Research Progress in the Clinical Treatment of Familial Hypercholesterolemia
- Authors: Ai J.1, Zhao P.1, Zhang W.1, Rao G.2
-
Affiliations:
- College of Pharmaceutical Science, Zhejiang University of Technology,
- College of Pharmaceutical Science, Zhejiang University of Technology
- Issue: Vol 31, No 9 (2024)
- Pages: 1082-1106
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645200
- DOI: https://doi.org/10.2174/0929867330666230202111849
- ID: 645200
Cite item
Full Text
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.
About the authors
Jing-Yan Ai
College of Pharmaceutical Science, Zhejiang University of Technology,
Email: info@benthamscience.net
Peng-Cheng Zhao
College of Pharmaceutical Science, Zhejiang University of Technology,
Email: info@benthamscience.net
Wen Zhang
College of Pharmaceutical Science, Zhejiang University of Technology,
Email: info@benthamscience.net
Guo-Wu Rao
College of Pharmaceutical Science, Zhejiang University of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Ose, L. Diagnostic, clinical, and therapeutic aspects of familial hypercholesterolemia in children. Semin. Vasc. Med., 2004, 4(1), 51-57. doi: 10.1055/s-2004-822986 PMID: 15199433
- Nohara, A.; Tada, H.; Ogura, M.; Okazaki, S.; Ono, K.; Shimano, H.; Daida, H.; Dobashi, K.; Hayashi, T.; Hori, M.; Matsuki, K.; Minamino, T.; Yokoyama, S.; Harada-Shiba, M. Homozygous familial hypercholesterolemia. J. Atheroscler. Thromb., 2021, 28(7), 665-678. doi: 10.5551/jat.RV17050 PMID: 33867421
- Benn, M.; Watts, G.F.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Mutations causative of familial hypercholesterolaemia: Screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur. Heart J., 2016, 37(17), 1384-1394. doi: 10.1093/eurheartj/ehw028 PMID: 26908947
- Ma, Y.; Gong, Y.; Garg, A.; Zhou, H. Compound heterozygous familial hypercholesterolemia in a Chinese boy with a de novo and transmitted low-density lipoprotein receptor mutation. J. Clin. Lipidol., 2018, 12(1), 230-235.e6. doi: 10.1016/j.jacl.2017.10.005 PMID: 29233637
- Tan, K.; Cheung, C.L.; Yeung, C.Y.; Siu, D.; Leung, J.; Pang, H.K. Genetic screening for familial hypercholesterolaemia in Hong Kong. Hong Kong Med. J., 2018, 24(Suppl 3), 7-10.
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C.; Watson, K.; Wilson, P.W. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 63(25 Pt B), 2889-2934. doi: 10.1016/j.jacc.2013.11.002 PMID: 24239923
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; Wiegman, A.; Santos, R.D.; Watts, G.F.; Parhofer, K.G.; Hovingh, G.K.; Kovanen, P.T.; Boileau, C.; Averna, M.; Borén, J.; Bruckert, E.; Catapano, A.L.; Kuivenhoven, J.A.; Pajukanta, P.; Ray, K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M.R.; Tybjaerg-Hansen, A. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J., 2013, 34(45), 3478-3490. doi: 10.1093/eurheartj/eht273 PMID: 23956253
- van der Graaf, A.; Avis, H.J.; Kusters, D.M.; Vissers, M.N.; Hutten, B.A.; Defesche, J.C.; Huijgen, R.; Fouchier, S.W.; Wijburg, F.A.; Kastelein, J.J.P.; Wiegman, A. Molecular basis of autosomal dominant hypercholesterolemia: Assessment in a large cohort of hypercholesterolemic children. Circulation, 2011, 123(11), 1167-1173. doi: 10.1161/CIRCULATIONAHA.110.979450 PMID: 21382890
- Bouhairie, V.E.; Goldberg, A.C. Familial Hypercholesterolemia. Cardiol. Clin., 2015, 33(2), 169-179. doi: 10.1016/j.ccl.2015.01.001 PMID: 25939291
- Peng, J.; Wu, X.; Wang, S.; Zhang, S.; Wang, X.; Liu, Z.; Hong, J.; Ye, P.; Lin, J. Familial hypercholesterolemia in China half a century: A review of published literature. Atheroscler. Suppl., 2019, 36, 12-18. doi: 10.1016/j.atherosclerosissup.2019.01.003 PMID: 30876527
- Gidding, S.S.; Ann Champagne, M.; de Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; Lopes-Virella, M.; Watts, G.F.; Wierzbicki, A.S. The agenda for familial hypercholesterolemia. Circulation, 2015, 132(22), 2167-2192. doi: 10.1161/CIR.0000000000000297 PMID: 26510694
- Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156. doi: 10.1038/ng1161 PMID: 12730697
- Stoekenbroek, R.M.; Kastelein, J.J.P. Proprotein convertase subtilisin/kexin type 9. Curr. Opin. Cardiol., 2018, 33(3), 269-275. doi: 10.1097/HCO.0000000000000517 PMID: 29561319
- Guo, Q.; Feng, X.; Zhou, Y. PCSK9 variants in familial hypercholesterolemia: A comprehensive synopsis. Front. Genet., 2020, 11, 1020. doi: 10.3389/fgene.2020.01020 PMID: 33173529
- Shaik, N.A.; Al-Qahtani, F.; Nasser, K.; Jamil, K.; Alrayes, N.M.; Elango, R.; Awan, Z.A.; Banaganapalli, B. Molecular insights into the coding region mutations of low density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia. J. Gene Med., 2020, 22(6), e3176. doi: 10.1002/jgm.3176 PMID: 32073192
- Khalil, Y.A.; Rabès, J.P.; Boileau, C.; Varret, M. APOE gene variants in primary dyslipidemia. Atherosclerosis, 2021, 328, 11-22. doi: 10.1016/j.atherosclerosis.2021.05.007 PMID: 34058468
- Yang, S.; Ke, X.; Liang, H.; Li, R.; Zhu, H. Case report: A clinical and genetic analysis of childhood growth hormone deficiency with familial hypercholesterolemia. Front. Endocrinol., 2021, 12, 691490. doi: 10.3389/fendo.2021.691490 PMID: 34220717
- Parini, P.; Angelin, B.; Lobie, P.E.; Norstedt, G.; Rudling, M. Growth hormone specifically stimulates the expression of low density lipoprotein receptors in human hepatoma cells. Endocrinology, 1995, 136(9), 3767-3773. doi: 10.1210/endo.136.9.7649083 PMID: 7649083
- Harris, T.R.; Hammock, B.D. Soluble epoxide hydrolase: Gene structure, expression and deletion. Gene, 2013, 526(2), 61-74. doi: 10.1016/j.gene.2013.05.008 PMID: 23701967
- El-Sherbeni, A.A.; El-Kadi, A.O.S. The role of epoxide hydrolases in health and disease. Arch. Toxicol., 2014, 88(11), 2013-2032. doi: 10.1007/s00204-014-1371-y PMID: 25248500
- Wang, X.; Luo, D.; Wu, S. Molecular dysfunctions of mitochondria-associated endoplasmic reticulum contacts in atherosclerosis. Oxid. Med. Cell. Longev., 2021, 2021, 1-8. doi: 10.1155/2021/2424509 PMID: 34336087
- Yassin, L.M.; Londoño, J.; Montoya, G.; De Sanctis, J.B.; Rojas, M.; Ramírez, L.A.; García, L.F.; Vásquez, G. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL. Autoimmunity, 2011, 44(3), 201-210. doi: 10.3109/08916934.2010.530626 PMID: 21231894
- Moore, K.J.; Koplev, S.; Fisher, E.A.; Tabas, I.; Björkegren, J.L.M.; Doran, A.C.; Kovacic, J.C. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis. J. Am. Coll. Cardiol., 2018, 72(18), 2181-2197. doi: 10.1016/j.jacc.2018.08.2147 PMID: 30360827
- Raines, E.W.; Ross, R. Multiple growth factors are associated with lesions of atherosclerosis: Specificity or redundancy? BioEssays, 1996, 18(4), 271-282. doi: 10.1002/bies.950180405 PMID: 8967895
- Holvoet, P.; Collen, D. Thrombosis and atherosclerosis. Curr. Opin. Lipidol., 1997, 8(5), 320-328. doi: 10.1097/00041433-199710000-00012 PMID: 9335957
- Negre-Salvayre, A.; Guerby, P.; Gayral, S.; Laffargue, M.; Salvayre, R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic. Biol. Med., 2020, 149, 8-22. doi: 10.1016/j.freeradbiomed.2019.10.011 PMID: 31669759
- Prasad, K.; Mishra, M. Mechanism of hypercholesterolemia-induced atherosclerosis. Rev. Cardiovasc. Med., 2022, 23(6), 212. doi: 10.31083/j.rcm2306212
- Schwartz, C.J.; Valente, A.J.; Sprague, E.A.; Kelley, J.L.; Nerem, R.M. The pathogenesis of atherosclerosis: An overview. Clin. Cardiol., 1991, 14(S1), 1-16. doi: 10.1002/clc.4960141302 PMID: 2044253
- Mohana, T.; Navin, A.V.; Jamuna, S.; Sakeena Sadullah, M.S.; Niranjali Devaraj, S. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins In vivo and in vitro study. Food Chem. Toxicol., 2015, 82, 96-105. doi: 10.1016/j.fct.2015.04.028 PMID: 25981678
- Black, D.M. A general assessment of the safety of HMG CoA reductase inhibitors (statins). Curr. Atheroscler. Rep., 2002, 4(1), 34-41. doi: 10.1007/s11883-002-0060-0 PMID: 11772420
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387. doi: 10.1111/j.1582-4934.2001.tb00172.x PMID: 12067471
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol. J. Am. Coll. Cardiol., 2019, 73(24), e285-e350. doi: 10.1016/j.jacc.2018.11.003 PMID: 30423393
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, .; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; pinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188. doi: 10.1093/eurheartj/ehz455 PMID: 31504418
- Rosenson, R.S. Existing and emerging therapies for the treatment of familial hypercholesterolemia. J. Lipid Res., 2021, 62, 100060. doi: 10.1016/j.jlr.2021.100060 PMID: 33716107
- Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 1992, 33(11), 1569-1582. doi: 10.1016/S0022-2275(20)41379-3 PMID: 1464741
- Reiner, . Management of patients with familial hypercholesterolaemia. Nat. Rev. Cardiol., 2015, 12(10), 565-575. doi: 10.1038/nrcardio.2015.92 PMID: 26076948
- Goldberg, A.C.; Robinson, J.G.; Cromwell, W.C.; Ross, J.L.; Ziajka, P.E. Future issues, public policy, and public awareness of familial hypercholesterolemias: Recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol., 2011, 5(3), S46-S51. doi: 10.1016/j.jacl.2011.04.002 PMID: 21600529
- Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; Collins, R. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet, 2010, 376(9753), 1670-1681. doi: 10.1016/S0140-6736(10)61350-5 PMID: 21067804
- Sjouke, B.; Kusters, D.M.; Kastelein, J.J.P.; Hovingh, G.K. Familial hypercholesterolemia: Present and future management. Curr. Cardiol. Rep., 2011, 13(6), 527-536. doi: 10.1007/s11886-011-0219-9 PMID: 21938413
- Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126. doi: 10.1016/j.jacc.2009.10.042 PMID: 20223367
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, .; Riccardi, G.; Taskinen, M-R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Atherosclerosis, 2016, 253, 281-344. doi: 10.1016/j.atherosclerosis.2016.08.018
- Raal, F.J.; Hovingh, G.K.; Catapano, A.L. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis, 2018, 277, 483-492. doi: 10.1016/j.atherosclerosis.2018.06.859 PMID: 30270089
- Hou, R.; Goldberg, A.C. Lowering low-density lipoprotein cholesterol: Statins, ezetimibe, bile acid sequestrants, and combinations: Comparative efficacy and safety. Endocrinol. Metab. Clin. North Am., 2009, 38(1), 79-97. doi: 10.1016/j.ecl.2008.11.007 PMID: 19217513
- Kayikcioglu, M.; Tokgozoglu, L.; Tuncel, O.K.; Pirildar, S.; Can, L. Negative impact of COVID-19 pandemic on the lifestyle and management of patients with homozygous familial hypercholesterolemia. J. Clin. Lipidol., 2020, 14(6), 751-755. doi: 10.1016/j.jacl.2020.09.002 PMID: 32988799
- Scicali, R.; Di Pino, A.; Piro, S.; Rabuazzo, A.M.; Purrello, F. May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects? Nutr. Metab. Cardiovasc. Dis., 2020, 30(7), 1068-1069. doi: 10.1016/j.numecd.2020.05.003 PMID: 32405159
- Frías Vargas, M.; Díaz Rodríguez, A.; Díaz Fernández, B. Lipid treatment in the period COVID-19. Semergen, 2020, 46(7), 497-502. doi: 10.1016/j.semerg.2020.06.014
- Tobert, J.A. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov., 2003, 2(7), 517-526. doi: 10.1038/nrd1112 PMID: 12815379
- Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Kitahara, M.; Sakashita, M.; Sakoda, R. Synthesis and biological evaluations of quinoline-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem., 2001, 9(10), 2727-2743. doi: 10.1016/S0968-0896(01)00198-5 PMID: 11557359
- Bratton, L.D.; Auerbach, B.; Choi, C.; Dillon, L.; Hanselman, J.C.; Larsen, S.D.; Lu, G.; Olsen, K.; Pfefferkorn, J.A.; Robertson, A.; Sekerke, C.; Trivedi, B.K.; Unangst, P.C. Discovery of pyrrole-based hepatoselective ligands as potent inhibitors of HMG-CoA reductase. Bioorg. Med. Chem., 2007, 15(16), 5576-5589. doi: 10.1016/j.bmc.2007.05.031 PMID: 17560788
- Larsen, S.D.; Poel, T.J.; Filipski, K.J.; Kohrt, J.T.; Pfefferkorn, J.A.; Sorenson, R.J.; Tait, B.D.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lu, G.H.; Robertson, A.; Sekerke, C.; Kowala, M.C.; Auerbach, B.J. Pyrazole inhibitors of HMG-CoA reductase: An attempt to dramatically reduce synthetic complexity through minimal analog re-design. Bioorg. Med. Chem. Lett., 2007, 17(20), 5567-5572. doi: 10.1016/j.bmcl.2007.08.004 PMID: 17764936
- Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. Synthesis and biological evaluations of condensed pyridine and condensed pyrimidine-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(10), 1285-1288. doi: 10.1016/S0960-894X(01)00203-7 PMID: 11392538
- Jahng, Y. Design of a new class of HMG-CoA reductase inhibitor. Drugs Future, 1995, 20(4), 387-404.
- Suchy, D.; Łabuzek, K.; Stadnicki, A.; Okopień, B. Ezetimibe a new approach in hypercholesterolemia management. Pharmacol. Rep., 2011, 63(6), 1335-1348. doi: 10.1016/S1734-1140(11)70698-3 PMID: 22358082
- Hamilton-Craig, I.; Kostner, K.; Colquhoun, D.; Woodhouse, S. Combination therapy of statin and ezetimibe for the treatment of familial hypercholesterolemia. Vasc. Health Risk Manag., 2010, 6, 1023-1037. doi: 10.2147/VHRM.S13496 PMID: 21127699
- Sweeney, M.E.; Johnson, R.R. Ezetimibe: An update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin. Drug Metab. Toxicol., 2007, 3(3), 441-450. doi: 10.1517/17425255.3.3.441 PMID: 17539750
- Nutescu, E.A.; Shapiro, N.L. Ezetimibe: A selective cholesterol absorption inhibitor. Pharmacotherapy, 2003, 23(11), 1463-1474. doi: 10.1592/phco.23.14.1463.31942 PMID: 14620392
- Foody, J.M.; Toth, P.P.; Tershakovec, A.M.; Musliner, T.; Tomassini, J.E.; Lowe, R.S.; Neff, D.R.; Davis, H.R. Efficacy and safety of ezetimibe plus atorvastatin therapy. Clin. Lipidol., 2014, 9(4), 441-470. doi: 10.2217/clp.14.36
- Clauss, S.; Wai, K.M.; Kavey, R.E.W.; Kuehl, K. Ezetimibe treatment of pediatric patients with hypercholesterolemia. J. Pediatr., 2009, 154(6), 869-872. doi: 10.1016/j.jpeds.2008.12.044 PMID: 19230898
- Robinson, J.G. Management of familial hypercholesterolemia: A review of the recommendations from the national lipid association expert panel on familial hypercholesterolemia. J. Manag. Care Pharm., 2013, 19(2), 139-149. doi: 10.18553/jmcp.2013.19.2.139 PMID: 23461430
- Liao, J.; Wang, X.; Li, Z.; Ouyang, D. Pharmacokinetic study of oral 14C-radiolabeled hyzetimibe, a new cholesterol absorption inhibitor. Front. Pharmacol., 2021, 12, 665372. doi: 10.3389/fphar.2021.665372 PMID: 34122085
- Ruan, Z.; jiang, B.; Chen, J.; Zhang, X.; Lou, H.; Xiang, M.; Shao, Q.; Wang, J. Pharmacokinetics, pharmacodynamics, safety, and tolerability of hyzetimibe (HS-25) in healthy Chinese subjects. J. Clin. Pharmacol., 2014, 54(10), 1144-1152. doi: 10.1002/jcph.310 PMID: 24752831
- Wang, Y.; Zhang, H.; Huang, W.; Kong, J.; Zhou, J.; Zhang, B. 2-Azetidinone derivatives: Design, synthesis and evaluation of cholesterol absorption inhibitors. Eur. J. Med. Chem., 2009, 44(4), 1638-1643. doi: 10.1016/j.ejmech.2008.09.033 PMID: 18990470
- Insull, W., Jr; Toth, P.; Mullican, W.; Hunninghake, D.; Burke, S.; Donovan, J.M.; Davidson, M.H. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: A 24-week randomized controlled trial. Mayo Clin. Proc., 2001, 76(10), 971-982. doi: 10.4065/76.10.971 PMID: 11605698
- Shepherd, J.; Packard, C.J.; Bicker, S.; Lawrie, T.D.V.; Morgan, H.G. Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N. Engl. J. Med., 1980, 302(22), 1219-1222. doi: 10.1056/NEJM198005293022202 PMID: 7366673
- Stein, E.A.; Marais, A.D.; Szamosi, T.; Raal, F.J.; Schurr, D.; Urbina, E.M.; Hopkins, P.N.; Karki, S.; Xu, J.; Misir, S.; Melino, M. Colesevelam hydrochloride: Efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J. Pediatr., 2010, 156(2), 231-236. doi: 10.1016/j.jpeds.2009.08.037
- Robinson, D.M.; Keating, G.M. Colesevelam. Am. J. Cardiovasc. Drugs, 2007, 7(6), 453-465. doi: 10.2165/00129784-200707060-00009 PMID: 18076213
- Tawara, K.; Tomikawa, M.; Abiko, Y. Mode of action of probucol in reducing serum cholesterol in mice. Jpn. J. Pharmacol., 1986, 40(1), 123-133. doi: 10.1254/jjp.40.123 PMID: 3959347
- Lau, A.K.; Leichtweis, S.B.; Hume, P.; Mashima, R.; Hou, J.Y.; Chaufour, X.; Wilkinson, B.; Hunt, N.H.; Celermajer, D.S.; Stocker, R. Probucol promotes functional reendothelialization in balloon-injured rabbit aortas. Circulation, 2003, 107(15), 2031-2036. doi: 10.1161/01.CIR.0000062682.40051.43 PMID: 12681995
- Buckley, M.M.T.; Goa, K.L.; Price, A.H.; Brogden, R.N. Probucol. Drugs, 1989, 37(6), 761-800. doi: 10.2165/00003495-198937060-00002 PMID: 2667936
- Yamashita, S.; Masuda, D.; Matsuzawa, Y. Did we abandon probucol too soon? Curr. Opin. Lipidol., 2015, 26(4), 304-316. doi: 10.1097/MOL.0000000000000199 PMID: 26125504
- Yamashita, S.; Bujo, H.; Arai, H.; Harada-Shiba, M.; Matsui, S.; Fukushima, M.; Saito, Y.; Kita, T.; Matsuzawa, Y. Long-term probucol treatment prevents secondary cardiovascular events: A cohort study of patients with heterozygous familial hypercholesterolemia in Japan. J. Atheroscler. Thromb., 2008, 15(6), 292-303. doi: 10.5551/jat.E610 PMID: 19060422
- Ogura, M. PCSK9 inhibition in the management of familial hypercholesterolemia. J. Cardiol., 2018, 71(1), 1-7. doi: 10.1016/j.jjcc.2017.07.002 PMID: 28784313
- Seidah, N.G. Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr. Pharm. Des., 2013, 19(17), 3161-3172. doi: 10.2174/13816128113199990313 PMID: 23317404
- Stein, E.A.; Honarpour, N.; Wasserman, S.M.; Xu, F.; Scott, R.; Raal, F.J. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation, 2013, 128(19), 2113-2120. doi: 10.1161/CIRCULATIONAHA.113.004678 PMID: 24014831
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019, 139(25), e1082-e1143. doi: 10.1161/CIR.0000000000000625 PMID: 30586774
- Wang, Y.; Liu, Z.P. PCSK9 inhibitors: Novel therapeutic strategies for lowering LDL cholesterol. Mini Rev. Med. Chem., 2018, 19(2), 165-176. doi: 10.2174/1389557518666180423111442 PMID: 29692249
- Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J.P. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499. doi: 10.1056/NEJMoa1501031 PMID: 25773378
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722. doi: 10.1056/NEJMoa1615664 PMID: 28304224
- McKenney, J.M. Understanding PCSK9 and anti-PCSK9 therapies. J. Clin. Lipidol., 2015, 9(2), 170-186. doi: 10.1016/j.jacl.2015.01.001 PMID: 25911073
- Wilkinson, M.J.; Davidson, M.H. Recent developments in the treatment of familial hypercholesterolemia: A review of several new drug classes. Curr. Treat. Options Cardiovasc. Med., 2013, 15(6), 696-705. doi: 10.1007/s11936-013-0272-3 PMID: 24222265
- Ling, H.; Burns, T.L.; Hilleman, D.E. An update on the clinical development of proprotein convertase subtilisin kexin 9 inhibitors, novel therapeutic agents for lowering low-density lipoprotein cholesterol. Cardiovasc. Ther., 2014, 32(2), 82-88. doi: 10.1111/1755-5922.12056 PMID: 24354905
- Torres, E.; Goicoechea, M.; Hernández, A.; Rodríguez Ferrero, M.L.; García, A.; Macías, N.; Anaya, F. Efficacy of Evolocumab vs. low density lipoprotein cholesterol apheresis in patients with familial hypercholesterolemia and high cardiovascular risk (EVOLAFER01). J. Clin. Apher., 2020, 35(1), 9-17. doi: 10.1002/jca.21752 PMID: 31663632
- Di Minno, M.N.D.; Gentile, M.; Di Minno, A.; Iannuzzo, G.; Calcaterra, I.; Buonaiuto, A.; Di Taranto, M.D.; Giacobbe, C.; Fortunato, G.; Rubba, P.O.F. Changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis., 2020, 30(6), 996-1004. doi: 10.1016/j.numecd.2020.02.018 PMID: 32402582
- Mahmood, T.; Minnier, J.; Ito, M.K.; Li, Q.H.; Koren, A.; Kam, I.W.; Fazio, S.; Shapiro, M.D. Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: A pooled analysis from 10 ODYSSEY Phase 3 studies. Eur. J. Prev. Cardiol., 2021, 28(8), 816-822. doi: 10.1177/2047487320915803 PMID: 34298554
- Yadav, K.; Sharma, M.; Ferdinand, K.C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present perspectives and future horizons. Nutr. Metab. Cardiovasc. Dis., 2016, 26(10), 853-862. doi: 10.1016/j.numecd.2016.05.006 PMID: 27352986
- Rosenson, R.S.; Hegele, R.A.; Fazio, S.; Cannon, C.P. The evolving future of PCSK9 inhibitors. J. Am. Coll. Cardiol., 2018, 72(3), 314-329. doi: 10.1016/j.jacc.2018.04.054 PMID: 30012326
- Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51. doi: 10.1056/NEJMoa1609243 PMID: 27959715
- Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440. doi: 10.1056/NEJMoa1615758 PMID: 28306389
- Gennemark, P.; Walter, K.; Clemmensen, N.; Rekić, D.; Nilsson, C.A.M.; Knöchel, J.; Hölttä, M.; Wernevik, L.; Rosengren, B.; Kakol-Palm, D.; Wang, Y.; Yu, R.Z.; Geary, R.S.; Riney, S.J.; Monia, B.P.; Isaksson, R.; Jansson-Löfmark, R.; Rocha, C.S.J.; Lindén, D.; Hurt-Camejo, E.; Crooke, R.; Tillman, L.; Rydén-Bergsten, T.; Carlsson, B.; Andersson, U.; Elebring, M.; Tivesten, A.; Davies, N. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med., 2021, 13(593), eabe9117. doi: 10.1126/scitranslmed.abe9117 PMID: 33980578
- Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong- Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955. doi: 10.1074/jbc.M113.514067 PMID: 24225950
- Zhang, Y.; Ultsch, M.; Skelton, N.J.; Burdick, D.J.; Beresini, M.H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C.; Wu, Y.; Shia, S.; Moran, P.; Di Lello, P.; Eigenbrot, C.; Kirchhofer, D. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856. doi: 10.1038/nsmb.3453 PMID: 28825733
- Lintner, N.G.; McClure, K.F.; Petersen, D.; Londregan, A.T.; Piotrowski, D.W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P.M.; Maguire, B.; Geoghegan, K.F.; Huang, A.; Rolph, T.; Liras, S.; Doudna, J.A.; Dullea, R.G.; Cate, J.H.D. Selective stalling of human translation through small- molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882. doi: 10.1371/journal.pbio.2001882 PMID: 28323820
- Liu, J.W.; Jiang, B.; Zhao, S.P.; Cai, S.Y.; Huang, M.H.; Fang, P.F.; Ruan, Z.R.; Chen, M.L.; Shou, Q.Y.; Briand, F.; Wang, J.A. CVI-LM001, a first-in-class novel oral PCSK9 modulator for hypercholesterolemia and NASH: Preclinical and first-in-human studies. Hepatology, 2020, 72(1)(Suppl.), 1014.
- Cao, S.; Xu, P.; Yan, J.; Liu, H.; Liu, L.; Cheng, L.; Qiu, F.; Kang, N. Berberrubine and its analog, hydroxypropyl berberrubine, regulate LDL-R and PCSK9 expression via the ERK signal pathway to exert cholesterol lowering effects in human hepatoma HepG2 cells. J. Cell. Biochem., 2019, 120(2), 1340-1349. doi: 10.1002/jcb.27102 PMID: 30335889
- Jia, Y.J.; Xu, R.X.; Sun, J.; Tang, Y.; Li, J.J. Enhanced circulating PCSK9 concentration by berberine through SREBP-2 pathway in high fat diet-fed rats. J. Transl. Med., 2014, 12(1), 103. doi: 10.1186/1479-5876-12-103 PMID: 24755036
- Tai, M.H.; Chen, P.K.; Chen, P.Y.; Wu, M.J.; Ho, C.T.; Yen, J.H. Curcumin enhances cell-surface LDL-R level and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. Mol. Nutr. Food Res., 2014, 58(11), 2133-2145. doi: 10.1002/mnfr.201400366 PMID: 25164566
- Rader, D.J.; Kastelein, J.J.P. Lomitapide and mipomersen. Circulation, 2014, 129(9), 1022-1032. doi: 10.1161/CIRCULATIONAHA.113.001292 PMID: 24589695
- Davis, K.A.; Miyares, M.A. Lomitapide: A novel agent for the treatment of homozygous familial hypercholesterolemia. Am. J. Health Syst. Pharm., 2014, 71(12), 1001-1008. doi: 10.2146/ajhp130592 PMID: 24865757
- Cuchel, M.; Meagher, E.A.; du Toit Theron, H.; Blom, D.J.; Marais, A.D.; Hegele, R.A.; Averna, M.R.; Sirtori, C.R.; Shah, P.K.; Gaudet, D.; Stefanutti, C.; Vigna, G.B.; Du Plessis, A.M.E.; Propert, K.J.; Sasiela, W.J.; Bloedon, L.T.; Rader, D.J. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: A single-arm, open-label, phase 3 study. Lancet, 2013, 381(9860), 40-46. doi: 10.1016/S0140-6736(12)61731-0 PMID: 23122768
- Berberich, A.J.; Hegele, R.A. Lomitapide for the treatment of hypercholesterolemia. Expert Opin. Pharmacother., 2017, 18(12), 1261-1268. doi: 10.1080/14656566.2017.1340941 PMID: 28598687
- Cuchel, M.; Bloedon, L.T.; Szapary, P.O.; Kolansky, D.M.; Wolfe, M.L.; Sarkis, A.; Millar, J.S.; Ikewaki, K.; Siegelman, E.S.; Gregg, R.E.; Rader, D.J. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med., 2007, 356(2), 148-156. doi: 10.1056/NEJMoa061189 PMID: 17215532
- Averna, M.; Cefalù, A.B.; Stefanutti, C.; Di Giacomo, S.; Sirtori, C.R.; Vigna, G. Individual analysis of patients with HoFH participating in a phase 3 trial with lomitapide: The Italian cohort. Nutr. Metab. Cardiovasc. Dis., 2016, 26(1), 36-44. doi: 10.1016/j.numecd.2015.11.001 PMID: 26723464
- Tuteja, S.; Duffy, D.; Dunbar, R.L.; Movva, R.; Gadi, R.; Bloedon, L.T.; Cuchel, M. Pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, lomitapide, with drugs commonly used in the management of hypercholesterolemia. Pharmacotherapy, 2014, 34(3), 227-239. doi: 10.1002/phar.1351 PMID: 24734312
- Markham, A. Evinacumab: First approval. Drugs, 2021, 81(9), 1101-1105. doi: 10.1007/s40265-021-01516-y PMID: 34003472
- Ling, P.; Zheng, X.; Luo, S.; Ge, J.; Xu, S.; Weng, J. Targeting angiopoietin like 3 in atherosclerosis: From bench to bedside. Diabetes Obes. Metab., 2021, 23(9), 2020-2034. doi: 10.1111/dom.14450 PMID: 34047441
- Christopoulou, E.; Elisaf, M.; Filippatos, T. Effects of angiopoietin-like 3 on triglyceride regulation, glucose homeostasis, and diabetes. Dis. Markers, 2019, 2019, 1-8. doi: 10.1155/2019/6578327 PMID: 30944669
- Lu, X. Structure and function of angiopoietin-like protein 3 (ANGPTL3) in atherosclerosis. Curr. Med. Chem., 2020, 27(31), 5159-5174. doi: 10.2174/0929867326666190621120523 PMID: 31223079
- Lang, W.; Frishman, W.H. Angiopoietin-like 3 protein inhibition: A new frontier in lipid-lowering treatment. Cardiol. Rev., 2019, 27(4), 211-217. doi: 10.1097/CRD.0000000000000258 PMID: 31008773
- Mohamed, F.; Botha, T.C.; Raal, F.J. Inhibition of angiopoietin-like 3 for the management of severe hypercholesterolemia. Curr. Opin. Lipidol., 2021, 32(4), 213-218. doi: 10.1097/MOL.0000000000000755 PMID: 33883446
- Wang, Y.; Gusarova, V.; Banfi, S.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res., 2015, 56(7), 1296-1307. doi: 10.1194/jlr.M054882 PMID: 25954050
- Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; ODushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; Leader, J.B.; Murray, M.F.; Ritchie, M.D.; Kirchner, H.L.; Habegger, L.; Lopez, A.; Penn, J.; Zhao, A.; Shao, W.; Stahl, N.; Murphy, A.J.; Hamon, S.; Bouzelmat, A.; Zhang, R.; Shumel, B.; Pordy, R.; Gipe, D.; Herman, G.A.; Sheu, W.H.H.; Lee, I.T.; Liang, K.W.; Guo, X.; Rotter, J.I.; Chen, Y.D.I.; Kraus, W.E.; Shah, S.H.; Damrauer, S.; Small, A.; Rader, D.J.; Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; van den Hoek, A.M.; Princen, H.M.G.; Ledbetter, D.H.; Carey, D.J.; Overton, J.D.; Reid, J.G.; Sasiela, W.J.; Banerjee, P.; Shuldiner, A.R.; Borecki, I.B.; Teslovich, T.M.; Yancopoulos, G.D.; Mellis, S.J.; Gromada, J.; Baras, A. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med., 2017, 377(3), 211-221. doi: 10.1056/NEJMoa1612790 PMID: 28538136
- Mohamed, F.; Seedat, F.; Raal, F.J. Novel therapies for familial hypercholesterolemia. Curr. Opin. Endocrinol. Diabetes Obes., 2021, 28(2), 188-195. doi: 10.1097/MED.0000000000000590 PMID: 33278127
- Warden, B.A.; Duell, P.B. Evinacumab for treatment of familial hypercholesterolemia. Expert Rev. Cardiovasc. Ther., 2021, 19(8), 739-751. doi: 10.1080/14779072.2021.1955349 PMID: 34253139
- Brandts, J.; Ray, K.K. Bempedoic acid, an inhibitor of ATP citrate lyase for the treatment of hypercholesterolemia: Early indications and potential. Expert Opin. Investig. Drugs, 2020, 29(8), 763-770. doi: 10.1080/13543784.2020.1778668 PMID: 32564642
- Ballantyne, C.M.; Bays, H.; Catapano, A.L.; Goldberg, A.; Ray, K.K.; Saseen, J.J. Role of bempedoic acid in clinical practice. Cardiovasc. Drugs Ther., 2021, 35(4), 853-864. doi: 10.1007/s10557-021-07147-5 PMID: 33818688
- Kelly, M.S.; Sulaica, E.M.; Beavers, C.J. Role of bempedoic acid in dyslipidemia management. J. Cardiovasc. Pharmacol., 2020, 76(4), 376-388. doi: 10.1097/FJC.0000000000000887 PMID: 32732494
- Susekov, A.V.; Korol, L.A.; Watts, G.F. Bempedoic acid in the treatment of patients with dyslipidemias and statin intolerance. Cardiovasc. Drugs Ther., 2021, 35(4), 841-852. doi: 10.1007/s10557-020-07139-x PMID: 33502687
- Marrs, J.C.; Anderson, S.L. Bempedoic acid for the treatment of dyslipidemia. Drugs Context, 2020, 9(9), 1-9. doi: 10.7573/dic.2020-6-5 PMID: 32922503
- Broekhuizen, K.; Jelsma GM, J.; van PoppelNM, M.; Koppes LJ, L.; Brug, J.; van Mechelen, W. Is the process of delivery of an individually tailored lifestyle intervention associated with improvements in LDL cholesterol and multiple lifestyle behaviours in people with Familial Hypercholesterolemia? BMC Public Health, 2012, 12(1), 348. doi: 10.1186/1471-2458-12-348 PMID: 22583789
- McGuire, S. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv. Nutr., 2016, 7(1), 202-204. doi: 10.3945/an.115.011684 PMID: 26773024
- Smith, S.C., Jr; Allen, J.; Blair, S.N.; Bonow, R.O.; Brass, L.M.; Fonarow, G.C.; Grundy, S.M.; Hiratzka, L.; Jones, D.; Krumholz, H.M.; Mosca, L.; Pasternak, R.C.; Pearson, T.; Pfeffer, M.A.; Taubert, K.A. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: Endorsed by the National Heart, Lung, and Blood Institute. Circulation, 2006, 113(19), 2363-2372. doi: 10.1161/CIRCULATIONAHA.106.174516 PMID: 16702489
- Moruisi, K.G.; Oosthuizen, W.; Opperman, A.M. Phytosterols/stanols lower cholesterol concentrations in familial hypercholesterolemic subjects: A systematic review with meta-analysis. J. Am. Coll. Nutr., 2006, 25(1), 41-48. doi: 10.1080/07315724.2006.10719513 PMID: 16522931
- Jansen, A.C.M.; Aalst-Cohen, E.S.; Tanck, M.W.; Trip, M.D.; Lansberg, P.J.; Liem, A.H.; Roeters van Lennep, H.W.O.; Sijbrands, E.J.G.; Kastelein, J.J.P. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: Data in 2400 patients. J. Intern. Med., 2004, 256(6), 482-490. doi: 10.1111/j.1365-2796.2004.01405.x PMID: 15554949
- Alonso, R.; Mata, N.; Castillo, S.; Fuentes, F.; Saenz, P.; Muñiz, O.; Galiana, J.; Figueras, R.; Diaz, J.L.; Gomez-Enterría, P.; Mauri, M.; Piedecausa, M.; Irigoyen, L.; Aguado, R.; Mata, P. Cardiovascular disease in familial hypercholesterolaemia: Influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis, 2008, 200(2), 315-321. doi: 10.1016/j.atherosclerosis.2007.12.024 PMID: 18243212
- Page, M.M.; Bell, D.A.; Hooper, A.J.; Watts, G.F.; Burnett, J.R. Lipoprotein apheresis and new therapies for severe familial hypercholesterolemia in adults and children. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(3), 387-403. doi: 10.1016/j.beem.2013.10.004 PMID: 24840266
- Thompson, G.R. Recommendations for the use of LDL apheresis. Atherosclerosis, 2008, 198(2), 247-255. doi: 10.1016/j.atherosclerosis.2008.02.009 PMID: 18371971
- Moriarty, P.M.; Hemphill, L. Lipoprotein apheresis. Cardiol. Clin., 2015, 33(2), 197-208. doi: 10.1016/j.ccl.2015.02.002 PMID: 25939293
- Stefanutti, C.; Thompson, G.R. Lipoprotein apheresis in the management of familial hypercholesterolaemia: Historical perspective and recent advances. Curr. Atheroscler. Rep., 2015, 17(1), 465. doi: 10.1007/s11883-014-0465-6 PMID: 25410046
- Makino, H.; Koezuka, R.; Tamanaha, T.; Ogura, M.; Matsuki, K.; Hosoda, K.; Harada-Shiba, M. Familial hypercholesterolemia and lipoprotein apheresis. J. Atheroscler. Thromb., 2019, 26(8), 679-687. doi: 10.5551/jat.RV17033 PMID: 31231083
- Stefanutti, C.; Julius, U.; Watts, G.F.; Harada-Shiba, M.; Cossu, M.; Schettler, V.J.; De Silvestro, G.; Soran, H.; Van Lennep, J.R.; Pisciotta, L.; Klör, H.U.; Widhalm, K.; Moriarty, P.M.; DAlessandri, G.; Bianciardi, G.; Bosco, G.; De Fusco, G.; Di Giacomo, S.; Morozzi, C.; Mesce, D.; Vitale, M.; Sovrano, B.; Drogari, E.; Ewald, N.; Gualdi, G.; Jaeger, B.R.; Lanti, A.; Marson, P.; Martino, F.; Migliori, G.; Parasassi, T.; Pavan, A.; Perla, F.M.; Brunelli, R.; Perrone, G.; Renga, S.; Ries, W.; Romano, N.; Romeo, S.; Pergolini, M.; Labbadia, G.; Di Iorio, B.; De Palo, T.; Abbate, R.; Marcucci, R.; Poli, L.; Ardissino, G.; Ottone, P.; Tison, T.; Favari, E.; Borgese, L.; Shafii, M.; Gozzer, M.; Pacella, E.; Torromeo, C.; Parassassi, T.; Berni, A.; Guardamagna, O.; Zenti, M.G.; Guitarrini, M.R.; Berretti, D.; Hohenstein, B.; Saheb, S.; Bjelakovic, B.; Williams, H. Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs. J. Clin. Lipidol., 2017, 11(4), 858-871. doi: 10.1016/j.jacl.2017.04.114 PMID: 28572002
- Wang, A.; Richhariya, A.; Gandra, S.R.; Calimlim, B.; Kim, L.; Quek, R.G.W.; Nordyke, R.J.; Toth, P.P. Systematic review of low density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc., 2016, 5(7), e003294. doi: 10.1161/JAHA.116.003294 PMID: 27385428
- Thompson, G.; Parhofer, K.G. Current role of lipoprotein apheresis. Curr. Atheroscler. Rep., 2019, 21(7), 26. doi: 10.1007/s11883-019-0787-5 PMID: 31041550
- Koziolek, M.J.; Mueller, G.A. Impact of LDL-Apheresis on inflammation and microcirculation. Atheroscler. Suppl., 2009, 10(5), 56-58. doi: 10.1016/S1567-5688(09)71812-4 PMID: 20129376
- Stefanutti, C.; Morozzi, C.; Petta, A. Lipid and low-density-lipoprotein apheresis. Effects on plasma inflammatory profile and on cytokine pattern in patients with severe dyslipidemia. Cytokine, 2011, 56(3), 842-849. doi: 10.1016/j.cyto.2011.08.027 PMID: 21920771
- France, M.; Rees, A.; Datta, D.; Thompson, G.; Capps, N.; Ferns, G.; Ramaswami, U.; Seed, M.; Neely, D.; Cramb, R.; Shoulders, C.; Barbir, M.; Pottle, A.; Eatough, R.; Martin, S.; Bayly, G.; Simpson, B.; Halcox, J.; Edwards, R.; Main, L.; Payne, J.; Soran, H. HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom. Atherosclerosis, 2016, 255, 128-139. doi: 10.1016/j.atherosclerosis.2016.10.017 PMID: 27839699
- Kayikcioglu, M.; Tokgozoglu, L.; Yilmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gokce, C.; Temizhan, A.; Ozcebe, O.I.; Akyol, T.K.; Okutan, H.; Sag, S.; Gul, O.O.; Salcioglu, Z.; Yenercag, M.; Altunkeser, B.B.; Kuku, I.; Yasar, H.Y.; Kurtoglu, E.; Kose, M.D.; Demircioglu, S.; Pekkolay, Z.; Ilhan, O. A nation-wide survey of patients with homozygous familial hypercholesterolemia phenotype undergoing LDL-apheresis in Turkey (A-HIT 1 registry). Atherosclerosis, 2018, 270, 42-48. doi: 10.1016/j.atherosclerosis.2018.01.034 PMID: 29407887
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; Tybjaerg-Hansen, A.; Watts, G.F.; Averna, M.; Boileau, C.; Borén, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M.R.; Wiegman, A.; Wiklund, O.; Chapman, M.J.; Cuchel, M.; Bruckert, E.; Chapman, M.J.; Descamps, O.S.; Ginsberg, H.N.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Raal, F.J.; Santos, R.D.; Steinhagen-Thiessen, E.; Tybjaerg-Hansen, A.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Averna, M.; Boileau, C.; Boren, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M-R.; Wiegman, A.; Wiklund, O. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J., 2014, 35(32), 2146-2157. doi: 10.1093/eurheartj/ehu274 PMID: 25053660
- Kayıkçıoğlu, M.; Kısmalı, E.; Can, L.; Payzin, S. Long-term follow-up in patients with homozygous familial hypercholesterolemia; 13-year experience of a university hospital lipid clinic. Turk Kardiyol Dern Ars, 2014, 42(7), 599-611. doi: 10.5543/tkda.2014.09633
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; Zantek, N.D.; Dunbar, N.M.; Schwartz, G.E.J. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice Evidence Based Approach from the Writing Committee of the American Society for Apheresis: The eighth special issue. J. Clin. Apher., 2019, 34(3), 171-354. doi: 10.1002/jca.21705 PMID: 31180581
- Thompson, G.R. Managing homozygous familial hypercholesterolaemia from cradle to grave. Atheroscler. Suppl., 2015, 18, 16-20. doi: 10.1016/j.atherosclerosissup.2015.02.002 PMID: 25936299
- Harada-Shiba, M.; Arai, H.; Oikawa, S.; Ohta, T.; Okada, T.; Okamura, T.; Nohara, A.; Bujo, H.; Yokote, K.; Wakatsuki, A.; Ishibashi, S.; Yamashita, S. Guidelines for the management of familial hypercholesterolemia. J. Atheroscler. Thromb., 2012, 19(12), 1043-1060. doi: 10.5551/jat.14621 PMID: 23095242
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; McGowan, M.P.; Moriarty, P.M.; Cromwell, W.C.; Ross, J.L.; Ziajka, P.E. Familial Hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients. J. Clin. Lipidol., 2011, 5(3), S1-S8. doi: 10.1016/j.jacl.2011.04.003 PMID: 21600525
- Stefanutti, C.; Julius, U. Lipoprotein apheresis: State of the art and novelties. Atheroscler. Suppl., 2013, 14(1), 19-27. doi: 10.1016/j.atherosclerosissup.2012.10.021 PMID: 23357136
- Kayikcioglu, M.; Kuman-Tunçel, O.; Pirildar, S.; Yílmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gökçe, C.; Temizhan, A.; Özcebe, O.I.; Akyol, T.K.; Okutan, H.; Sağ, S.; Oz Gul, O.; Salcioglu, Z.; Yenercag, M.; Altunkeser, B.B.; Kuku, I.; Yasar, H.Y.; Kurtoğlu, E.; Demir, M.; Demircioğlu, S.; Pekkolay, Z.; Ílhan, O.; Tokgozoglu, L. Clinical management, psychosocial characteristics, and quality of life in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis in Turkey: Results of a nationwide survey (A-HIT1 registry). J. Clin. Lipidol., 2019, 13(3), 455-467. doi: 10.1016/j.jacl.2019.02.001 PMID: 30928440
- Bilheimer, D.W.; Goldstein, J.L.; Grundy, S.M.; Starzl, T.E.; Brown, M.S. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N. Engl. J. Med., 1984, 311(26), 1658-1664. doi: 10.1056/NEJM198412273112603 PMID: 6390206
- Alim, A.; Tokat, Y.; Erdogan, Y.; Gokkaya, Z.; Dayangac, M.; Yuzer, Y.; Oezcelik, A. Liver transplantation for homozygote familial hypercholesterolemia: The only curative treatment. Pediatr. Transplant., 2016, 20(8), 1060-1064. doi: 10.1111/petr.12763 PMID: 27435024
- Page, M.M.; Ekinci, E.I.; Jones, R.M.; Angus, P.W.; Gow, P.J.; OBrien, R.C. Liver transplantation for the treatment of homozygous familial hypercholesterolaemia in an era of emerging lipid-lowering therapies. Intern. Med. J., 2014, 44(6), 601-604. doi: 10.1111/imj.12444 PMID: 24946816
- Kolovou, G.; Vasiliadis, I.; Gontoras, N.; Kolovou, V.; Hatzigeorgiou, G. Microsomal transfer protein inhibitors, new approach for treatment of familial hypercholesterolemia, review of the literature, original findings, and clinical significance. Cardiovasc. Ther., 2015, 33(2), 71-78. doi: 10.1111/1755-5922.12105 PMID: 25604780
- Lyseng-Willliamson, K.A.; Perry, C.M. Lomitapide: A guide to its use in adults with homozygous familial hypercholesterolaemia in the EU. Drugs Ther. Perspect., 2013, 29(12), 373-378. doi: 10.1007/s40267-013-0087-z
- Moini, M.; Mistry, P.; Schilsky, M.L. Liver transplantation for inherited metabolic disorders of the liver. Curr. Opin. Organ Transplant., 2010, 15(3), 269-276. doi: 10.1097/MOT.0b013e3283399dbd PMID: 20489626
- Ibrahim, M.; El-Hamamsy, I.; Barbir, M.; Yacoub, M.H. Translational lessons from a case of combined heart and liver transplantation for familial hypercholesterolemia 20 years post-operatively. J. Cardiovasc. Transl. Res., 2012, 5(3), 351-358. doi: 10.1007/s12265-011-9311-1 PMID: 21882079
- Ishigaki, Y.; Kawagishi, N.; Hasegawa, Y.; Sawada, S.; Katagiri, H.; Satomi, S.; Oikawa, S. Liver transplantation for homozygous familial hypercholesterolemia. J. Atheroscler. Thromb., 2019, 26(2), 121-127. doi: 10.5551/jat.RV17029 PMID: 30555131
- Malatack MD, J.J. Liver transplantation as treatment for familial homozygous hypercholesterolemia: Too early or too late. Pediatr. Transplant., 2011, 15(2), 123-125. doi: 10.1111/j.1399-3046.2010.01458.x PMID: 21219559
- Hackl, C.; Schlitt, H.J.; Melter, M.; Knoppke, B.; Loss, M. Current developments in pediatric liver transplantation. World J. Hepatol., 2015, 7(11), 1509-1520. doi: 10.4254/wjh.v7.i11.1509 PMID: 26085910
- Goldmann, R.; Tichý, L.; Freiberger, T.; Zapletalová, P.; Letocha, O.; Soka, V.; Fajkus, J.; Fajkusová, L. Genomic characterization of large rearrangements of the LDL-R gene in Czech patients with familial hypercholesterolemia. BMC Med. Genet., 2010, 11(1), 115. doi: 10.1186/1471-2350-11-115 PMID: 20663204
- Van Craeyveld, E.; Jacobs, F.; Gordts, S.C.; De Geest, B. Gene therapy for familial hypercholesterolemia. Curr. Pharm. Des., 2011, 17(24), 2575-2591. doi: 10.2174/138161211797247550 PMID: 21774774
- Soria, L.F.; Ludwig, E.H.; Clarke, H.R.; Vega, G.L.; Grundy, S.M.; McCarthy, B.J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA, 1989, 86(2), 587-591. doi: 10.1073/pnas.86.2.587 PMID: 2563166
- Palacios, L.; Grandoso, L.; Cuevas, N.; Olano-Martín, E.; Martinez, A.; Tejedor, D.; Stef, M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis, 2012, 221(1), 137-142. doi: 10.1016/j.atherosclerosis.2011.12.021 PMID: 22244043
- Varret, M.; Abifadel, M.; Rabès, J-P.; Boileau, C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin. Genet., 2008, 73(1), 1-13. doi: 10.1111/j.1399-0004.2007.00915.x PMID: 18028451
- Iacocca, M.A.; Chora, J.R.; Carrié, A.; Freiberger, T.; Leigh, S.E.; Defesche, J.C.; Kurtz, C.L.; DiStefano, M.T.; Santos, R.D.; Humphries, S.E.; Mata, P.; Jannes, C.E.; Hooper, A.J.; Wilemon, K.A.; Benlian, P.; OConnor, R.; Garcia, J.; Wand, H.; Tichy, L.; Sijbrands, E.J.; Hegele, R.A.; Bourbon, M.; Knowles, J.W. ClinVar database of global familial hypercholesterolemia associated DNA variants. Hum. Mutat., 2018, 39(11), 1631-1640. doi: 10.1002/humu.23634 PMID: 30311388
- Berberich, A.J.; Hegele, R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol., 2019, 16(1), 9-20. doi: 10.1038/s41569-018-0052-6 PMID: 29973710
- Al-Allaf, F.A.; Coutelle, C.; Waddington, S.N.; David, A.L.; Harbottle, R.; Themis, M. LDLR-Gene therapy for familial hypercholesterolaemia: Problems, progress, and perspectives. Int. Arch. Med., 2010, 3(1), 36. doi: 10.1186/1755-7682-3-36 PMID: 21144047
- Van Craeyveld, E.; Gordts, S.C.; Nefyodova, E.; Jacobs, F.; De Geest, B. Regression and stabilization of advanced murine atherosclerotic lesions: A comparison of LDL lowering and HDL raising gene transfer strategies. J. Mol. Med. (Berl.), 2011, 89(6), 555-567. doi: 10.1007/s00109-011-0722-x PMID: 21249329
- Kassim, S.H.; Li, H.; Vandenberghe, L.H.; Hinderer, C.; Bell, P.; Marchadier, D.; Wilson, A.; Cromley, D.; Redon, V.; Yu, H.; Wilson, J.M.; Rader, D.J. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One, 2010, 5(10), e13424. doi: 10.1371/journal.pone.0013424 PMID: 20976059
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
Supplementary files
