Handjani, F.; Aghaei, S.; Moezzi, I.; Saki, N. opical mycophenolate mofetil in the treatment of vitiligo: A pilot study. Dermatol. Pract. Concept., 2017, 7(2), 31-33. doi: 10.5826/dpc.0702a06 PMID: 28515990
- Alghamdi, K.M.; Khurrum, H.; Taieb, A.; Ezzedine, K. Treatment of generalized vitiligo with anti-TNF-α Agents. J. Drugs Dermatol., 2012, 11(4), 534-539. PMID: 22453596
- Abdelmaksoud, A.; Dave, D.D.; Lotti, T.; Vestita, M. Topical methotrexate 1% gel for treatment of vitiligo: A case report and review of the literature. Dermatol. Ther., 2019, 32(5), e13013. doi: 10.1111/dth.13013 PMID: 31265164
- Garza-Mayers, A.C.; Kroshinsky, D. Low-dose methotrexate for vitiligo. J. Drugs Dermatol., 2017, 16(7), 705-706. PMID: 28697225
- Singh, H.; Kumaran, M.S.; Bains, A.; Parsad, D. A randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology, 2015, 231(3), 286-290. doi: 10.1159/000433424 PMID: 26278124
- AlGhamdi, K.; Khurrum, H. Methotrexate for the treatment of generalized vitiligo. Saudi Pharm. J., 2013, 21(4), 423-424. doi: 10.1016/j.jsps.2012.12.003 PMID: 24227963
- Srinivas, C.R.; Shenoi, S.D.; Balachandran, C. Acceleration of repigmentation in vitiligo by topical minoxidil in patients on photochemotherapy. Int. J. Dermatol., 1990, 29(2), 154-155. doi: 10.1111/j.1365-4362.1990.tb04096.x PMID: 2323875
- Kanellis, V.; Gupta, M. Enhanced repigmentation of vitiligo by topical minoxidil and excimer lamp treatment. Pigment Inte., 2019, 6(1), 46-47.
- Lim, H.W.; Grimes, P.E.; Agbai, O.; Hamzavi, I.; Henderson, M.; Haddican, M.; Linkner, R.V.; Lebwohl, M. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: A randomized multicenter trial. JAMA Dermatol., 2015, 151(1), 42-50. doi: 10.1001/jamadermatol.2014.1875 PMID: 25230094
- Starner, R.J.; McClelland, L.; Abdel-Malek, Z.; Fricke, A.; Scott, G. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation. Exp. Dermatol., 2010, 19(7), 682-684. doi: 10.1111/j.1600-0625.2010.01074.x PMID: 20500768
- Pentland, A.P.; Mahoney, M.G. Keratinocyte prostaglandin synthesis is enhanced by IL-1. J. Invest. Dermatol., 1990, 94(1), 43-46. doi: 10.1111/1523-1747.ep12873337 PMID: 2295836
- Friedmann, P.S.; Gilchrest, B.A. Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J. Cell. Physiol., 1987, 133(1), 88-94. doi: 10.1002/jcp.1041330111 PMID: 2822734
- Jiao, Y.N.; Wang, J.X.; Zhang, Y.; Wu, D.M.; Chen, K.; Yu, N.; Jiang, M.; Xia, L.; Liang, L.; Wang, J.W.; Wang, J.F. Influence of combination of external prostaglandin and narrow band ultraviolet B on skin melanin and tyrosinase level in Guinea pigs with vitiligo. Chin. J. Clin. Pharmacol., 2018, 34(09), 1105-1107.
- Kapoor, R.; Phiske, M.M.; Jerajani, H.R. Evaluation of safety and efficacy of topical prostaglandin E2 in treatment of vitiligo. Br. J. Dermatol., 2009, 160(4), 861-863. doi: 10.1111/j.1365-2133.2008.08923.x PMID: 19014395
- Parsad, D.; Pandhi, R.; Dogra, S.; Kumar, B. Topical prostaglandin analog (PGE2) in vitiligo - A preliminary study. Int. J. Dermatol., 2002, 41(12), 942-945. doi: 10.1046/j.1365-4362.2002.01612.x PMID: 12492997
- Eldelee, S.A.; Gheida, S.F.; Sarhan, N.I. brahim, Z.A.; Elfar, N.N. Evaluation of the effect of combined intralesional injection of prostaglandin F2alpha with narrow band UVB phototherapy in reatment of resistant cases of vitiligo. J. Dermatolog. Treat., 2021, 32(4), 383-390. doi: 10.1080/09546634.2019.1658860 PMID: 31437059
- Anbar, T.S.; El-Ammawi, T.S.; Barakat, M.; Fawzy, A. Skin pigmentation after NB-UVB and three analogues of prostaglandin F2α in guinea pigs: A comparative study. J. Eur. Acad. Dermatol. Venereol., 2010, 24(1), 28-31. doi: 10.1111/j.1468-3083.2009.03346.x PMID: 19627411
- Jha, A.K.; Sinha, R. Bimatoprost in vitiligo. Clin. Exp. Dermatol., 2016, 41(7), 821-822. doi: 10.1111/ced.12904 PMID: 27663165
- Jha, A.K.; Prasad, S.; Sinha, R. Bimatoprost ophthalmic solution in facial vitiligo. J. Cosmet. Dermatol., 2018, 17(3), 437-440. doi: 10.1111/jocd.12443 PMID: 29034590
- Zhong, W.; Shao, Y.; Ye, T.; Li, J.; Yu, B.; Dou, X. Perforating granuloma annulare: A case report and literature review. J. Eur. Acad. Dermatol. Venereol., 2016, 30(7), 1246-1247. doi: 10.1111/jdv.13174 PMID: 25924054
- Pruettivorawongse, D.; Kanokrungsee, S.; Ratchatanawin, N. Comparison of efficacy and safety of topical 0.01% bimatoprost and 0.1% tacrolimus in the treatment of facial vitiligo: A randomized, single-blinded, intra-individual controlled trial. J. Am. Acad. Dermatol., 2018, 79(3), AB82-AB82. doi: 10.1016/j.jaad.2018.05.359
- Grimes, P.E. Bimatoprost 0.03% solution for the treatment of nonfacial vitiligo. J. Drugs Dermatol., 2016, 15(6), 703-710. PMID: 27272076
- Khullar, G. Comparison of efficacy and safety profile of topical bimatoprost (0.03%) in combination with NB-UVB versus NB-UVB alone in the reatment of vitiligo: A 24-week prospective right-left comparative clinical trial. J. Am. Acad. Dermatol., 2015, 72(5)
- Sharma, S.; Parsad, D.; Bhattacharjee, R.; Muthu, S.K. A prospective right-left comparative study to evaluate the efficacy and tolerability of combination of NB-UVB and topical bimatoprost 0.03% eye drops versus NB-UVB given alone in patients of vitiligo vulgaris. J. Eur. Acad. Dermatol. Venereol., 2018, 32(8), e330-e331. doi: 10.1111/jdv.14882 PMID: 29444382
- Nowroozpoor, D.K.; Hosseini, A.; Rahmatpour, R.G.; Saeedi, M.; Morteza-Semnani, K.; Sadeghi, Z.; Ghasemzadeh, D.S.M.; Goldust, M.; Lotti, T.; Vojvodic, A.; Goren, A.; Sonthalia, S.; Rathod, D. Efficacy of topical latanoprost in the treatment of eyelid vitiligo: A randomized, double-blind clinical trial study. Dermatol. Ther., 2020, 33(1), e13175. doi: 10.1111/dth.13175 PMID: 31758835
- Yadav, S.; Dogra, S.; Kaur, I. An unusual anatomical colocalization of alopecia areata and vitiligo in a child, and improvement during treatment with topical prostaglandin E2. Clin. Exp. Dermatol., 2009, 34(8), e1010-e1011. doi: 10.1111/j.1365-2230.2009.03677.x PMID: 20055821
- Kim, T. Three cases of vitiligo showing response to application of latanoprost. Korean J. Dermatol., 2010, 48(4), 350-353.
- Anbar, T.S.; El-Ammawi, T.S.; Abdel-Rahman, A.T.; Hanna, M.R. The effect of latanoprost on vitiligo: A preliminary comparative study. Int. J. Dermatol., 2015, 54(5), 587-593. doi: 10.1111/ijd.12631 PMID: 25545321
- Korobko, I.V.; Lomonosov, K.M. A pilot comparative study of topical latanoprost and tacrolimus in combination with narrow-band ultraviolet B phototherapy and microneedling for the treatment of nonsegmental vitiligo. Dermatol. Ther., 2016, 29(6), 437-441. doi: 10.1111/dth.12383 PMID: 27329330
- Stanimirovic, A.; Kovacevic, M.; Korobko, I.; itum, M.; Lotti, T. Combined therapy for resistant vitiligo lesions: NB-UVB, microneedling, and topical latanoprost, showed no enhanced efficacy compared to topical latanoprost and NB-UVB. Dermatol. Ther., 2016, 29(5), 312-316. doi: 10.1111/dth.12363 PMID: 27356486
- Lotti, T.; Wollina, U.; Tchernev, G.; Valle, Y.; Lotti, J.; França, K.; Satolli, F.; Rovesti, M.; Tirant, M.; Lozev, I.; Pidakev, I.; Gianfaldoni, S. An innovative therapeutic protocol for vitiligo: Experience with the use of fraxel herbium laser, topical latanoprost and successive irradiation with UVa - 1 laser. Open Access Maced. J. Med. Sci., 2018, 6(1), 49-51. doi: 10.3889/oamjms.2018.059 PMID: 29483980
- Aobuli, A.; Maitusong, J.; Bakri, M.; Lu, X.; Maiwulanjiang, M.; Aisa, H.A. The effect of volatile oil from vernonia anthelmintica seeds on melanin synthesis in b16 cells and its chemical analysis by GC-QTOF-MS. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8. doi: 10.1155/2018/6291281 PMID: 30174712
- Nie, L.F.; Bozorov, K.; Niu, C.; Huang, G.; Aisa, H.A. Synthesis and biological evaluation of novel sulfonamide derivatives of tricyclic thieno2,3-dpyrimidin-4(3H)-ones on melanin synthesis in murine B16 cells. Res. Chem. Intermed., 2017, 43(12), 6835-6843. doi: 10.1007/s11164-017-3023-3
- Lin, C.B.; Babiarz, L.; Liebel, F.; Kizoulis, M.; Gendimenico, G.J.; Seiberg, M.; Roydon Price, E.; Fisher, D.E. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J. Invest. Dermatol., 2002, 119(6), 1330-1340. doi: 10.1046/j.1523-1747.2002.19615.x PMID: 12485436
- Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med., 2006, 12(9), 406-414. doi: 10.1016/j.molmed.2006.07.008 PMID: 16899407
- Speeckaert, R.; van Geel, N. Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo. Exp. Dermatol., 2017, 26(7), 630-634. doi: 10.1111/exd.13069 PMID: 27192950
- Di Nardo, V.; Barygina, V.; França, K.; Tirant, M.; Valle, Y.; Lotti, T. Functional nutrition as integrated approach in vitiligo management. Dermatol. Ther., 2019, 32(4), e12625. doi: 10.1111/dth.12625 PMID: 30156053
- Wu, C.S.; Lan, C.C.E.; Chiou, M.H.; Yu, H.S. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes. Acta Derm. Venereol., 2006, 86(6), 498-502. doi: 10.2340/00015555-0161 PMID: 17106595
Supplementary files
