Application of Nanoparticles for Efficient Delivery of Quercetin in Cancer Cells
- Authors: Homayoonfal M.1, Aminianfar A.1, Asemi Z.1, Yousefi B.2
-
Affiliations:
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
- Molecular Medicine Research Center, Tabriz University of Medical Sciences
- Issue: Vol 31, No 9 (2024)
- Pages: 1107-1141
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645201
- DOI: https://doi.org/10.2174/0929867330666230301121611
- ID: 645201
Cite item
Full Text
Abstract
Quercetin (Qu, 3,5,7,3, 4-pentahydroxyflavanone) is a natural polyphenol compound abundantly found in health food or plant-based products. In recent decades, Qu has gained significant attention in the food, cosmetic, and pharmaceutic industries owning to its wide beneficial therapeutic properties such as antioxidant, anti-inflammatory and anticancer activities. Despite the favorable roles of Qu in cancer therapy due to its numerous impacts on the cell signaling axis, its poor chemical stability and bioavailability, low aqueous solubility as well as short biological half-life have limited its clinical application. Recently, drug delivery systems based on nanotechnology have been developed to overcome such limitations and enhance the Qu biodistribution following administration. Several investigations have indicated that the nano-formulation of Qu enjoys more remarkable anticancer effects than its free form. Furthermore, incorporating Qu in various nano-delivery systems improved its sustained release and stability, extended its circulation time, enhanced its accumulation at target sites, and increased its therapeutic efficiency. The purpose of this study was to provide a comprehensive review of the anticancer properties of various Qu nano-formulation to augment their effects on different malignancies. Various targeting strategies for improving Qu delivery, including nanoliposomes, lipids, polymeric, micelle, and inorganic nanoparticle NPs, have been discussed in this review. The results of the current study illustrated that a combination of appropriate nano encapsulation approaches with tumor-oriented targeting delivery might lead to establishing QU nanoparticles that can be a promising technique for cancer treatment.
Keywords
About the authors
Mina Homayoonfal
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
Email: info@benthamscience.net
Azadeh Aminianfar
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
Email: info@benthamscience.net
Zatollah Asemi
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Bahman Yousefi
Molecular Medicine Research Center, Tabriz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab., 2010, 7(1), 7. doi: 10.1186/1743-7075-7-7 PMID: 20181022
- Jing, Z.; Du, Q.; Zhang, X.; Zhang, Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chem. Eng. J., 2022, 446, 137147. doi: 10.1016/j.cej.2022.137147
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
- Ghanbari-Movahed, M.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 2022, 97, 153909. doi: 10.1016/j.phymed.2021.153909 PMID: 35092896
- Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
- Sanati, M.; Afshari, A.R.; Amini, J.; Mollazadeh, H.; Jamialahmadi, T.; Sahebkar, A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J. Funct. Foods, 2022, 96, 105192. doi: 10.1016/j.jff.2022.105192
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134. doi: 10.1016/j.canlet.2017.11.002 PMID: 29113871
- Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl 2), 41-59. doi: 10.1159/000443404 PMID: 26679767
- Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. OpenNano, 2022, 7, 100055.
- Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910. doi: 10.1002/jcp.26029 PMID: 28543172
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2012, 12(1), 39-50. doi: 10.1038/nrc3180 PMID: 22193407
- Davis, ME; Chen, Z; Shin, DM Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2010, 7(9), 771-82.
- Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7), 325. doi: 10.3390/pharmaceutics11070325 PMID: 31295947
- Jindal, A.B. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int. J. Pharm., 2017, 532(1), 450-465. doi: 10.1016/j.ijpharm.2017.09.028 PMID: 28917985
- Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175. doi: 10.1016/j.canlet.2012.07.006 PMID: 22796606
- Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in cancer biology., 2021.
- Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations: A promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681. doi: 10.1039/D1FO00851J PMID: 34152346
- Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290. doi: 10.1016/j.jconrel.2016.05.045 PMID: 27242199
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849. doi: 10.1016/j.freeradbiomed.2004.01.001 PMID: 15019969
- Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr., 2003, 133(10), 3248S-3254S. doi: 10.1093/jn/133.10.3248S PMID: 14519822
- Mariani, C.; Braca, A.; Vitalini, S.; De Tommasi, N.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry, 2008, 69(5), 1220-1226. doi: 10.1016/j.phytochem.2007.12.009 PMID: 18226822
- Thangasamy, T.; Sittadjody, S.; Burd, R. Chapter 27 - Quercetin: A Potential Complementary and Alternative Cancer Therapy. In: Complementary and Alternative Therapies and the Aging Population Elsvier: Amsterdam; , 2009; pp. 563-584.
- Lee, T.J.; Kim, O.H.; Kim, Y.H.; Lim, J.H.; Kim, S.; Park, J.W.; Kwon, T.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett., 2006, 240(2), 234-242. doi: 10.1016/j.canlet.2005.09.013 PMID: 16274926
- Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82. doi: 10.1002/jcb.21977 PMID: 19009557
- Zhang, Q.; Zhao, X.H.; Wang, Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. In Vitro, 2009, 23(5), 797-807. doi: 10.1016/j.tiv.2009.04.007 PMID: 19397994
- Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1365-8. doi: 10.1177/1934578X1501000813
- Chou, C.C.; Yang, J.S.; Lu, H.F.; Ip, S.W.; Lo, C.; Wu, C.C.; Lin, J.P.; Tang, N.Y.; Chung, J.G.; Chou, M.J.; Teng, Y.H.; Chen, D.R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191. doi: 10.1007/s12272-010-0808-y PMID: 20803121
- Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91. doi: 10.1016/j.ejphar.2010.09.020 PMID: 20858478
- Hisaka, T.; Sakai, H.; Sato, T.; Goto, Y.; Nomura, Y.; Fukutomi, S.; Fujita, F.; Mizobe, T.; Nakashima, O.; Tanigawa, M.; Naito, Y.; Akiba, J.; Ogasawara, S.; Nakashima, K.; Akagi, Y.; Okuda, K.; Yano, H. Quercetin suppresses proliferation of liver cancer cell lines in vitro. Anticancer Res., 2020, 40(8), 4695-4700. doi: 10.21873/anticanres.14469 PMID: 32727794
- Al-Ghamdi, M.A.; AL-Enazy, A.; Huwait, E.A.; Albukhari, A.; Harakeh, S.; Moselhy, S.S. Enhancement of Annexin V in response to combination of epigallocatechin gallate and quercetin as a potent arrest the cell cycle of colorectal cancer. Braz. J. Biol., 2023, 83, e248746. doi: 10.1590/1519-6984.248746 PMID: 34495165
- Azizi, E.; Fouladdel, S.; Komeili Movahhed, T.; Modaresi, F.; Barzegar, E.; Ghahremani, M.H.; Ostad, S.N.; Atashpour, S. Quercetin effects on cell cycle arrest and apoptosis and doxorubicin activity in T47D cancer stem cells. Asian Pac. J. Cancer Prev., 2022, 23(12), 4145-4154. doi: 10.31557/APJCP.2022.23.12.4145 PMID: 36579996
- Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633. doi: 10.1016/j.tcb.2013.07.006 PMID: 23958396
- Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194. doi: 10.3322/canjclin.55.3.178 PMID: 15890640
- Fulda, S.; Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25(34), 4798-4811. doi: 10.1038/sj.onc.1209608 PMID: 16892092
- Zhang, X.A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag., 2015, 11(42), 404-409. doi: 10.4103/0973-1296.153096 PMID: 25829782
- Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100. doi: 10.1016/j.cbi.2019.01.008 PMID: 30639267
- Shang, H.S.; Lu, H.F.; Lee, C.H.; Chiang, H.S.; Chu, Y.L.; Chen, A.; Lin, Y.F.; Chung, J.G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol., 2018, 33(11), 1168-1181. doi: 10.1002/tox.22623 PMID: 30152185
- Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599. doi: 10.1158/1535-7163.MCT-07-0001 PMID: 17876056
- Yi, L.; Zongyuan, Y.; Cheng, G.; Lingyun, Z.; GuiLian, Y.; Wei, G. Quercetin enhances apoptotic effect of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci., 2014, 105(5), 520-527. doi: 10.1111/cas.12395 PMID: 24612139
- Jung, Y.H.; Heo, J.; Lee, Y.J.; Kwon, T.K.; Kim, Y.H. Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci., 2010, 86(9-10), 351-357. doi: 10.1016/j.lfs.2010.01.008 PMID: 20096292
- Tummala, R.; Lou, W.; Gao, A.C.; Nadiminty, N. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol. Cancer Ther., 2017, 16(12), 2770-2779. doi: 10.1158/1535-7163.MCT-17-0030 PMID: 28729398
- Wong, M.L.H.; Prawira, A.; Kaye, A.H.; Hovens, C.M. Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas. J. Clin. Neurosci., 2009, 16(9), 1119-1130. doi: 10.1016/j.jocn.2009.02.009 PMID: 19556134
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 2007, 8(6), 464-478. doi: 10.1038/nrm2183 PMID: 17522591
- Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol., 2016, 37(10), 12927-12939. doi: 10.1007/s13277-016-5184-x PMID: 27448306
- Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604. doi: 10.1016/j.biopha.2019.109604 PMID: 31733570
- Klagsbrun, M.; Moses, M.A. Molecular angiogenesis. Chem. Biol., 1999, 6(8), R217-R224. doi: 10.1016/S1074-5521(99)80081-7 PMID: 10421764
- Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther., 2017, 10, 4023-4028. doi: 10.2147/OTT.S136821 PMID: 28860810
- Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68. doi: 10.1016/j.ejphar.2016.03.063 PMID: 27041643
- Pratheeshkumar, P.; Budhraja, A.; Son, Y.-O.; Wang, X.; Zhang, Z.; Ding, S. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516.
- Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455. doi: 10.1016/j.prp.2021.153455 PMID: 33962176
- Kee, J.Y.; Han, Y.H.; Kim, D.S.; Mun, J.G.; Park, J.; Jeong, M.Y.; Um, J.Y.; Hong, S.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 2016, 23(13), 1680-1690. doi: 10.1016/j.phymed.2016.09.011 PMID: 27823633
- Chang, J.H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Lee, W.J.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1746-1758. doi: 10.1016/j.bbamcr.2017.06.017 PMID: 28648644
- García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; Sandri, M.; Muñoz-Cánoves, P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584), 37-42. doi: 10.1038/nature16187 PMID: 26738589
- Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857. doi: 10.1038/s41418-019-0474-7 PMID: 31836831
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis, 2013, 4(10), 838. doi: 10.1038/cddis.2013.350
- Marinković, M.; prung, M.; Buljubaić, M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell Longev., 2018, 2018, 8023821. doi: 10.1155/2018/8023821
- Bhagya, N.; Chandrashekar, K.R. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed. Pharmacother., 2022, 148, 112727. doi: 10.1016/j.biopha.2022.112727 PMID: 35219119
- Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978. doi: 10.4161/auto.7.9.15863 PMID: 21610320
- Chang, J.L.; Chow, J.M.; Chang, J.H.; Wen, Y.C.; Lin, Y.W.; Yang, S.F.; Lee, W.J.; Chien, M.H. Quercetin simultaneously induces G0 /G1 -phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol., 2017, 32(7), 1857-1868. doi: 10.1002/tox.22408 PMID: 28251795
- Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605. doi: 10.1016/j.biopha.2016.05.029 PMID: 27470402
- Wang, Y.; Zhang, W.; Lv, Q.; Zhang, J.; Zhu, D. The critical role of quercetin in autophagy and apoptosis in HeLa cells. Tumour Biol., 2016, 37(1), 925-929. doi: 10.1007/s13277-015-3890-4 PMID: 26260273
- Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130. doi: 10.1016/j.lfs.2018.07.027 PMID: 30025823
- Lee, P.I.; Li, J.X. Evolution of Oral Controlled Release Dosage Forms. In: Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice Wiley: Hoboken, New Jersey; , 2010; pp. 21-31. doi: 10.1002/9780470640487.ch2
- Yun, Y.H.; Lee, B.K.; Park, K. Controlled Drug Delivery: Historical perspective for the next generation. J. Control. Release, 2015, 219, 2-7. doi: 10.1016/j.jconrel.2015.10.005 PMID: 26456749
- Ye, M.; Kim, S.; Park, K. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release, 2010, 146(2), 241-260. doi: 10.1016/j.jconrel.2010.05.011 PMID: 20493221
- Lee, B.K.; Yun, Y.H.; Park, K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci., 2015, 125, 158-164. doi: 10.1016/j.ces.2014.06.042 PMID: 25684780
- Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release, 2014, 190, 3-8. doi: 10.1016/j.jconrel.2014.03.054 PMID: 24794901
- Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S2), 295-305. doi: 10.1080/21691401.2018.1457039
- Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83. doi: 10.1016/j.imlet.2017.07.015 PMID: 28760499
- Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.; Ramakrishna, S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discovery, 2022, 15, 100134.
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642. doi: 10.1016/j.ijpharm.2019.118642 PMID: 31446024
- Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901. doi: 10.1007/s11095-005-4584-1 PMID: 15948033
- Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483. doi: 10.1211/jpp.61.11.0006 PMID: 19903372
- Burak, C.; Brüll, V.; Langguth, P.; Zimmermann, B.F.; Stoffel-Wagner, B.; Sausen, U.; Stehle, P.; Wolffram, S.; Egert, S. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur. J. Nutr., 2017, 56(1), 343-353. doi: 10.1007/s00394-015-1084-x PMID: 26482244
- Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210. doi: 10.1016/j.jnutbio.2014.10.008 PMID: 25468612
- Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735. doi: 10.1007/s11095-014-1504-2 PMID: 25186442
- Chen, L-C.; Chen, Y-C.; Su, C-Y.; Hong, C-S.; Ho, H-O.; Sheu, M-T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomedicine, 2016, 11, 1557-1566. PMID: 27143878
- Mero, A.; Campisi, M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers (Basel), 2014, 6(2), 346-369. doi: 10.3390/polym6020346
- De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: preparation and applications. Colloids Surf. B Biointerfaces, 2022, 218, 112737. doi: 10.1016/j.colsurfb.2022.112737 PMID: 35933888
- Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems the current state. Adv. Colloid Interface Sci., 2022, 309, 102757. doi: 10.1016/j.cis.2022.102757 PMID: 36152374
- Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol., 2020, 8, 579536. doi: 10.3389/fbioe.2020.579536 PMID: 33384988
- Hynynen, K. Hyperthermia-induced drug delivery in humans. Nat. Biomed. Eng., 2018, 2(9), 637-639. doi: 10.1038/s41551-018-0297-8 PMID: 31015680
- Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713. doi: 10.1038/s41467-018-05118-3 PMID: 30006596
- Hao, J.; Guo, B.; Yu, S.; Zhang, W.; Zhang, D.; Wang, J.; Wang, Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol., 2017, 85, 37-44. doi: 10.1016/j.lwt.2017.06.048
- Li, J.; Shi, M.; Ma, B.; Niu, R.; Zhang, H.; Kun, L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. Mater. Sci. Eng. C, 2017, 77, 803-810. doi: 10.1016/j.msec.2017.03.191 PMID: 28532095
- Jiang, M.; Zhang, E.; Liang, Z.; Zhao, Y.; Zhang, S.; Xu, H.; Wang, H.; Shu, X.; Kang, X.; Sun, L.; Zhen, Y. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2019, 54, 101316. doi: 10.1016/j.jddst.2019.101316
- Yu, J.; Chen, H.; Jiang, L.; Wang, J.; Dai, J.; Wang, J. Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. J. Pharm. Sci., 2019, 108(5), 1788-1799. doi: 10.1016/j.xphs.2018.12.016 PMID: 30610857
- Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Banerjee, U.C.; Kai, G. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front. Bioeng. Biotechnol., 2020, 8, 631. doi: 10.3389/fbioe.2020.00631 PMID: 32612988
- Cai, H.; Tan, P.; Chen, X.; Kopytynski, M.; Pan, D.; Zheng, X.; Gu, L.; Gong, Q.; Tian, X.; Gu, Z.; Zhang, H.; Chen, R.; Luo, K. Stimuli sensitive lineardendritic block copolymerdrug prodrug as a nanoplatform for tumor combination therapy. Adv. Mater., 2022, 34(8), 2108049. doi: 10.1002/adma.202108049 PMID: 34875724
- Li, Z.; Cai, H.; Li, Z.; Ren, L.; Ma, X.; Zhu, H.; Gong, Q.; Zhang, H.; Gu, Z.; Luo, K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater., 2023, 21, 299-312. doi: 10.1016/j.bioactmat.2022.08.028 PMID: 36157245
- Xiao, X.; Cai, H.; Huang, Q.; Wang, B.; Wang, X.; Luo, Q.; Li, Y.; Zhang, H.; Gong, Q.; Ma, X.; Gu, Z.; Luo, K. Polymeric dual-modal imaging nanoprobe with two-photon aggregation-induced emission for fluorescence imaging and gadolinium-chelation for magnetic resonance imaging. Bioact. Mater., 2023, 19, 538-549. doi: 10.1016/j.bioactmat.2022.04.026 PMID: 35600977
- Hemati, M.; Haghiralsadat, F.; Yazdian, F.; Jafari, F.; Moradi, A.; Malekpour-Dehkordi, Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1295-1311. doi: 10.1080/21691401.2018.1489271 PMID: 30033768
- Aditya, N.P.; Ko, S. Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Advances, 2015, 5(39), 30902-30911. doi: 10.1039/C4RA17127F
- Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56. doi: 10.1016/j.scp.2017.07.002
- Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101458. doi: 10.1016/j.jddst.2019.101458
- da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int., 2019, 122, 610-626. doi: 10.1016/j.foodres.2019.01.032 PMID: 31229120
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791. doi: 10.1039/D0RA03491F PMID: 35515778
- Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925. doi: 10.1021/acsnano.7b01522 PMID: 28414916
- Hu, X.; Ning, P.; Zhang, R.; Yang, Y.; Li, L.; Xiao, X. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle. Int. J. Clin. Exp. Med., 2016, 9(9), 17195-17202.
- Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154. doi: 10.1007/s11483-008-9065-8
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177. doi: 10.1016/S0939-6411(00)00087-4 PMID: 10840199
- Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
- Huang, Z.; Hua, S.; Yang, Y.; Fang, J. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin., 2008, 29(9), 1094-1102. doi: 10.1111/j.1745-7254.2008.00829.x PMID: 18718178
- Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother., 2017, 91, 287-294. doi: 10.1016/j.biopha.2017.02.112 PMID: 28463792
- Kumar, R.; Choudhary, D.K.; Debnath, M. Development of BSA conjugated on modified surface of quercetin- loaded lipid nanocarriers for breast cancer treatment. Mater. Res. Express, 2020, 7(1), 015411. doi: 10.1088/2053-1591/ab6774
- Ghosh, S.; Mishra, P.; Dabke, A.; Pathak, A.; Bhowmick, S.; Misra, A. Targeting Approaches Using Polymeric Nanocarriers. In: Applications of Polymers in Drug Delivery; Elsevier: Amsterdam, 2021; pp. 393-421. doi: 10.1016/B978-0-12-819659-5.00014-8
- Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018. PMID: 25678788
- Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymerdrug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
- Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer- targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191. doi: 10.3109/1061186X.2015.1051049 PMID: 26061298
- Alibolandi, M.; Ramezani, M.; Abnous, K.; Sadeghi, F.; Hadizadeh, F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J. Nanopart. Res., 2015, 17(2), 76. doi: 10.1007/s11051-015-2878-8
- Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583. doi: 10.3109/1061186X.2014.934688 PMID: 25012065
- Chaudhuri, A.; Ramesh, K.; Kumar, D.N.; Dehari, D.; Singh, S.; Kumar, D.; Agrawal, A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2022, 77, 103886. doi: 10.1016/j.jddst.2022.103886
- Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030. doi: 10.1039/c2nr32181e PMID: 23044718
- Fatease, A.A.; Shah, V.; Nguyen, D.X.; Cote, B.; LeBlanc, N.; Rao, D.A.; Alani, A.W.G. Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine, 2019, 19, 39-48. doi: 10.1016/j.nano.2019.03.011 PMID: 31022465
- Qureshi, W.A.; Zhao, R.; Wang, H.; Ji, T.; Ding, Y.; Ihsan, A.; Mujeeb, A.; Nie, G.; Zhao, Y. Co-delivery of doxorubicin and quercetin via mPEGPLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio- toxicity. Sci. Bull. (Beijing), 2016, 61(21), 1689-1698. doi: 10.1007/s11434-016-1182-z
- Ramasamy, T.; Ruttala, H.B.; Chitrapriya, N.; Poudal, B.K.; Choi, J.Y.; Kim, S.T.; Youn, Y.S.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater., 2017, 48, 131-143. doi: 10.1016/j.actbio.2016.10.034 PMID: 27794477
- Zhang, X.; Huang, Y.; Song, H.; Canup, B.S.B.; Gou, S.; She, Z.; Dai, F.; Ke, B.; Xiao, B. Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J. Control. Release, 2020, 328, 454-469. doi: 10.1016/j.jconrel.2020.08.066 PMID: 32890553
- Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119, 111442. doi: 10.1016/j.msec.2020.111442 PMID: 33321583
- Xiong, Q.; Wang, Y.; Wan, J.; Yuan, P.; Chen, H.; Zhang, L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int. J. Biol. Macromol., 2020, 147, 937-945. doi: 10.1016/j.ijbiomac.2019.10.060 PMID: 31730969
- Gu, L.Q.; Cui, P.F.; Xing, L.; He, Y.J.; Chang, X.; Zhou, T.J.; Liu, Y.; Li, L.; Jiang, H.L. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Advances, 2019, 9(21), 12110-12123. doi: 10.1039/C9RA01356C PMID: 35548379
- Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766. doi: 10.1080/10837450.2020.1740933 PMID: 32192406
- Tian, F.; Dahmani, F.Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater., 2018, 75, 398-412. doi: 10.1016/j.actbio.2018.05.050 PMID: 29874597
- Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym., 2019, 203, 10-18. doi: 10.1016/j.carbpol.2018.09.020 PMID: 30318192
- Mu, Y.; Wu, G.; Su, C.; Dong, Y.; Zhang, K.; Li, J.; Sun, X.; Li, Y.; Chen, X.; Feng, C. pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr. Polym., 2019, 223, 115072. doi: 10.1016/j.carbpol.2019.115072 PMID: 31427010
- Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524. doi: 10.1021/acsnano.9b02875 PMID: 31664821
- Rezvani, M.; Mohammadnejad, J.; Narmani, A.; Bidaki, K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol., 2018, 113, 1287-1293. doi: 10.1016/j.ijbiomac.2018.02.141 PMID: 29481956
- Zamani, M.; Aghajanzadeh, M.; Rostamizadeh, K.; Kheiri Manjili, H.; Fridoni, M.; Danafar, H. In vivo study of poly (ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J. Drug Deliv. Sci. Technol., 2019, 54, 101283. doi: 10.1016/j.jddst.2019.101283
- Zhou, L.; Shan, Y.; Hu, H.; Yu, B.; Cong, H. Synthesis and biomedical applications of dendrimers. Curr. Org. Chem., 2018, 22(6), 600-612. doi: 10.2174/1385272822666180129142809
- Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci., 2020, 278, 102125. doi: 10.1016/j.cis.2020.102125 PMID: 32109595
- Patel, P.; Patel, V.; Patel, P.M. Synthetic strategy of dendrimers: A review. J. Indian Chem. Soc., 2022, 99(7), 100514. doi: 10.1016/j.jics.2022.100514
- Choi, J.; Moquin, A.; Bomal, E.; Na, L.; Maysinger, D.; Kakkar, A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol. Pharm., 2017, 14(8), 2607-2615. doi: 10.1021/acs.molpharmaceut.7b00019 PMID: 28520445
- Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res., 2019, 18, 185-201. doi: 10.1016/j.jare.2019.03.011 PMID: 31032119
- Bianco, A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv., 2004, 1(1), 57-65. doi: 10.1517/17425247.1.1.57 PMID: 16296720
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol., 2022, 19, 2657-2694. doi: 10.1016/j.jmrt.2022.06.023
- Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113. doi: 10.1038/nnano.2006.209 PMID: 18654229
- Kumar, M.; Sharma, G.; Misra, C.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C, 2018, 89, 274-282. doi: 10.1016/j.msec.2018.03.033 PMID: 29752099
- Badea, N.; Craciun, M.M.; Dragomir, A.S.; Balas, M.; Dinischiotu, A.; Nistor, C.; Gavan, C.; Ionita, D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys., 2020, 241, 122435. doi: 10.1016/j.matchemphys.2019.122435
- Gismondi, A.; Reina, G.; Orlanducci, S.; Mizzoni, F.; Gay, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 2015, 38, 22-35. doi: 10.1016/j.biomaterials.2014.10.057 PMID: 25457980
- Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459. doi: 10.1016/j.colsurfb.2019.03.037 PMID: 30921680
- Abdallah, B.; Elhissi, A.; Ahmed, W.; Najlah, M. Chapter 16 - Carbon nanotubes drug delivery system for cancer treatment. Adv. Med. Surgic. Eng., 2020, 313-332.
- Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother., 2022, 151, 113053. doi: 10.1016/j.biopha.2022.113053 PMID: 35594717
- Siddiqui, B.; Rehman, A.; Haq, I.; Al-Dossary, A.A.; Elaissari, A.; Ahmed, N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int. J. Pharm. X, 2022, 4, 100116. doi: 10.1016/j.ijpx.2022.100116 PMID: 35509288
- Murugan, C.; Rayappan, K.; Thangam, R.; Bhanumathi, R.; Shanthi, K.; Vivek, R.; Thirumurugan, R.; Bhattacharyya, A.; Sivasubramanian, S.; Gunasekaran, P.; Kannan, S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci. Rep., 2016, 6(1), 34053. doi: 10.1038/srep34053 PMID: 28442746
- Sarkar, A.; Ghosh, S.; Chowdhury, S.; Pandey, B.; Sil, P.C. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(10), 2065-2075. doi: 10.1016/j.bbagen.2016.07.001 PMID: 27392941
- Mishra, S.; Manna, K.; Kayal, U.; Saha, M.; Chatterjee, S.; Chandra, D.; Hara, M.; Datta, S.; Bhaumik, A.; Das Saha, K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. RSC Advances, 2020, 10(39), 23148-23164. doi: 10.1039/D0RA00664E PMID: 35520307
- Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today, 2018, 21(6), 673-685. doi: 10.1016/j.mattod.2017.11.022 PMID: 30197553
- El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264. doi: 10.1021/ar960016n PMID: 11308299
- Khursheed, R.; Dua, K.; Vishwas, S.; Gulati, M.; Jha, N.K.; Aldhafeeri, G.M.; Alanazi, F.G.; Goh, B.H.; Gupta, G.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Singh, S.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed. Pharmacother., 2022, 150, 112951. doi: 10.1016/j.biopha.2022.112951 PMID: 35447546
- Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527. doi: 10.14348/molcells.2015.2339 PMID: 25947292
- Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles- conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231. doi: 10.1002/cbf.3266 PMID: 28498520
- Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697. doi: 10.1111/cpr.12296 PMID: 27641938
- Daglioglu, C. Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185. doi: 10.1016/j.colsurfb.2017.05.012 PMID: 28528134
- Mashhadi Malekzadeh, A.; Ramazani, A.; Tabatabaei Rezaei, S.J.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73. doi: 10.1016/j.jcis.2016.11.014 PMID: 27870961
- Akal, Z.Ü.; Alpsoy, L.; Baykal, A. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. Appl. Surf. Sci., 2016, 378, 572-581. doi: 10.1016/j.apsusc.2016.03.217
- Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Long Gu, F. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl. Surf. Sci., 2021, 536, 147741. doi: 10.1016/j.apsusc.2020.147741
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydr. Polym., 2020, 236, 116101. doi: 10.1016/j.carbpol.2020.116101 PMID: 32172900
- Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140. doi: 10.1016/j.msec.2019.02.096 PMID: 30948047
- Cheng, H.W.; Chiang, C.S.; Ho, H.Y.; Chou, S.H.; Lai, Y.H.; Shyu, W.C.; Chen, S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release, 2021, 329, 136-147. doi: 10.1016/j.jconrel.2020.11.061 PMID: 33278482
- Ponraj, T.; Vivek, R.; Paulpandi, M.; Rejeeth, C.; Nipun Babu, V.; Vimala, K.; Anand, K.; Sivaselvam, S.; Vasanthakumar, A.; Ponpandian, N.; Kannan, S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2 NPs. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(21), 3555-3570. doi: 10.1039/C8TB00769A PMID: 32254451
- Klein, S.; Luchs, T.; Leng, A.; Distel, L.; Neuhuber, W.; Hirsch, A. Encapsulation of hydrophobic drugs in shell-by-shell coated nanoparticles for radio-and chemotherapy-An in vitro study. Bioengineering (Basel), 2020, 7(4), 126. doi: 10.3390/bioengineering7040126 PMID: 33053776
- Zhong, Y.; Zou, Y.; Liu, L.; Li, R.; Xue, F.; Yi, T. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomater., 2020, 115, 358-370. doi: 10.1016/j.actbio.2020.08.007 PMID: 32798720
- Bose, P.; Priyam, A.; Kar, R.; Pattanayak, S.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Advances, 2020, 10(53), 31961-31978. doi: 10.1039/D0RA05793B PMID: 35518142
- Ma, T.; Liu, Y.; Wu, Q.; Luo, L.; Cui, Y.; Wang, X.; Chen, X.; Tan, L.; Meng, X. Quercetin-modified metalorganic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano, 2019, 13(4), 4209-4219. doi: 10.1021/acsnano.8b09221 PMID: 30933559
- Chen, Z.; Guo, W.; Wu, Q.; Tan, L.; Ma, T.; Fu, C.; Yu, J.; Ren, X.; Wang, J.; Liang, P.; Meng, X. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics, 2020, 10(10), 4659-4675. doi: 10.7150/thno.42818 PMID: 32292521
- Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134. doi: 10.3109/21691401.2014.926456 PMID: 24959911
- Zhang, J.; Luo, Y.; Zhao, X.; Li, X.; Li, K.; Chen, D.; Qiao, M.; Hu, H.; Zhao, X. Co-delivery of doxorubicin and the traditional Chinese medicine quercetin using biotinPEG 2000 DSPE modified liposomes for the treatment of multidrug resistant breast cancer. RSC Advances, 2016, 6(114), 113173-113184. doi: 10.1039/C6RA24173E
- Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Kai, G.; Banerjee, U.C. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine, 2020, 24, 102147. doi: 10.1016/j.nano.2019.102147 PMID: 31884040
- Jain, A.S.; Shah, S.M.; Nagarsenker, M.S.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Thamm, J.; Fahr, A. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J. Biomed. Nanotechnol., 2013, 9(7), 1230-1240. doi: 10.1166/jbn.2013.1636 PMID: 23909137
- Jain, A.K.; Thanki, K.; Jain, S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine, 2014, 10(5), e959-e969. doi: 10.1016/j.nano.2013.12.010 PMID: 24407148
- Samadi, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Eufrasio-da-silva, T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int. J. Biol. Macromol., 2021, 182, 11-25. doi: 10.1016/j.ijbiomac.2021.03.146 PMID: 33775763
- Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), n/a. doi: 10.1002/jbm.a.34607 PMID: 23529952
- El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401. doi: 10.1021/nn405155b PMID: 24397686
- Pang, X.; Lu, Z.; Du, H.; Yang, X.; Zhai, G. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2014, 123, 778-786. doi: 10.1016/j.colsurfb.2014.10.025 PMID: 25454664
- Zafar, S.; Negi, L.M.; Verma, A.K.; Kumar, V.; Tyagi, A.; Singh, P.; Iqbal, Z.; Talegaonkar, S. Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: In vitro and in vivo investigations. Int. J. Pharm., 2014, 477(1-2), 454-468. doi: 10.1016/j.ijpharm.2014.10.061 PMID: 25445525
- David, K.I.; Jaidev, L.R.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded chitosan nanoparticles-sugar-coated arsenal against pancreatic cancer. Colloids Surf. B Biointerfaces, 2015, 135, 689-698. doi: 10.1016/j.colsurfb.2015.08.038 PMID: 26340358
- Suksiriworapong, J.; Phoca, K.; Ngamsom, S.; Sripha, K.; Moongkarndi, P.; Junyaprasert, V.B. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)- co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur. J. Pharm. Biopharm., 2016, 101, 15-24. doi: 10.1016/j.ejpb.2016.01.008 PMID: 26802701
- Abd-Rabou, A.A.; Ahmed, H.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci., 2017, 62(2), 357-367. doi: 10.1016/j.advms.2017.01.003 PMID: 28521254
- Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526. doi: 10.1016/j.biopha.2018.07.106 PMID: 30119227
- Desale, J.P.; Swami, R.; Kushwah, V.; Katiyar, S.S.; Jain, S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: Overcoming drug resistance and improving therapeutic efficacy. Nanomedicine, 2018, 13(21), 2759-2776. doi: 10.2217/nnm-2018-0206 PMID: 30398388
- Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in vitro anticancer study. Mater. Today Proc., 2018, 5(3), 9698-9705. doi: 10.1016/j.matpr.2017.10.156
- Islami, M.; Zarrabi, A.; Tada, S.; Kawamoto, M.; Isoshima, T.; Ito, Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomedicine, 2018, 13, 6059-6071. doi: 10.2147/IJN.S178374 PMID: 30323593
- Oliver, S.; Yee, E.; Kavallaris, M.; Vittorio, O.; Boyer, C. Water soluble antioxidant dextranquercetin conjugate with potential anticancer properties. Macromol. Biosci., 2018, 18(4), 1700239. doi: 10.1002/mabi.201700239 PMID: 29411934
- Sahiner, N.; Sagbas, S.; Sahiner, M.; Aktas, N. Degradable natural phenolic based particles with micro-and nano-size range. Recent Pat. Mater. Sci., 2018, 11(1), 33-40. doi: 10.2174/1874464811666180724124614
- Sunoqrot, S.; Al-Shalabi, E.; Messersmith, P.B. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater. Sci., 2018, 6(10), 2656-2666. doi: 10.1039/C8BM00587G PMID: 30140818
- Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676. doi: 10.1016/j.jddst.2019.05.035
- Wang, B.; Zhang, W.; Zhou, X.; Liu, M.; Hou, X.; Cheng, Z.; Chen, D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv., 2019, 26(1), 1265-1279. doi: 10.1080/10717544.2019.1693707 PMID: 31777307
- Mansourizadeh, F.; Alberti, D.; Bitonto, V.; Tripepi, M.; Sepehri, H.; Khoee, S.; Geninatti Crich, S. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf. B Biointerfaces, 2020, 191, 110982. doi: 10.1016/j.colsurfb.2020.110982 PMID: 32220813
- Qiao, Y.; Cao, Y.; Yu, K.; Zong, L.; Pu, X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int. J. Pharm., 2020, 589, 119830. doi: 10.1016/j.ijpharm.2020.119830 PMID: 32877732
- Rofeal, M.G.; Elzoghby, A.O.; Helmy, M.W.; Khalil, R.; Khairy, H.; Omar, S. Dual therapeutic targeting of lung infection and carcinoma using lactoferrin-based green nanomedicine. ACS Biomater. Sci. Eng., 2020, 6(10), 5685-5699. doi: 10.1021/acsbiomaterials.0c01095 PMID: 33320553
- Shen, Y.; TanTai, J. Co-delivery anticancer drug nanoparticles for synergistic therapy against lung cancer cells. Drug Des. Devel. Ther., 2020, 14, 4503-4510. doi: 10.2147/DDDT.S275123 PMID: 33122893
- Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035. doi: 10.1016/j.msec.2020.111035 PMID: 32994029
- Tian, H.; Zhang, J.; Zhang, H.; Jiang, Y.; Song, A.; Luan, Y. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J., 2020, 382, 123043. doi: 10.1016/j.cej.2019.123043
- Wang, B.; Guo, C.; Liu, Y.; Han, G.; Li, Y.; Zhang, Y.; Xu, H.; Chen, D. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv., 2020, 27(1), 607-621. doi: 10.1080/10717544.2020.1754529 PMID: 32308054
- Wang, T.; Wu, C.; Li, T.; Fan, G.; Gong, H.; Liu, P.; Yang, Y.; Sun, L. Comparison of two nanocarriers for quercetin in morphology, loading behavior, release kinetics and cell inhibitory activity. Mater. Express, 2020, 10(10), 1589-1598. doi: 10.1166/mex.2020.1796
- Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Nigjeh, M.N. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int. J. Biol. Macromol., 2021, 183, 600-613. doi: 10.1016/j.ijbiomac.2021.04.160 PMID: 33932424
- Wang, J.; Cheng, H.; Wang, Z.; Yang, E.; Guo, F.; Wang, W.; Sun, D. Human small intestine cancer cell membrane-camouflaged quercetin-melanin for antibacterial and antitumor activity. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(10), 1534-1551. doi: 10.1002/jbm.b.34813 PMID: 33559310
- Rahmanian, N.; Hamishehkar, H.; Dolatabadi, J.E.N.; Arsalani, N. Nano graphene oxide: A novel carrier for oral delivery of flavonoids. Colloids Surf. B Biointerfaces, 2014, 123, 331-338. doi: 10.1016/j.colsurfb.2014.09.036 PMID: 25282100
- Lee, X.J.; Lim, H.N.; Gowthaman, N.S.K.; Rahman, M.B.A.; Che Abdullah, C.A.; Muthoosamy, K. In-situ surface functionalization of superparamagnetic reduced graphene oxide Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci., 2020, 512, 145738. doi: 10.1016/j.apsusc.2020.145738
- Huang, C.; Chen, T.; Zhu, D.; Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem., 2020, 8, 225. doi: 10.3389/fchem.2020.00225 PMID: 32296682
- Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284. doi: 10.1016/j.colsurfb.2020.111284 PMID: 32771817
- Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199. doi: 10.1016/j.jcis.2014.06.030 PMID: 25000181
- Lou, M.; Zhang, L.; Ji, P.; Feng, F.; Liu, J.; Yang, C.; Li, B.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9. doi: 10.1016/j.biopha.2016.08.055 PMID: 27621033
- Patra, M.; Mukherjee, R.; Banik, M.; Dutta, D.; Begum, N.A.; Basu, T. Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties. Colloids Surf. B Biointerfaces, 2017, 154, 63-73. doi: 10.1016/j.colsurfb.2017.03.018 PMID: 28324689
- Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311. doi: 10.3892/ijo.2017.3886 PMID: 28259895
- Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57. doi: 10.1016/j.jcis.2017.08.097 PMID: 28881205
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol., 2019, 132, 784-794. doi: 10.1016/j.ijbiomac.2019.04.008 PMID: 30951778
- Lakshmi, B.A.; Kim, S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf. B Biointerfaces, 2019, 178, 230-237. doi: 10.1016/j.colsurfb.2019.02.054 PMID: 30870790
- Maghsoodloo, S.; Ebrahimzadeh, M.A.; Tavakoli, S.; Mohammadi, H.; Biparva, P.; Rafiei, A. Green synthesis of multifunctional silver nanoparticles using quercetin and their therapeutic potential. J. Nanomed. Res., 2020, 5(2), 171-181.
- Naderi, E.; Aghajanzadeh, M.; Zamani, M.; Hashiri, A.; Sharafi, A.; Kamalianfar, A.; Naseri, M.; Danafar, H. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. J. Drug Deliv. Sci. Technol., 2020, 57, 101645. doi: 10.1016/j.jddst.2020.101645
- Sun, X.; Li, Y.; Xu, L.; Shi, X.; Xu, M.; Tao, X.; Yang, G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J. Int. Med. Res., 2020, 48(2) doi: 10.1177/0300060519897185 PMID: 32054349
- Sadalage, P.S.; Patil, R.V.; Havaldar, D.V.; Gavade, S.S.; Santos, A.C.; Pawar, K.D. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J. Nanobiotechnology, 2021, 19(1), 84. doi: 10.1186/s12951-021-00836-1 PMID: 33766058
- Thakur, N.S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y.N.; Kushwah, V.; Jain, S.; Kalia, Y.N.; Bhaumik, J.; Banerjee, U.C. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine, 2021, 33, 102368. doi: 10.1016/j.nano.2021.102368 PMID: 33548477
- Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105. doi: 10.1007/s11033-016-3942-x PMID: 26748999
- Han, Q.; Yang, R.; Li, J.; Liang, W.; Zhang, Y.; Dong, M.; Besenbacher, F.; Wang, C. Enhancement of biological activities of nanostructured hydrophobic drug species. Nanoscale, 2012, 4(6), 2078-2082. doi: 10.1039/c2nr12013e PMID: 22331105
- Lockhart, J.N.; Stevens, D.M.; Beezer, D.B.; Kravitz, A.; Harth, E. Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges. J. Control. Release, 2015, 220(Pt B), 751-757. doi: 10.1016/j.jconrel.2015.08.052 PMID: 26344396
Supplementary files
