Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology


Citar

Texto integral

Resumo

Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.

Sobre autores

Michele Mussap

Department of Surgical Sciences, School of Medicine,, University of Cagliari

Autor responsável pela correspondência
Email: info@benthamscience.net

Melania Puddu

Departmernt of Surgical Sciences, School of Medicine, University of Cagliari

Email: info@benthamscience.net

Vassilios Fanos

Departmernt of Surgical Sciences, School of Medicine, University of Cagliari

Email: info@benthamscience.net

Bibliografia

  1. Domínguez-Andrés, J.; van Crevel, R.; Divangahi, M.; Netea, M.G. Designing the next generation of vaccines: Relevance for lics. MBio, 2020, 11(6), e02616-20. doi: 10.1128/mBio.02616-20 PMID: 33443120
  2. Mayer, A.; Balasubramanian, V.; Walczak, A.M.; Mora, T. How a well-adapting immune system remembers. Proc. Natl. Acad. Sci., 2019, 116(18), 8815-23. doi: 10.1073/pnas.1812810116
  3. Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; Riksen, N.P.; Schlitzer, A.; Schultze, J.L.; Stabell Benn, C.; Sun, J.C.; Xavier, R.J.; Latz, E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, 20(6), 375-388. doi: 10.1038/s41577-020-0285-6 PMID: 32132681
  4. Dominguez-Andres, J.; Netea, M.G. Long-term reprogramming of the innate immune system. J. Leukoc. Biol., 2019, 105(2), 329-338. doi: 10.1002/JLB.MR0318-104R PMID: 29999546
  5. Sánchez-Ramón, S.; Conejero, L.; Netea, M.G.; Sancho, D.; Palomares, Ó.; Subiza, J.L. Trained immunity-based vaccines: A new paradigm for the development of broad- spectrum anti-infectious formulations. Front. Immunol., 2018, 9, 2936. doi: 10.3389/fimmu.2018.02936 PMID: 30619296
  6. Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection Cell, 2020, 181(5), 969-77. doi: 10.1016/j.cell.2020.04.042
  7. Pinti, M.; Appay, V.; Campisi, J.; Frasca, D.; Fülöp, T.; Sauce, D.; Larbi, A.; Weinberger, B.; Cossarizza, A. Aging of the immune system: Focus on inflammation and vaccination. Eur. J. Immunol., 2016, 46(10), 2286-2301. doi: 10.1002/eji.201546178 PMID: 27595500
  8. Diray-Arce, J.; Conti, M.G.; Petrova, B.; Kanarek, N.; Angelidou, A.; Levy, O. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites, 2020, 10(12), 492. doi: 10.3390/metabo10120492 PMID: 33266347
  9. Voss, K.; Hong, H.S.; Bader, J.E.; Sugiura, A.; Lyssiotis, C.A.; Rathmell, J.C. A guide to interrogating immunometabolism. Nat. Rev. Immunol., 2021, 21(10), 637-652. doi: 10.1038/s41577-021-00529-8 PMID: 33859379
  10. Mussap, M.; Noto, A.; Piras, C.; Atzori, L.; Fanos, V. Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev., 2021, 6(3), 173-187. doi: 10.1080/23808993.2021.1911639
  11. Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Personalized vaccinology: A review. Vaccine, 2018, 36(36), 5350-5357. doi: 10.1016/j.vaccine.2017.07.062 PMID: 28774561
  12. O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol., 2016, 16(9), 553-565. doi: 10.1038/nri.2016.70 PMID: 27396447
  13. Sun, L.; Yang, X.; Yuan, Z.; Wang, H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 1990-2001. doi: 10.1161/ATVBAHA.120.314037 PMID: 32698683
  14. Shen, W.; Gao, C.; Cueto, R.; Liu, L.; Fu, H.; Shao, Y.; Yang, W.Y.; Fang, P.; Choi, E.T.; Wu, Q.; Yang, X.; Wang, H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol., 2020, 28, 101322. doi: 10.1016/j.redox.2019.101322 PMID: 31605963
  15. Cameron, A.M.; Lawless, S.J.; Pearce, E.J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol., 2016, 28(5), 408-416. doi: 10.1016/j.smim.2016.10.003 PMID: 28340958
  16. Rodríguez-Prados, J.C.; Través, P.G.; Cuenca, J.; Rico, D.; Aragonés, J.; Martín-Sanz, P.; Cascante, M.; Boscá, L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J. Immunol., 2010, 185(1), 605-614. doi: 10.4049/jimmunol.0901698 PMID: 20498354
  17. Galván-Peña, S.; O’Neill, L.A. Metabolic reprograming in macrophage polarization. Front. Immunol., 2014, 5, 420. doi: 10.3389/fimmu.2014.00420 PMID: 25228902
  18. Arts, R.J.W.; Novakovic, B.; ter Horst, R.; Carvalho, A.; Bekkering, S.; Lachmandas, E.; Rodrigues, F.; Silvestre, R.; Cheng, S.C.; Wang, S.Y.; Habibi, E.; Gonçalves, L.G.; Mesquita, I.; Cunha, C.; van Laarhoven, A.; van de Veerdonk, F.L.; Williams, D.L.; van der Meer, J.W.M.; Logie, C.; O’Neill, L.A.; Dinarello, C.A.; Riksen, N.P.; van Crevel, R.; Clish, C.; Notebaart, R.A.; Joosten, L.A.B.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, 24(6), 807-819. doi: 10.1016/j.cmet.2016.10.008 PMID: 27866838
  19. Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352(6284), aaf1098. doi: 10.1126/science.aaf1098 PMID: 27102489
  20. Riksen, N.P.; Netea, M.G. Immunometabolic control of trained immunity. Mol. Aspects Med., 2021, 77, 100897. doi: 10.1016/j.mam.2020.100897 PMID: 32891423
  21. Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826. doi: 10.1016/j.cmet.2012.04.023 PMID: 22682222
  22. O’Sullivan, D.; van der Windt, G.J.W.; Huang, S.C.C.; Curtis, J.D.; Chang, C.H.; Buck, M.D.; Qiu, J.; Smith, A.M.; Lam, W.Y.; DiPlato, L.M.; Hsu, F.F.; Birnbaum, M.J.; Pearce, E.J.; Pearce, E.L. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 2014, 41(1), 75-88. doi: 10.1016/j.immuni.2014.06.005 PMID: 25001241
  23. Hertz, L.; Hertz, E. Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int., 2003, 43(4-5), 355-361. doi: 10.1016/S0197-0186(03)00022-6 PMID: 12742079
  24. Ferreira, A.V.; Domiguéz-Andrés, J.; Netea, M.G. The role of cell metabolism in innate immune memory. J. Innate Immun., 2022, 14(1), 42-50. doi: 10.1159/000512280 PMID: 33378755
  25. Schebb, N.H.; Kühn, H.; Kahnt, A.S.; Rund, K.M.; O’Donnell, V.B.; Flamand, N.; Peters-Golden, M.; Jakobsson, P.J.; Weylandt, K.H.; Rohwer, N.; Murphy, R.C.; Geisslinger, G.; FitzGerald, G.A.; Hanson, J.; Dahlgren, C.; Alnouri, M.W.; Offermanns, S.; Steinhilber, D. Formation, signaling and occurrence of specialized pro-resolving lipid mediators—what is the evidence so far? Front. Pharmacol., 2022, 13, 838782. doi: 10.3389/fphar.2022.838782 PMID: 35308198
  26. Bosch, M.; Sánchez-Álvarez, M.; Fajardo, A.; Kapetanovic, R.; Steiner, B.; Dutra, F.; Moreira, L.; López, J.A.; Campo, R.; Marí, M.; Morales-Paytuví, F.; Tort, O.; Gubern, A.; Templin, R.M.; Curson, J.E.B.; Martel, N.; Català, C.; Lozano, F.; Tebar, F.; Enrich, C.; Vázquez, J.; Del Pozo, M.A.; Sweet, M.J.; Bozza, P.T.; Gross, S.P.; Parton, R.G.; Pol, A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370(6514), eaay8085. doi: 10.1126/science.aay8085 PMID: 33060333
  27. Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; Huang, M.; Uphadhyay, A.A.; Gardinassi, L.; Petitdemange, C.; McCullough, M.P.; Johnson, S.J.; Gill, K.; Cervasi, B.; Zou, J.; Bretin, A.; Hahn, M.; Gewirtz, A.T.; Bosinger, S.E.; Wilson, P.C.; Li, S.; Alter, G.; Khurana, S.; Golding, H.; Pulendran, B. Antibiotics- Driven gut microbiome perturbation alters immunity to vaccines in humans. Cell, 2019, 178(6), 1313-1328.e13. doi: 10.1016/j.cell.2019.08.010 PMID: 31491384
  28. Goll, J.B.; Li, S.; Edwards, J.L.; Bosinger, S.E.; Jensen, T.L.; Wang, Y.; Hooper, W.F.; Gelber, C.E.; Sanders, K.L.; Anderson, E.J.; Rouphael, N.; Natrajan, M.S.; Johnson, R.A.; Sanz, P.; Hoft, D.; Mulligan, M.J. Transcriptomic and metabolic responses to a live-attenuated Francisella tularensis vaccine. Vaccines, 2020, 8(3), 412. doi: 10.3390/vaccines8030412 PMID: 32722194
  29. Khan, A.; Shin, O.S.; Na, J.; Kim, J.K.; Seong, R.K.; Park, M.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Park, Y.H.; Kim, W.J. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Sci. Rep., 2019, 9(1), 4760. doi: 10.1038/s41598-019-41205-1 PMID: 30886186
  30. Li, S.; Sullivan, N.L.; Rouphael, N.; Yu, T.; Banton, S.; Maddur, M.S.; McCausland, M.; Chiu, C.; Canniff, J.; Dubey, S.; Liu, K.; Tran, V.; Hagan, T.; Duraisingham, S.; Wieland, A.; Mehta, A.K.; Whitaker, J.A.; Subramaniam, S.; Jones, D.P.; Sette, A.; Vora, K.; Weinberg, A.; Mulligan, M.J.; Nakaya, H.I.; Levin, M.; Ahmed, R.; Pulendran, B. Metabolic phenotypes of response to vaccination in humans. Cell, 2017, 169(5), 862-877.e17. doi: 10.1016/j.cell.2017.04.026 PMID: 28502771
  31. Wang, Y.; Wang, X.; Luu, L.D.W.; Chen, S.; Jin, F.; Wang, S.; Huang, X.; Wang, L.; Zhou, X.; Chen, X.; Cui, X.; Li, J.; Tai, J.; Zhu, X. Proteomic and metabolomic signatures associated with the immune response in healthy individuals immunized with an inactivated SARS-CoV-2 vaccine. Front. Immunol., 2022, 13, 848961. doi: 10.3389/fimmu.2022.848961 PMID: 35686122
  32. He, M.; Huang, Y.; Wang, Y.; Liu, J.; Han, M.; Xiao, Y.; Zhang, N.; Gui, H.; Qiu, H.; Cao, L.; Jia, W.; Huang, S. Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker. Front. Immunol., 2022, 13, 954801. doi: 10.3389/fimmu.2022.954801 PMID: 36248825
  33. Choi, I.; Son, H.; Baek, J.H. Tricarboxylic Acid (TCA) cycle intermediates: Regulators of immune responses. Life, 2021, 11(1), 69. doi: 10.3390/life11010069 PMID: 33477822
  34. Williams, N.C.; O’Neill, L.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol., 2018, 9, 141. doi: 10.3389/fimmu.2018.00141 PMID: 29459863
  35. Langston, P.K.; Shibata, M.; Horng, T. Metabolism supports macrophage activation. Front. Immunol., 2017, 8, 61. doi: 10.3389/fimmu.2017.00061 PMID: 28197151
  36. Hooftman, A.; O’Neill, L.A.J. The immunomodulatory potential of the metabolite itaconate. Trends Immunol., 2019, 40(8), 687-698. doi: 10.1016/j.it.2019.05.007 PMID: 31178405
  37. Hooftman, A.; Angiari, S.; Hester, S.; Corcoran, S.E.; Runtsch, M.C.; Ling, C.; Ruzek, M.C.; Slivka, P.F.; McGettrick, A.F.; Banahan, K.; Hughes, M.M.; Irvine, A.D.; Fischer, R.; O’Neill, L.A.J. The immunomodulatory metabolite itaconate modifies nlrp3 and inhibits inflammasome activation. Cell Metab., 2020, 32(3), 468-478.e7. doi: 10.1016/j.cmet.2020.07.016 PMID: 32791101
  38. Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242. doi: 10.1038/nature11986 PMID: 23535595
  39. Liu, P.S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W.C.; Chou, C.H.; Vavakova, M.; Muret, C.; Debackere, K.; Mazzone, M.; Huang, H.D.; Fendt, S.M.; Ivanisevic, J.; Ho, P.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol., 2017, 18(9), 985-994. doi: 10.1038/ni.3796 PMID: 28714978
  40. Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430. doi: 10.1016/j.immuni.2015.02.005 PMID: 25786174
  41. Mills, E.; O’Neill, L.A.J. Succinate: A metabolic signal in inflammation. Trends Cell Biol., 2014, 24(5), 313-320. doi: 10.1016/j.tcb.2013.11.008 PMID: 24361092
  42. Domínguez-Andrés, J.; Joosten, L.A.B.; Netea, M.G. Induction of innate immune memory: The role of cellular metabolism. Curr. Opin. Immunol., 2019, 56, 10-16. doi: 10.1016/j.coi.2018.09.001 PMID: 30240964
  43. Wang, R.; Green, D.R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev., 2012, 249(1), 14-26. doi: 10.1111/j.1600-065X.2012.01155.x PMID: 22889212
  44. Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; Green, D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 2011, 35(6), 871-882. doi: 10.1016/j.immuni.2011.09.021 PMID: 22195744
  45. Lochner, M.; Berod, L.; Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol., 2015, 36(2), 81-91. doi: 10.1016/j.it.2014.12.005 PMID: 25592731
  46. Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients, 2021, 13(1), 247. doi: 10.3390/nu13010247 PMID: 33467123
  47. Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28. doi: 10.4049/jimmunol.1101029 PMID: 22187483
  48. Chou, C.H.; Mohanty, S.; Kang, H.A.; Kong, L.; Avila- Pacheco, J.; Joshi, S.R.; Ueda, I.; Devine, L.; Raddassi, K.; Pierce, K.; Jeanfavre, S.; Bullock, K.; Meng, H.; Clish, C.; Santori, F.R.; Shaw, A.C.; Xavier, R.J. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell, 2022, 21(9), e13682. doi: 10.1111/acel.13682 PMID: 35996998
  49. Maner-Smith, K.M.; Goll, J.B.; Khadka, M.; Jensen, T.L.; Colucci, J.K.; Gelber, C.E.; Albert, C.J.; Bosinger, S.E.; Franke, J.D.; Natrajan, M.; Rouphael, N.; Johnson, R.A.; Sanz, P.; Anderson, E.J.; Hoft, D.F.; Mulligan, M.J.; Ford, D.A.; Ortlund, E.A. Alterations in the human plasma lipidome in response to tularemia vaccination. Vaccines, 2020, 8(3), 414. doi: 10.3390/vaccines8030414 PMID: 32722213
  50. Diray-Arce, J.; Angelidou, A.; Jensen, K.J.; Conti, M.G.; Kelly, R.S.; Pettengill, M.A.; Liu, M.; van Haren, S.D.; McCulloch, S.D.; Michelloti, G.; Idoko, O.; Kollmann, T.R.; Kampmann, B.; Steen, H.; Ozonoff, A.; Lasky-Su, J.; Benn, C.S.; Levy, O. Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro. Cell Rep., 2022, 39(5), 110772. doi: 10.1016/j.celrep.2022.110772 PMID: 35508141
  51. O’Donnell, V.B.; Rossjohn, J.; Wakelam, M.J.O. Phospholipid signaling in innate immune cells. J. Clin. Invest., 2018, 128(7), 2670-2679. doi: 10.1172/JCI97944 PMID: 29683435
  52. Cathcart, M.K. Signal-activated phospholipase regulation of leukocyte chemotaxis. J. Lipid Res., 2009, 50(Suppl)(Suppl.), S231-S236. doi: 10.1194/jlr.R800096-JLR200 PMID: 19109234
  53. Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res., 2020, 80, 101068. doi: 10.1016/j.plipres.2020.101068 PMID: 33068601
  54. Knuplez, E.; Marsche, G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. Int. J. Mol. Sci., 2020, 21(12), 4501. doi: 10.3390/ijms21124501 PMID: 32599910
  55. Dagla, I.; Iliou, A.; Benaki, D.; Gikas, E.; Mikros, E.; Bagratuni, T.; Kastritis, E.; Dimopoulos, M.A.; Terpos, E.; Tsarbopoulos, A. Plasma metabolomic alterations induced by COVID-19 vaccination reveal putative biomarkers reflecting the immune response. Cells, 2022, 11(7), 1241. doi: 10.3390/cells11071241 PMID: 35406806
  56. Ghini, V.; Maggi, L.; Mazzoni, A.; Spinicci, M.; Zammarchi, L.; Bartoloni, A.; Annunziato, F.; Turano, P. Serum NMR profiling reveals differential alterations in the lipoproteome induced by Pfizer-BioNTech vaccine in COVID-19 recovered subjects and naïve subjects. Front. Mol. Biosci., 2022, 9, 839809. doi: 10.3389/fmolb.2022.839809 PMID: 35480886
  57. Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature, 2014, 510(7503), 58-67. doi: 10.1038/nature13475 PMID: 24899305
  58. Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol., 2011, 11(6), 403-415. doi: 10.1038/nri2974 PMID: 21546914
  59. Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 175-191. doi: 10.1038/nrm.2017.107 PMID: 29165427
  60. Arnon, T.I.; Horton, R.M.; Grigorova, I.L.; Cyster, J.G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature, 2013, 493(7434), 684-688. doi: 10.1038/nature11738 PMID: 23263181
  61. Walzer, T.; Chiossone, L.; Chaix, J.; Calver, A.; Carozzo, C.; Garrigue-Antar, L.; Jacques, Y.; Baratin, M.; Tomasello, E.; Vivier, E. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol., 2007, 8(12), 1337-1344. doi: 10.1038/ni1523 PMID: 17965716
  62. Gaggini, M.; Pingitore, A.; Vassalle, C. Plasma ceramides pathophysiology, measurements, challenges, and opportunities. Metabolites, 2021, 11(11), 719. doi: 10.3390/metabo11110719 PMID: 34822377
  63. Reboldi, A.; Dang, E. Cholesterol metabolism in innate and adaptive response. F1000Res, 2018, 7, 1647. doi: 10.12688/f1000research.15500.1
  64. Fessler, M.B. Regulation of adaptive immunity in health and disease by cholesterol metabolism. Curr. Allergy Asthma Rep., 2015, 15(8), 48. doi: 10.1007/s11882-015-0548-7 PMID: 26149587
  65. Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7), 2021. doi: 10.3390/nu12072021 PMID: 32645995
  66. Kidani, Y.; Elsaesser, H.; Hock, M.B.; Vergnes, L.; Williams, K.J.; Argus, J.P.; Marbois, B.N.; Komisopoulou, E.; Wilson, E.B.; Osborne, T.F.; Graeber, T.G.; Reue, K.; Brooks, D.G.; Bensinger, S.J. Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol., 2013, 14(5), 489-499. doi: 10.1038/ni.2570 PMID: 23563690
  67. Hu, X.; Wang, Y.; Hao, L.Y.; Liu, X.; Lesch, C.A.; Sanchez, B.M.; Wendling, J.M.; Morgan, R.W.; Aicher, T.D.; Carter, L.L.; Toogood, P.L.; Glick, G.D. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol., 2015, 11(2), 141-147. doi: 10.1038/nchembio.1714 PMID: 25558972
  68. Bekkering, S.; Arts, R.J.W.; Novakovic, B.; Kourtzelis, I.; van der Heijden, C.D.C.C.; Li, Y.; Popa, C.D.; ter Horst, R.; van Tuijl, J.; Netea-Maier, R.T.; van de Veerdonk, F.L.; Chavakis, T.; Joosten, L.A.B.; van der Meer, J.W.M.; Stunnenberg, H.; Riksen, N.P.; Netea, M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, 172(1-2), 135-146.e9. doi: 10.1016/j.cell.2017.11.025 PMID: 29328908
  69. Griffiths, W.J.; Wang, Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat., 2020, 147, 106381. doi: 10.1016/j.prostaglandins.2019.106381 PMID: 31698146
  70. Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res., 2016, 64, 152-169. doi: 10.1016/j.plipres.2016.09.002 PMID: 27687912
  71. Reinmuth, L.; Hsiao, C.C.; Hamann, J.; Rosenkilde, M.; Mackrill, J. Multiple targets for oxysterols in their regulation of the immune system. Cells, 2021, 10(8), 2078. doi: 10.3390/cells10082078 PMID: 34440846
  72. Spann, N.J.; Glass, C.K. Sterols and oxysterols in immune cell function. Nat. Immunol., 2013, 14(9), 893-900. doi: 10.1038/ni.2681 PMID: 23959186
  73. Dang, E.V.; McDonald, J.G.; Russell, D.W.; Cyster, J.G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5), 1057-1071.e11. doi: 10.1016/j.cell.2017.09.029 PMID: 29033131
  74. Zang, R.; Case, J.B.; Yutuc, E.; Ma, X.; Shen, S.; Gomez Castro, M.F.; Liu, Z.; Zeng, Q.; Zhao, H.; Son, J. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci., 2020, 117(50), 32105-32113. doi: 10.1073/pnas.2012197117
  75. Wang, S.; Li, W.; Hui, H.; Tiwari, S.K.; Zhang, Q.; Croker, B.A.; Rawlings, S.; Smith, D.; Carlin, A.F.; Rana, T.M. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J., 2020, 39(21), e106057. doi: 10.15252/embj.2020106057 PMID: 32944968
  76. Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab., 2020, 32(2), 154-175. doi: 10.1016/j.cmet.2020.06.010 PMID: 32649859
  77. Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci., 2020, 27(1), 87. doi: 10.1186/s12929-020-00679-2 PMID: 32799865
  78. Li, P.; Wu, G. Important roles of amino acids in immune responses. Br. J. Nutr., 2022, 127(3), 398-402. doi: 10.1017/S0007114521004566 PMID: 34776020
  79. Holeček, M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients, 2020, 12(3), 848. doi: 10.3390/nu12030848 PMID: 32235743
  80. Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol., 2014, 5, 532. doi: 10.3389/fimmu.2014.00532 PMID: 25386178
  81. Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; Deyn, P.P.D. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol., 2019, 10(10), 2565. doi: 10.3389/fimmu.2019.02565 PMID: 31736978
  82. Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol., 2018, 11(4), 1024-1038. doi: 10.1038/s41385-018-0019-2 PMID: 29626198
  83. Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol., 2010, 185(6), 3190-3198. doi: 10.4049/jimmunol.0903670 PMID: 20720200
  84. Nguyen, N.T.; Kimura, A.; Nakahama, T.; Chinen, I.; Masuda, K.; Nohara, K.; Fujii-Kuriyama, Y.; Kishimoto, T. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci., 2010, 107(46), 19961-6. doi: 10.1073/pnas.1014465107
  85. Menni, C.; Kastenmüller, G.; Petersen, A.K.; Bell, J.T.; Psatha, M.; Tsai, P.C.; Gieger, C.; Schulz, H.; Erte, I.; John, S.; Brosnan, M.J.; Wilson, S.G.; Tsaprouni, L.; Lim, E.M.; Stuckey, B.; Deloukas, P.; Mohney, R.; Suhre, K.; Spector, T.D.; Valdes, A.M. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol., 2013, 42(4), 1111-1119. doi: 10.1093/ije/dyt094 PMID: 23838602
  86. Fanos, V.; Puddu, M.; Mussap, M. OMICS technologies and personalized vaccination in the COVID-19 era. J. Ped. Neo. Ind. Med. , 2022, 11(1), e110114. doi: 10.7363/110114
  87. Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; Chang, S.E.; Feng, A.; Dhingra, S.; Shah, M.; Lee, A.S.; Chinthrajah, S.; Sindher, S.B.; Mallajosyula, V.; Gao, F.; Sigal, N.; Kowli, S.; Gupta, S.; Pellegrini, K.; Tharp, G.; Maysel-Auslender, S.; Hamilton, S.; Aoued, H.; Hrusovsky, K.; Roskey, M.; Bosinger, S.E.; Maecker, H.T.; Boyd, S.D.; Davis, M.M.; Utz, P.J.; Suthar, M.S.; Khatri, P.; Nadeau, K.C.; Pulendran, B. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596(7872), 410-416. doi: 10.1038/s41586-021-03791-x PMID: 34252919
  88. Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; Al, B.; Seeliger, B.; Welte, T.; David, S.; Grondman, I.; de Nooijer, A.H.; Pickkers, P.; Kleiner, J.L.; Berger, M.M.; Brenner, T.; Putensen, C.; Abdullah, Z.; Latz, E.; Schmidt, S.; Hartmann, G.; Streeck, H.; Kümmerer, B.M.; Kato, H.; Garbi, N.; Netea, M.G.; Hiller, K.; Placek, K.; Bode, C.; Wilhelm, C. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature, 2022, 609(7928), 801-807. doi: 10.1038/s41586-022-05128-8 PMID: 35901960
  89. McClenathan, B.M.; Stewart, D.A.; Spooner, C.E.; Pathmasiri, W.W.; Burgess, J.P.; McRitchie, S.L.; Choi, Y.S.; Sumner, S.C.J. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine, 2017, 35(9), 1238-1245. doi: 10.1016/j.vaccine.2017.01.056 PMID: 28169076
  90. Sasaki, E.; Kusunoki, H.; Momose, H.; Furuhata, K.; Hosoda, K.; Wakamatsu, K.; Mizukami, T.; Hamaguchi, I. Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Sci. Rep., 2019, 9(1), 16249. doi: 10.1038/s41598-019-52686-5 PMID: 31700085
  91. Koeken, V.A.C.M.; Qi, C.; Mourits, V.P.; de Bree, L.C.J.; Moorlag, S.J.C.F.M.; Sonawane, V.; Lemmers, H.; Dijkstra, H.; Joosten, L.A.B.; van Laarhoven, A.; Xu, C.J.; van Crevel, R.; Netea, M.G.; Li, Y. Plasma metabolome predicts trained immunity responses after antituberculosis BCG vaccination. PLoS Biol., 2022, 20(9), e3001765. doi: 10.1371/journal.pbio.3001765 PMID: 36094960

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024