Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders?


Cite item

Full Text

Abstract

Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.

About the authors

Liliana Dell'Osso

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

Benedetta Nardi

Department of Clinical and Experimental Medicine, University of Pisa

Author for correspondence.
Email: info@benthamscience.net

Leonardo Massoni

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

Davide Gravina

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

Francesca Benedetti

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

Ivan Cremone

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

Barbara Carpita

Department of Clinical and Experimental Medicine, University of Pisa

Email: info@benthamscience.net

References

  1. Scott, D.F. The history of epileptic therapy: an account of how medication was developed; CRC Press, 2001.
  2. Goodwin, G.M. Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology. J. Psychopharmacol., 2003, 17(2), 149-173. doi: 10.1177/0269881103017002003 PMID: 12870562
  3. Lopes da Silva, F.; Post, R.M. Evaluation and prediction of effects of antiepileptic drugs in a variety of other CNS disorders. Epilepsy Res., 2002, 50(1-2), 191-193. doi: 10.1016/S0920-1211(02)00079-7 PMID: 12151128
  4. Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol., 2003, 53(6), 693-702. doi: 10.1002/ana.10603 PMID: 12783414
  5. Meldrum, B.S. Implications for neuroprotective treatments. Prog. Brain Res.,, 2002, 135, 487-495. doi: 10.1016/S0079-6123(02)35046-5 PMID: 12143367
  6. Trojnar, M.K.; Małek, R.; Chrościńska, M.; Nowak, S.; Błaszczyk, B.; Czuczwar, S.J. Neuroprotective effects of antiepileptic drugs Pol. J. Pharmacol., 2002, 54(6), 557-566. PMID: 12866709
  7. Pitkänen, A. Drug-mediated neuroprotection and antiepileptogenesis: Animal data. Neurology, 2002, 59(S5), S27-S33. doi: 10.1212/WNL.59.9_suppl_5.S27 PMID: 12428029
  8. Leker, R.R.; Neufeld, M.Y. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Res. Brain Res. Rev., 2003, 42(3), 187-203. doi: 10.1016/S0165-0173(03)00170-X PMID: 12791439
  9. Walker, M.C.; White, H.S.; Sander, J.W.A.S. Disease modification in partial epilepsy. Brain, 2002, 125(9), 1937-1950. doi: 10.1093/brain/awf203 PMID: 12183340
  10. Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol., 2016, 12(2), 106-116. doi: 10.1038/nrneurol.2015.243 PMID: 26782334
  11. Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure, 2020, 83, 251-263. doi: 10.1016/j.seizure.2020.10.018 PMID: 33334546
  12. Rajkowska, G. Cell pathology in bipolar disorder. Bipolar Disord., 2002, 4(2), 105-116. doi: 10.1034/j.1399-5618.2002.01149.x PMID: 12071508
  13. Knable, M.B.; Barci, B.M.; Webster, M.J.; Meador-Woodruff, J.; Torrey, E.F. Molecular abnormalities of the hippocampus in severe psychiatric illness: Postmortem findings from the stanley neuropathology consortium. Mol. Psychiat., , 2004, 9(6), 609-620. 544 doi: 10.1038/sj.mp.4001471 PMID: 14708030
  14. Lyoo, I.K.; Sung, Y.H.; Dager, S.R.; Friedman, S.D.; Lee, J.Y.; Kim, S.J.; Kim, N.; Dunner, D.L.; Renshaw, P.F. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord., 2006, 8(1), 65-74. doi: 10.1111/j.1399-5618.2006.00284.x PMID: 16411982
  15. Sutula, T. Antiepileptic drugs to prevent neural degeneration associated with epilepsy: Assessing the prospects for neuroprotection. Epilepsy Res., 2002, 50(1-2), 125-129. doi: 10.1016/S0920-1211(02)00074-8 PMID: 12151123
  16. During, M.J.; Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993, 341(8861), 1607-1610. doi: 10.1016/0140-6736(93)90754-5 PMID: 8099987
  17. Ueda, Y.; Yokoyama, H.; Nakajima, A.; Tokumaru, J.; Doi, T.; Mitsuyama, Y. Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp. Brain Res., 2002, 147(2), 219-226. doi: 10.1007/s00221-002-1224-4 PMID: 12410337
  18. Choi, D. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1988, 1(8), 623-634. doi: 10.1016/0896-6273(88)90162-6 PMID: 2908446
  19. Kito, M.; Maehara, M.; Watanabe, K. Antiepileptic drugs-calcium current interaction in cultured human neuroblastoma cells. Seizure, 1994, 3(2), 141-149. doi: 10.1016/S1059-1311(05)80205-5 PMID: 8081641
  20. Stefani, A.; Calabresi, P.; Pisani, A.; Mercuri, N.B.; Siniscalchi, A.; Bernardi, G. Felbamate inhibits dihydropyridinesensitive calcium channels in central neurons J. Pharmacol. Exp. Ther., 1996, 277(1), 121-127. PMID: 8613908
  21. Zhang, X.; Velumian, A.A.; Jones, O.T.; Carlen, P.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia, 2000, 41(s1), 52-60. doi: 10.1111/j.1528-1157.2000.tb02173.x PMID: 10768302
  22. Fink, K.; Dooley, D.J.; Meder, W.P.; Suman-Chauhan, N.; Duffy, S.; Clusmann, H.; Göthert, M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology, 2002, 42(2), 229-236. doi: 10.1016/S0028-3908(01)00172-1 PMID: 11804619
  23. Calabresi, P.; Murtas, M.D.; Stefani, A.; Pisani, A.; Sancesario, G.; Mercuri, N.B.; Bernardi, G. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission. Epilepsia, 1995, 36(10), 990-996. doi: 10.1111/j.1528-1157.1995.tb00957.x PMID: 7555963
  24. DeLorenzo, R.J. Calmodulin in neurotransmitter release and synaptic function Fed. Proc., 1982, 41(7), 2265-2272. PMID: 6122609
  25. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568. doi: 10.1152/physrev.1999.79.4.1431 PMID: 10508238
  26. Rataud, J.; Debarnot, F.; Mary, V.; Pratt, J.; Stutzmann, J.M. Comparative study of voltage-sensitive sodium channel blockers in focal ischaemia and electric convulsions in rodents. Neurosci. Lett., 1994, 172(1-2), 19-23. doi: 10.1016/0304-3940(94)90652-1 PMID: 8084530
  27. Pitkänen, A. Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. Epilepsy Res., 2002, 50(1-2), 141-160. doi: 10.1016/S0920-1211(02)00076-1 PMID: 12151125
  28. Pitkänen, A.; Kubova, H. Antiepileptic drugs in neuroprotection. Expert Opin. Pharmacother., 2004, 5(4), 777-798. doi: 10.1517/14656566.5.4.777 PMID: 15102563
  29. Hao, Y.; Creson, T.; Zhang, L.; Li, P.; Du, F.; Yuan, P.; Gould, T.D.; Manji, H.K.; Chen, G. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci., 2004, 24(29), 6590-6599. doi: 10.1523/JNEUROSCI.5747-03.2004 PMID: 15269271
  30. Laeng, P.; Pitts, R.L.; Lemire, A.L.; Drabik, C.E.; Weiner, A.; Tang, H.; Thyagarajan, R.; Mallon, B.S.; Altar, C.A. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J. Neurochem., 2004, 91(1), 238-251. doi: 10.1111/j.1471-4159.2004.02725.x PMID: 15379904
  31. Pavone, A.; Cardile, V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia, 2003, 44(s10), 34-39. doi: 10.1046/j.1528-1157.44.s10.5.x PMID: 14511393
  32. Manford, M. Recent advances in epilepsy. J. Neurol., 2017, 264(8), 1811-1824. doi: 10.1007/s00415-017-8394-2 PMID: 28120042
  33. Carmassi, C.; Del Grande, C.; Gesi, C.; Musetti, L.; Dell’Osso, L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 12, 1687-1703. doi: 10.2147/NDT.S106479 PMID: 27468233
  34. Won, E.; Kim, Y.K. An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2679. doi: 10.3390/ijms18122679 PMID: 29232923
  35. Howes, O.D.; Barnes, T.R.E.; Lennox, B.R.; Markham, S.; Natesan, S. Time to re-evaluate the risks and benefits of valproate and a call for action. Br. J. Psychiat., 2022, 221(6), 711-713. doi: 10.1192/bjp.2022.94 PMID: 35795925
  36. Jochim, J.; Rifkin-Zybutz, R.P.; Geddes, J.; Cipriani, A. Valproate for acute mania. Cochrane Database Syst. Rev., 2019, 10(10), CD004052. PMID: 31621892
  37. Kishi, T.; Ikuta, T.; Matsuda, Y.; Sakuma, K.; Okuya, M.; Nomura, I.; Hatano, M.; Iwata, N. Pharmacological treatment for bipolar mania: A systematic review and network meta-analysis of double-blind randomized controlled trials. Mol. Psychiat., 2022, 27(2), 1136-1144. doi: 10.1038/s41380-021-01334-4 PMID: 34642461
  38. Tseng, P.T.; Chen, Y.W.; Chung, W.; Tu, K.Y.; Wang, H.Y.; Wu, C.K.; Lin, P.Y. Significant effect of valproate augmentation therapy in patients with Schizophrenia. Medicine , 2016, 95(4), e2475. doi: 10.1097/MD.0000000000002475 PMID: 26825886
  39. Wang, J.F.; Shao, L.; Sun, X.; Young, L.T. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J. Neurochem., 2004, 88(6), 1477-1484. doi: 10.1046/j.1471-4159.2003.02276.x PMID: 15009649
  40. Wang, J.F.; Bown, C.; Young, L.T. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78 Mol. Pharmacol., 1999, 55(3), 521-527. PMID: 10051536
  41. Chen, G.; Zeng, W.Z.; Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Zhao, Z.H.; Manji, H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem., 1999, 72(2), 879-882. doi: 10.1046/j.1471-4159.1999.720879.x PMID: 9930766
  42. Wang, J.F.; Azzam, J.E.; Young, L.T. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience, 2003, 116(2), 485-489. doi: 10.1016/S0306-4522(02)00655-3 PMID: 12559103
  43. Shao, L.; Young, L.T.; Wang, J.F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol. Psychiat., 2005, 58(11), 879-884. doi: 10.1016/j.biopsych.2005.04.052 PMID: 16005436
  44. Lee, J.Y.; Maeng, S.; Kang, S.R.; Choi, H.Y.; Oh, T.H.; Ju, B.G.; Yune, T.Y. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J. Neurotrauma, 2014, 31(6), 582-594. doi: 10.1089/neu.2013.3146 PMID: 24294888
  45. Frey, B.N.; Valvassori, S.S.; Réus, G.Z.; Martins, M.R.; Petronilho, F.C.; Bardini, K.; Dal-Pizzol, F.; Kapczinski, F.; Quevedo, J. EEffects of lithium and valproate on amphetamine- induced oxidative stress generation in an animal model of mania J. Psychiat. Neurosci., 2006, 31(5), 326-332. PMID: 16951735
  46. Edalatmanesh, M.A.; Hosseini, M.; Ghasemi, S.; Golestani, S.; Sadeghnia, H.R.; Mousavi, S.M.; Vafaee, F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir. J. Med. Sci., 2016, 185(1), 75-84. doi: 10.1007/s11845-014-1224-y PMID: 25638225
  47. Yasuda, S.; Liang, M.H.; Marinova, Z.; Yahyavi, A.; Chuang, D.M. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiat., 2009, 14(1), 51-59. doi: 10.1038/sj.mp.4002099 PMID: 17925795
  48. Croce, N.; Mathé, A.A.; Gelfo, F.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J. Psychopharmacol., 2014, 28(10), 964-972. doi: 10.1177/0269881114529379 PMID: 24699060
  49. Frey, B.N.; Andreazza, A.C.; Ceresér, K.M.M.; Martins, M.R.; Valvassori, S.S.; Réus, G.Z.; Quevedo, J.; Kapczinski, F. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci., 2006, 79(3), 281-286. doi: 10.1016/j.lfs.2006.01.002 PMID: 16460767
  50. Stertz, L.; Fries, G.R.; Aguiar, B.W.; Pfaffenseller, B.; Valvassori, S.S.; Gubert, C.; Ferreira, C.L.; Moretti, M.; Ceresér, K.M.; Kauer-Sant’Anna, M.; Quevedo, J.; Kapczinski, F. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev. Bras. Psiquiatr., 2013, 36(1), 39-46. doi: 10.1590/1516-4446-2013-1094 PMID: 24346357
  51. Leng, Y.; Chuang, D.M. Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J. Neurosci., 2006, 26(28), 7502-7512. doi: 10.1523/JNEUROSCI.0096-06.2006 PMID: 16837598
  52. Wu, X.; Chen, P.S.; Dallas, S.; Wilson, B.; Block, M.L.; Wang, C.C.; Kinyamu, H.; Lu, N.; Gao, X.; Leng, Y.; Chuang, D.M.; Zhang, W.; Lu, R.B.; Hong, J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol., 2008, 11(8), 1123-1134. doi: 10.1017/S1461145708009024 PMID: 18611290
  53. Tremolizzo, L.; DiFrancesco, J.C.; Rodriguez-Menendez, V.; Riva, C.; Conti, E.; Galimberti, G.; Ruffmann, C.; Ferrarese, C. Valproate induces epigenetic modifications in lymphomonocytes from epileptic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2012, 39(1), 47-51. doi: 10.1016/j.pnpbp.2012.04.016 PMID: 22584634
  54. Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735. doi: 10.4161/epi.5.8.13053 PMID: 20716949
  55. Goudarzi, M.; Nahavandi, A.; Mehrabi, S.; Eslami, M.; Shahbazi, A.; Barati, M. Valproic acid administration exerts protective effects against stress-related anhedonia in rats. J. Chem. Neuroanat., 2020, 105, 101768. doi: 10.1016/j.jchemneu.2020.101768 PMID: 32061998
  56. Joshi, H.; Sharma, R.; Prashar, S.; Ho, J.; Thomson, S.; Mishra, R. Differential expression of synapsin I and II upon treatment by lithium and valproic acid in various brain regions. Int. J. Neuropsychopharmacol., 2018, 21(6), 616-622. doi: 10.1093/ijnp/pyy023 PMID: 29618019
  57. Lee, H.J.; Dreyfus, C.; DiCicco-Bloom, E. Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat. Dev. Neurobiol., 2016, 76(7), 780-798. doi: 10.1002/dneu.22359 PMID: 26505176
  58. Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468. doi: 10.1016/j.lfs.2012.01.001 PMID: 22285595
  59. Zareie, P.; Gholami, M.; Amirpour-najafabadi, B.; Hosseini, S.; Sadegh, M. Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(10), 1085-1092. doi: 10.1007/s00210-018-1531-3 PMID: 29971457
  60. Biermann, J.; Grieshaber, P.; Goebel, U.; Martin, G.; Thanos, S.; Giovanni, S.D.; Lagrèze, W.A. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 526-534. doi: 10.1167/iovs.09-3903 PMID: 19628741
  61. Biermann, J.; Boyle, J.; Pielen, A.; Lagrèze, W.A. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol. Vis., 2011, 17, 395-403. PMID: 21311741
  62. Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Gutkind, J.S.; Manji, H.K.; Chen, G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem., 2001, 276(34), 31674-31683. doi: 10.1074/jbc.M104309200 PMID: 11418608
  63. Monti, B.; Gatta, V.; Piretti, F.; Raffaelli, S.S.; Virgili, M.; Contestabile, A. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: Involvement of alpha-synuclein. Neurotox. Res., 2010, 17(2), 130-141. doi: 10.1007/s12640-009-9090-5 PMID: 19626387
  64. Ximenes, J.C.M.; Neves, K.R.T.; Leal, L.K.A.M.; do Carmo, M.R.S.; Brito, G.A.C.; Naffah-Mazzacoratti, M.G.; Cavalheiro, É.A.; Viana, G.S.B. Valproic acid neuroprotection in the 6-ohda model of Parkinson’s disease is possibly related to its anti-inflammatory and hdac inhibitory properties. J. Neurodegener. Dis., 2015, 2015, 313702. doi: 10.1155/2015/313702 PMID: 26317011
  65. Long, Z.; Zeng, Q.; Wang, K.; Sharma, A.; He, G. Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimer’s disease. Acta Biochim. Biophys. Sin. , 2016, 48(10), 930-938. doi: 10.1093/abbs/gmw085 PMID: 27614317
  66. Bahna, S.G.; Sathiyapalan, A.; Foster, J.A.; Niles, L.P. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: Therapeutic implications for Alzheimer’s disease. Neurosci. Lett., 2014, 576, 84-87. doi: 10.1016/j.neulet.2014.05.056 PMID: 24909617
  67. Gyawali, A.; Latif, S.; Choi, S.H.; Hyeon, S.J.; Ryu, H.; Kang, Y.S. Monocarboxylate transporter functions and neuroprotective effects of valproic acid in experimental models of amyotrophic lateral sclerosis. J. Biomed. Sci., 2022, 29(1), 2. doi: 10.1186/s12929-022-00785-3 PMID: 35012534
  68. Sugai, F.; Yamamoto, Y.; Miyaguchi, K.; Zhou, Z.; Sumi, H.; Hamasaki, T.; Goto, M.; Sakoda, S. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur. J. Neurosci., 2004, 20(11), 3179-3183. doi: 10.1111/j.1460-9568.2004.03765.x PMID: 15579172
  69. Dou, H.; Birusingh, K.; Faraci, J.; Gorantla, S.; Poluektova, L.Y.; Maggirwar, S.B.; Dewhurst, S.; Gelbard, H.A.; Gendelman, H.E. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J. Neurosci., 2003, 23(27), 9162-9170. doi: 10.1523/JNEUROSCI.23-27-09162.2003 PMID: 14534250
  70. Karas, B.J.; Wilder, B.J.; Hammond, E.J.; Bauman, A.W. Valproate tremors. Neurology, 1982, 32(4), 428-432. doi: 10.1212/WNL.32.4.428 PMID: 6801541
  71. Gram, L.; Bentsen, K.D. Valproate: An updated review. Acta Neurol. Scand., 1985, 72(2), 129-139. doi: 10.1111/j.1600-0404.1985.tb00854.x PMID: 2931939
  72. Verrotti, A.; Scaparrotta, A.; Cofini, M.; Chiarelli, F.; Tiboni, G.M. Developmental neurotoxicity and anticonvulsant drugs: A possible link. Reprod. Toxicol., 2014, 48, 72-80. doi: 10.1016/j.reprotox.2014.04.005 PMID: 24803404
  73. Miranda, C.C.; Fernandes, T.G.; Pinto, S.N.; Prieto, M.; Diogo, M.M.; Cabral, J.M.S. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol. Lett., 2018, 294, 51-60. doi: 10.1016/j.toxlet.2018.05.018 PMID: 29775723
  74. Bold, J.; Sakata-Haga, H.; Fukui, Y. Spinal nerve defects in mouse embryos prenatally exposed to valproic acid. Anat. Sci. Int., 2018, 93(1), 35-41. doi: 10.1007/s12565-016-0363-9 PMID: 27550043
  75. Wadzinski, J.; Franks, R.; Roane, D.; Bayard, M. Valproate-associated hyperammonemic encephalopathy. J. Am. Board Fam. Med., 2007, 20(5), 499-502. doi: 10.3122/jabfm.2007.05.070062 PMID: 17823470
  76. Yokoyama, S.; Sugawara, N.; Maruo, K.; Yasui-Furukori, N.; Shimoda, K. Blood levels of ammonia and carnitine in patients treated with valproic acid: A meta-analysis. Clin. Psychopharmacol. Neurosci., 2022, 20(3), 536-547. doi: 10.9758/cpn.2022.20.3.536
  77. Zhang, L.; Li, H.; Li, S.; Zou, X. Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, 202, 26-31. doi: 10.1016/j.ejogrb.2016.04.038 PMID: 27160812
  78. Macdonald, K.J.; Young, L.T. Newer antiepileptic drugs in bipolar disorder: rationale for use and role in therapy. CNS Drugs, 2002, 16(8), 549-562. doi: 10.2165/00023210-200216080-00004 PMID: 12096935
  79. Moore, A.; Derry, S.; Wiffen, P. Gabapentin for chronic neuropathic pain. JAMA, 2018, 319(8), 818-819. doi: 10.1001/jama.2017.21547 PMID: 29486015
  80. Tedeschi, A.; Dupraz, S.; Laskowski, C.J.; Xue, J.; Ulas, T.; Beyer, M.; Schultze, J.L.; Bradke, F. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron, 2016, 92(2), 419-434. doi: 10.1016/j.neuron.2016.09.026 PMID: 27720483
  81. Kim, D.S.; Li, K.W.; Boroujerdi, A.; Peter Yu, Y.; Zhou, C.Y.; Deng, P.; Park, J.; Zhang, X.; Lee, J.; Corpe, M.; Sharp, K.; Steward, O.; Eroglu, C.; Barres, B.; Zaucke, F.; Xu, Z.C.; Luo, Z.D. Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states. J. Neurosci., 2012, 32(26), 8977-8987. doi: 10.1523/JNEUROSCI.6494-11.2012 PMID: 22745497
  82. Eroglu, Ç.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Özkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; Green, E.M.; Lawler, J.; Dolmetsch, R.; Garcia, K.C.; Smith, S.J.; Luo, Z.D.; Rosenthal, A.; Mosher, D.F.; Barres, B.A. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2), 380-392. doi: 10.1016/j.cell.2009.09.025 PMID: 19818485
  83. Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 2012, 486(7403), 410-414. doi: 10.1038/nature11059 PMID: 22722203
  84. Park, J.F.; Yu, Y.P.; Gong, N.; Trinh, V.N.; Luo, Z.D. The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. J. Biol. Chem., 2018, 293(42), 16453-16463. doi: 10.1074/jbc.RA118.003591 PMID: 30194282
  85. Park, J.; Yu, Y.P.; Zhou, C.Y.; Li, K.W.; Wang, D.; Chang, E.; Kim, D.S.; Vo, B.; Zhang, X.; Gong, N.; Sharp, K.; Steward, O.; Vitko, I.; Perez-Reyes, E.; Eroglu, C.; Barres, B.; Zaucke, F.; Feng, G.; Luo, Z.D. Central mechanisms mediating thrombospondin-4-induced pain states. J. Biol. Chem., 2016, 291(25), 13335-13348. doi: 10.1074/jbc.M116.723478 PMID: 27129212
  86. Stahl, S.M. Anticonvulsants and the relief of chronic pain: pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(5), 596-597. doi: 10.4088/JCP.v65n0501 PMID: 15163243
  87. Stahl, S.M. Anticonvulsants as anxiolytics, part 2: Pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(4), 460-461. doi: 10.4088/JCP.v65n0401 PMID: 15119905
  88. Cragg, J.J.; Haefeli, J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Kalke, Y.B.; Schuld, C.; Curt, A.; Kramer, J.K. Effects of pain and pain management on motor recovery of spinal cord-injured patients: A longitudinal study. Neurorehabil. Neural Repair, 2016, 30(8), 753-761. doi: 10.1177/1545968315624777 PMID: 26747127
  89. Aslankoc, R.; Savran, M.; Ozmen, O.; Asci, S. Hippocampus and cerebellum damage in sepsis induced by lipopolysaccharide in aged rats - Pregabalin can prevent damage. Biomed. Pharmacother., 2018, 108, 1384-1392. doi: 10.1016/j.biopha.2018.09.162 PMID: 30372841
  90. Warner, F.M.; Jutzeler, C.R.; Cragg, J.J.; Tong, B.; Grassner, L.; Bradke, F.; Geisler, F.; Kramer, J.K. The effect of non-gabapentinoid anticonvulsants on sensorimotor recovery after human spinal cord injury. CNS Drugs, 2019, 33(5), 503-511. doi: 10.1007/s40263-019-00622-6 PMID: 30949923
  91. Warner, F.M.; Cragg, J.J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Schuld, C.; Curt, A.; Kramer, J.K. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep., 2017, 18(7), 1614-1618. doi: 10.1016/j.celrep.2017.01.048 PMID: 28199834
  92. Sun, W.; Larson, M.J.E.; Kiyoshi, C.M.; Annett, A.J.; Stalker, W.A.; Peng, J.; Tedeschi, A. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J. Clin. Invest., 2019, 130(1), 345-358. doi: 10.1172/JCI130391 PMID: 31793909
  93. Ha, K.Y.; Carragee, E.; Cheng, I.; Kwon, S.E.; Kim, Y.H. Pregabalin as a neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J. Korean Med. Sci., 2011, 26(3), 404-411. doi: 10.3346/jkms.2011.26.3.404 PMID: 21394310
  94. Emmez, H.; Börcek, A.Ö.; Kaymaz, M.; Kaymaz, F.; Durdağ, E.; Çivi, S.; Gülbahar, Ö.; Aykol, Ş.; Paşaoğlu, A. Neuroprotective effects of gabapentin in experimental spinal cord injury. World Neurosurg., 2010, 73(6), 729-734. doi: 10.1016/j.wneu.2010.04.008 PMID: 20934165
  95. Kale, A.; Börcek, A.Ö.; Emmez, H.; Yildirim, Z.; Durdağ, E.; Lortlar, N.; Kurt, G.; Doğulu, F.; Kılıç, N. Neuroprotective effects of gabapentin on spinal cord ischemia-reperfusion injury in rabbits. J. Neurosurg. Spine, 2011, 15(3), 228-237. doi: 10.3171/2011.4.SPINE10583 PMID: 21599445
  96. Lau, L.A.; Noubary, F.; Wang, D.; Dulla, C.G. α2δ-1 signaling drives cell death, synaptogenesis, circuit reorganization, and gabapentin-mediated neuroprotection in a model of insult-induced cortical malformation. eNeuro, 2017, 4(5) ENEURO.0316-17.2017.
  97. Cragg, J.J.; Jutzeler, C.R.; Grassner, L.; Ramer, M.; Bradke, F.; Kramer, J.L.K. Beneficial "pharmaceutical pleiotropy" of gabapentinoids in spinal cord injury: A case for refining standard-of-care. Neurorehabil. Neural Repair, 2020, 34(8), 686-689. doi: 10.1177/1545968320931516 PMID: 32508248
  98. Yan, B.C.; Wang, J.; Rui, Y.; Cao, J.; Xu, P.; Jiang, D.; Zhu, X.; Won, M.H.; Bo, P.; Su, P. Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the pi3k/akt/mtor signaling pathways. J. Neuropathol. Exp. Neurol., 2019, 78(2), 157-171. doi: 10.1093/jnen/nly119 PMID: 30597043
  99. Mohagheghi, F.; Khalaj, L.; Ahmadiani, A.; Rahmani, B. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox. Res., 2013, 23(3), 225-237. doi: 10.1007/s12640-012-9338-3 PMID: 22773136
  100. Aşcı, S.; Demirci, S.; Aşcı, H.; Kumbul Doguc, D.; Onaran, I. Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med. J., 2016, 33(2), 221-227. doi: 10.5152/balkanmedj.2015.15742 PMID: 27403394
  101. Silva, G.A.A.; Pradella, F.; Moraes, A.; Farias, A.; Santos, L.M.B.; Oliveira, A.L.R. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav., 2014, 4(6), 925-935. doi: 10.1002/brb3.276 PMID: 25365796
  102. Assis, A.D.; Chiarotto, G.B.; Simões, G.F.; Oliveira, A.L.R. Pregabalin-induced neuroprotection and gait improvement in dystrophic MDX mice. Mol. Cell. Neurosci., 2021, 114, 103632. doi: 10.1016/j.mcn.2021.103632 PMID: 34058345
  103. Blum, R.; Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology , 2005, 20(1), 70-78. doi: 10.1152/physiol.00042.2004 PMID: 15653842
  104. Comim, C.M.; Ventura, L.; Freiberger, V.; Dias, P.; Bragagnolo, D.; Dutra, M.L.; Amaral, R.A.; Camargo-Fagundes, A.L.S.; Reis, P.A.; Castro-Faria-Neto, H.C.; Vainzof, M.; Rosa, M.I. Neurocognitive impairment in mdx mice. Mol. Neurobiol., 2019, 56(11), 7608-7616. doi: 10.1007/s12035-019-1573-7 PMID: 31077034
  105. González-Sanmiguel, J.; Burgos, C.F.; Bascuñán, D.; Fernández-Pérez, E.J.; Riffo-Lepe, N.; Boopathi, S.; Fernández-Pérez, A.; Bobadilla-Azócar, C.; González, W.; Figueroa, M.; Vicente, B.; Aguayo, L.G. Gabapentin inhibits multiple steps in the amyloid beta toxicity cascade. ACS Chem. Neurosci., 2020, 11(19), 3064-3076. doi: 10.1021/acschemneuro.0c00414 PMID: 32886489
  106. Brodie, M.J.; Dichter, M.A. Established antiepileptic drugs. Seizure, 1997, 6(3), 159-174. doi: 10.1016/S1059-1311(97)80001-5 PMID: 9203243
  107. Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895. doi: 10.1016/j.addr.2011.11.006 PMID: 22210279
  108. Sims, P.J.; Burton, M.; Shaw, L. Applied pharmacokinetics & pharmacodynamics principles of therapeutic drug monitoring; Lippincott Williams & Wilkins: Baltimore, 2006.
  109. Thorn, C.F.; Leckband, S.G.; Kelsoe, J.; Steven Leeder, J.; Müller, D.J.; Klein, T.E.; Altman, R.B. PharmGKB summary. Pharmacogenet. Genomics, 2011, 21(12), 906-910. doi: 10.1097/FPC.0b013e328348c6f2 PMID: 21738081
  110. Ambrósio, A.F.; Soares-da-Silva, P.; Carvalho, C.M.; Carvalho, A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem. Res., 2002, 27(1/2), 121-130. doi: 10.1023/A:1014814924965 PMID: 11926264
  111. Schmidt, D.; Elger, C.E. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behav., 2004, 5(5), 627-635. doi: 10.1016/j.yebeh.2004.07.004 PMID: 15380112
  112. Beydoun, A.; Kutluay, E. Oxcarbazepine. Expert Opin. Pharmacother., 2002, 3(1), 59-71. doi: 10.1517/14656566.3.1.59 PMID: 11772334
  113. Wellington, K.; Goa, K.L. Oxcarbazepine. CNS Drugs, 2001, 15(2), 137-163. doi: 10.2165/00023210-200115020-00005 PMID: 11460891
  114. Ambrósio, A.F.; Silva, A.P.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology, 1999, 38(9), 1349-1359. doi: 10.1016/S0028-3908(99)00058-1 PMID: 10471089
  115. Macdonald, R.L.; Kelly, K.M. Antiepileptic drug mechanisms of action. Epilepsia, 1993, 34(S5), S1-S8. doi: 10.1111/j.1528-1157.1993.tb05918.x PMID: 7687957
  116. Grunze, A.; Amann, B.L.; Grunze, H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina , 2021, 57(5), 433. doi: 10.3390/medicina57050433 PMID: 33946323
  117. Manji, H.K.; Duman, R.S. Impairments of neuroplasticity and cellular resilience in severe mood disorders: Implications for the development of novel therapeutics Psychopharmacol. Bull., 2001, 35(2), 5-49. PMID: 12397885
  118. Strakowski, S.M.; DelBello, M.P.; Adler, C.M. The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings. Mol. Psychiat., 2005, 10(1), 105-116. doi: 10.1038/sj.mp.4001585 PMID: 15340357
  119. Vawter, M.P.; Freed, W.J.; Kleinman, J.E. Neuropathology of bipolar disorder. Biol. Psychiat., 2000, 48(6), 486-504. doi: 10.1016/S0006-3223(00)00978-1 PMID: 11018222
  120. Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry., 2000, 48(8), 766-777. doi: 10.1016/S0006-3223(00)00950-1 PMID: 11063973
  121. Neale, E.A.; Sher, P.K.; Graubard, B.I.; Habig, W.H.; Fitzgerald, S.C.; Nelson, P.G. Differential toxicity of chronic exposure to phenytoin, phenobarbital, or carbamazepine in cerebral cortical cell cultures. Pediatr. Neurol., 1985, 1(3), 143-150. doi: 10.1016/0887-8994(85)90053-0 PMID: 3880399
  122. Almgren, M.; Nyengaard, J.R.; Persson, B.; Lavebratt, C. Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Neurobiol. Dis., 2008, 32(3), 364-376. doi: 10.1016/j.nbd.2008.07.025 PMID: 18773962
  123. Lavebratt, C.; Trifunovski, A.; Persson, A.S.; Wang, F.H.; Klason, T.; Öhman, I.; Josephsson, A.; Olson, L.; Spenger, C.; Schalling, M. Carbamazepine protects against megencephaly and abnormal expression of BDNF and Nogo signaling components in the mceph/mceph mouse. Neurobiol. Dis., 2006, 24(2), 374-383. doi: 10.1016/j.nbd.2006.07.018 PMID: 16990009
  124. Petersson, S.; Sandberg, N.A.C.; Schalling, M.; Lavebratt, C. The megencephaly mouse has disturbances in the insulin-like growth factor (IGF) system. Brain Res. Mol. Brain Res., 1999, 72(1), 80-88. doi: 10.1016/S0169-328X(99)00211-9 PMID: 10521601
  125. Petersson, S.; Lavebratt, C.; Schalling, M.; Hökfelt, T. Expression of cholecystokinin, enkephalin, galanin and neuropeptide Y is markedly changed in the brain of the megencephaly mouse. Neuroscience, 2000, 100(2), 297-317. doi: 10.1016/S0306-4522(00)00285-2 PMID: 11008168
  126. Diez, M.; Schweinhardt, P.; Petersson, S.; Wang, F.H.; Lavebratt, C.; Schalling, M.; Hökfelt, T.; Spenger, C. MRI and in situ hybridization reveal early disturbances in brain size and gene expression in the megencephalic (mceph/mceph) mouse. Eur. J. Neurosci., 2003, 18(12), 3218-3230. doi: 10.1111/j.1460-9568.2003.02994.x PMID: 14686896
  127. Park, S.W.; Lee, J.G.; Seo, M.K.; Cho, H.Y.; Lee, C.H.; Lee, J.H.; Lee, B.J.; Baek, J.H.; Seol, W.; Kim, Y.H. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord., 2015, 17(3), 278-290. doi: 10.1111/bdi.12262 PMID: 25307211
  128. Lessmann, V.; Gottmann, K.; Malcangio, M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol., 2003, 69(5), 341-374. doi: 10.1016/S0301-0082(03)00019-4 PMID: 12787574
  129. Olaibi, O.K.; Osuntokun, O.S.; Ijomone, O.M. Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Ann. Neurosci., 2014, 21(2), 57-61. doi: 10.5214/ans.0972.7531.210206 PMID: 25206062
  130. Gao, X.M.; Chuang, D.M. Carbamazepine-induced neurotoxicity and its prevention by NMDA in cultured cerebellar granule cells. Neurosci. Lett., 1992, 135(2), 159-162. doi: 10.1016/0304-3940(92)90426-8 PMID: 1352629
  131. Gao, X.M.; Margolis, R.L.; Leeds, P.; Hough, C.; Post, R.M.; Chuang, D.M. Carbamazepine induction of apoptosis in cultured cerebellar neurons: Effects ofN-methyl-d-aspartate, aurintricarboxylic acid and cycloheximide. Brain Res., 1995, 703(1-2), 63-71. doi: 10.1016/0006-8993(95)01066-1 PMID: 8719616
  132. Nonaka, S.; Katsube, N.; Chuang, D.M. Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine J. Pharmacol. Exp. Ther., 1998, 286(1), 539-547. PMID: 9655900
  133. Ambrósio, A.F.; Silva, A.P.; Araújo, I.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. Eur. J. Pharmacol., 2000, 406(2), 191-201. doi: 10.1016/S0014-2999(00)00659-2 PMID: 11020481
  134. Araújo, I.M.; Ambrósio, A.F.; Leal, E.C.; Verdasca, M.J.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons: A comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45(12), 1498-1505. doi: 10.1111/j.0013-9580.2004.14104.x PMID: 15571507
  135. Vezzani, A.; Granata, T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia, 2005, 46(11), 1724-1743. doi: 10.1111/j.1528-1167.2005.00298.x PMID: 16302852
  136. Stollg, G.; Jander, S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol., 1999, 58(3), 233-247. doi: 10.1016/S0301-0082(98)00083-5 PMID: 10341362
  137. Wang, C.H.; Hsiao, C.J.; Lin, Y.N.; Wu, J.W.; Kuo, Y.C.; Lee, C.K.; Hsiao, G. Carbamazepine attenuates inducible nitric oxide synthase expression through Akt inhibition in activated microglial cells. Pharm. Biol., 2014, 52(11), 1451-1459. doi: 10.3109/13880209.2014.898074 PMID: 25026355
  138. Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. , 1990, 87(4), 1620-1624. doi: 10.1073/pnas.87.4.1620 PMID: 2154753
  139. Block, M.L.; Hong, J.S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98. doi: 10.1016/j.pneurobio.2005.06.004 PMID: 16081203
  140. Iwamoto, T.; Takasugi, Y.; Higashino, H.; Ito, H.; Koga, Y.; Nakao, S. Antinociceptive action of carbamazepine on thermal hypersensitive pain at spinal level in a rat model of adjuvant-induced chronic inflammation. J. Anesth., 2011, 25(1), 78-86. doi: 10.1007/s00540-010-1046-7 PMID: 21113631
  141. Murakami, A.; Furui, T. Effects of the conventional anticonvulsants, phenytoin, carbamazepine, and valproic acid, on sodium-potassium-adenosine triphosphatase in acute ischemic brain Neurosurgery, 1994, 34(6), 1047-1051. PMID: 8084389
  142. Schirrmacher, K.; Mayer, A.; Walden, J.; Düsing, R.; Bingmann, D. Effects of carbamazepine on membrane properties of rat sensory spinal ganglion cells in vitro. Eur. Neuropsychopharmacol., 1995, 5(4), 501-507. doi: 10.1016/0924-977X(95)80010-Y PMID: 8998403
  143. Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem., 1984, 43(5), 1369-1374. doi: 10.1111/j.1471-4159.1984.tb05396.x PMID: 6149259
  144. Sırlak, M.; Eryılmaz, S.; Bahadır Inan, M.; Sırın, Y.S.; Besaltı, O.; Yazıcıoglu, L.; Ozcınar, E.; Erdemlı, E.; Tasoz, R.; Elhan, A.H.; Kaya, B.; Ozyurda, U. Effects of carbamazepine on spinal cord ischemia. J. Thorac. Cardiovasc. Surg., 2008, 136(4), 1038-1043.e4. doi: 10.1016/j.jtcvs.2007.12.068 PMID: 18954647
  145. Lewin, E.; Bleck, V. Cyclic AMP accumulation in cerebral cortical slices: effect of carbamazepine, phenobarbital, and phenytoin. Epilepsia, 1977, 18(2), 237-242. doi: 10.1111/j.1528-1157.1977.tb04472.x PMID: 194771
  146. Manji, H.K.; Chen, G.; Hsiao, J.K.; Risby, E.D.; Masana, M.I.; Potter, W.Z. Regulation of signal transduction pathways by mood-stabilizing agents: Implications for the delayed onset of therapeutic efficacy J. Clin. Psychiat., 1996, 57(S13), 34-46. PMID: 8970503
  147. Mai, L.; Jope, R.S.; Li, X. BDNF-mediated signal transduction is modulated by GSK3β and mood stabilizing agents. J. Neurochem., 2002, 82(1), 75-83. doi: 10.1046/j.1471-4159.2002.00939.x PMID: 12091467
  148. Chang, Y.C.; Rapoport, S.I.; Rao, J.S. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem. Res., 2009, 34(3), 536-541. doi: 10.1007/s11064-008-9817-3 PMID: 18719996
  149. Rao, J.S.; Lee, H-J.; Rapoport, S.I.; Bazinet, R.P. Mode of action of mood stabilizers: Is the arachidonic acid cascade a common target? Mol. Psychiat., 2008, 13(6), 585-596. doi: 10.1038/mp.2008.31 PMID: 18347600
  150. Garrido, R.; Springer, J.E.; Hennig, B.; Toborek, M. Apoptosis of spinal cord neurons by preventing depletion nicotine attenuates arachidonic acid-induced of neurotrophic factors. J. Neurotrauma, 2003, 20(11), 1201-1213. doi: 10.1089/089771503322584628 PMID: 14651807
  151. Kwon, K.J.; Jung, Y.S.; Lee, S.H.; Moon, C.H.; Baik, E.J. Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res., 2005, 81(1), 73-84. doi: 10.1002/jnr.20520 PMID: 15931672
  152. Tang, D.G.; Chen, Y.Q.; Honn, K.V. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc. Natl. Acad. Sci. , 1996, 93(11), 5241-5246. doi: 10.1073/pnas.93.11.5241 PMID: 8643560
  153. Bowden, C.L. Lamotrigine in the treatment of bipolar disorder. Expert Opin. Pharmacother., 2002, 3(10), 1513-1519. doi: 10.1517/14656566.3.10.1513 PMID: 12387697
  154. Leng, Y.; Fessler, E.B.; Chuang, D.M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. Int. J. Neuropsychopharmacol., 2013, 16(3), 607-620. doi: 10.1017/S1461145712000429 PMID: 22564541
  155. Naguy, A.; Al-Enezi, N. Lamotrigine uses in psychiatric practice. Am. J. Ther., 2019, 26(1), e96-e102. doi: 10.1097/MJT.0000000000000535 PMID: 30601211
  156. Cuomo, A.; Amore, M.; Vampini, C.; Fagiolini, A. Lamotrigina nel disturbo bipolare: prevenire la depressione per curare la malattia Riv. Psichiatr., 2021, 56(1), 1-11. PMID: 33560270
  157. Calabrese, J.R.; Bowden, C.L.; Sachs, G.S.; Ascher, J.A.; Monaghan, E.; Rudd, G.D. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J. Clin. Psychiat., 1999, 60(2), 79-88. doi: 10.4088/JCP.v60n0203 PMID: 10084633
  158. Prabhavalkar, K.S.; Poovanpallil, N.B.; Bhatt, L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Front. Pharmacol., 2015, 6, 242. doi: 10.3389/fphar.2015.00242 PMID: 26557090
  159. Xie, X.; Hagan, R. Cellular and molecular actions of lamotrigine: Possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology, 1998, 38(3), 119-130. doi: 10.1159/000026527 PMID: 9778599
  160. Ketter, T.A.; Manji, H.K.; Post, R.M. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J. Clin. Psychopharmacol., 2003, 23(5), 484-495. doi: 10.1097/01.jcp.0000088915.02635.e8 PMID: 14520126
  161. Redmond, J.R.; Jamison, K.L.; Bowden, C.L. Lamotrigine combined with divalproex or lithium for bipolar disorder: A case series. CNS Spectr., 2006, 11(12), 915-918. doi: 10.1017/S1092852900015091 PMID: 17146405
  162. Walden, J.; Hesslinger, B.; van Calker, D.; Berger, M. Addition of lamotrigine to valproate may enhance efficacy in the treatment of bipolar affective disorder. Pharmacopsychiatry., 1996, 29(5), 193-195. doi: 10.1055/s-2007-979570 PMID: 8895945
  163. Aldenkamp, A.P.; Baker, G. A systematic review of the effects of lamotrigine on cognitive function and quality of life. Epilepsy Behav., 2001, 2(2), 85-91. doi: 10.1006/ebeh.2001.0168 PMID: 12609190
  164. Calabresi, P.; Picconi, B.; Saulle, E.; Centonze, D.; Hainsworth, A.H.; Bernardi, G. Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke, 2000, 31(3), 766-773. doi: 10.1161/01.STR.31.3.766 PMID: 10700517
  165. Papazisis, G.; Kallaras, K.; Kaiki-Astara, A.; Pourzitaki, C.; Tzachanis, D.; Dagklis, T.; Kouvelas, D. Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int. J. Neuropsychopharmacol., 2008, 11(3), 321-329. doi: 10.1017/S1461145707008012 PMID: 17897482
  166. Shuaib, A.; Mahmood, R.H.; Wishart, T.; Kanthan, R.; Murabit, M.A.; Ijaz, S.; Miyashita, H.; Howlett, W. Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res., 1995, 702(1-2), 199-206. doi: 10.1016/0006-8993(95)01048-1 PMID: 8846077
  167. Smith, S.E.; Meldrum, B.S. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke, 1995, 26(1), 117-122. doi: 10.1161/01.STR.26.1.117 PMID: 7839380
  168. Wiard, R.P.; Dickerson, M.C.; Beek, O.; Norton, R.; Cooper, B.R. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Stroke, 1995, 26(3), 466-472. doi: 10.1161/01.STR.26.3.466 PMID: 7886726
  169. Connop, B.P.; Boegman, R.J.; Beninger, R.J.; Jhamandas, K. Malonate-induced degeneration of basal forebrain cholinergic neurons: Attenuation by lamotrigine, MK-801, and 7-nitroindazole. J. Neurochem., 1997, 68(3), 1191-1199. doi: 10.1046/j.1471-4159.1997.68031191.x PMID: 9048766
  170. Mancuso, M.; Galli, R.; Pizzanelli, C.; Filosto, M.; Siciliano, G.; Murri, L. Antimyoclonic effect of levetiracetam in MERRF syndrome. J. Neurol. Sci., 2006, 243(1-2), 97-99. doi: 10.1016/j.jns.2005.11.021 PMID: 16414077
  171. Halonen, T.; Nissinen, J.; Pitkänen, A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res., 2001, 46(3), 205-223. doi: 10.1016/S0920-1211(01)00278-9 PMID: 11518623
  172. Lagrue, E.; Chalon, S.; Bodard, S.; Saliba, E.; Gressens, P.; Castelnau, P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr. Res., 2007, 62(1), 14-19. doi: 10.1203/PDR.0b013e31806790d7 PMID: 17515828
  173. Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther., 1999, 81(3), 163-221. doi: 10.1016/S0163-7258(98)00042-4 PMID: 10334661
  174. Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601. doi: 10.1016/j.tins.2009.06.002 PMID: 19775759
  175. Rohn, T.T.; Vyas, V.; Hernandez-Estrada, T.; Nichol, K.E.; Christie, L.A.; Head, E. Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci., 2008, 28(12), 3051-3059. doi: 10.1523/JNEUROSCI.5620-07.2008 PMID: 18354008
  176. Vukosavic, S.; Stefanis, L.; Jackson-Lewis, V.; Guégan, C.; Romero, N.; Chen, C.; Dubois-Dauphin, M.; Przedborski, S. Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2000, 20(24), 9119-9125. doi: 10.1523/JNEUROSCI.20-24-09119.2000 PMID: 11124989
  177. Yuan, J.; Lipinski, M.; Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron, 2003, 40(2), 401-413. doi: 10.1016/S0896-6273(03)00601-9 PMID: 14556717
  178. Chen, R.W.; Chuang, D.M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem., 1999, 274(10), 6039-6042. doi: 10.1074/jbc.274.10.6039 PMID: 10037682
  179. Paul, I.A.; Skolnick, P. Glutamate and depression. Ann. N. Y. Acad. Sci., 2003, 1003(1), 250-272. doi: 10.1196/annals.1300.016 PMID: 14684451
  180. Duman, R.S.; Heninger, G.R.; Nestler, E.J. Molecular psychiatry Adaptations of receptor-coupled signal transduction pathways underlying stress- and drug-induced neural plasticity. J. Nerv. Ment. Dis., 1994, 182(12), 692-700. doi: 10.1097/00005053-199412000-00003 PMID: 7989913
  181. Duman, R.S. Depression: A case of neuronal life and death? Biol. Psychiat., 2004, 56(3), 140-145. doi: 10.1016/j.biopsych.2004.02.033 PMID: 15271581
  182. Li, N.; He, X.; Zhang, Y.; Qi, X.; Li, H.; Zhu, X.; He, S. Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int. J. Neuropsychopharmacol., 2011, 14(8), 1091-1098. doi: 10.1017/S1461145710001082 PMID: 20846461
  183. Abelaira, H.M.; Réus, G.Z.; Ribeiro, K.F.; Zappellini, G.; Ferreira, G.K.; Gomes, L.M.; Carvalho-Silva, M.; Luciano, T.F.; Marques, S.O.; Streck, E.L.; Souza, C.T.; Quevedo, J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem. Int., 2011, 59(8), 1163-1174. doi: 10.1016/j.neuint.2011.10.007 PMID: 22044672
  184. Kumar, P.; Kalonia, H.; Kumar, A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur. J. Pharmacol., 2012, 674(2-3), 265-274. doi: 10.1016/j.ejphar.2011.11.030 PMID: 22154757
  185. Brown, E.S.; Sayed, N.; Choi, C.; Tustison, N.; Roberts, J.; Yassa, M.A.; Van Enkevort, E.; Nakamura, A.; Ivleva, E.I.; Sunderajan, P.; Khan, D.A.; Vazquez, M.; McEwen, B.; Kulikova, A.; Frol, A.B.; Holmes, T. A randomized, double-blind, placebo-controlled trial of lamotrigine for prescription corticosteroid effects on the human hippocampus. Eur. Neuropsychopharmacol., 2019, 29(3), 376-383. doi: 10.1016/j.euroneuro.2018.12.012 PMID: 30612854
  186. Hendricks, E. Off-label drugs for weight management. Diabetes Metab. Syndr. Obes., 2017, 10, 223-234. doi: 10.2147/DMSO.S95299 PMID: 28652791
  187. Manhapra, A.; Chakraborty, A.; Arias, A.J. Topiramate pharmacotherapy for alcohol use disorder and other addictions: a narrative review. J. Addict. Med., 2019, 13(1), 7-22. doi: 10.1097/ADM.0000000000000443 PMID: 30096077
  188. Osser, D.N. Topiramate in bipolar disorder and comorbidities: The myths and the evidence Psychiatr. Times, 2020, 37(8), 32.
  189. Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment P&T, 2010, 35(7), 392-415. PMID: 20689626
  190. Hanalioglu, S.; Narin, F.; Ustun, H.; Kilinc, K.; Bilginer, B. Topiramate as a neuroprotective agent in a rat model of spinal cord injury. Neural Regen. Res., 2017, 12(12), 2071-2076. doi: 10.4103/1673-5374.221164 PMID: 29323048
  191. Bischofs, S.; Zelenka, M.; Sommer, C. Evaluation of topiramate as an anti-hyperalgesic and neuroprotective agent in the peripheral nervous system. J. Peripher. Nerv. Syst., 2004, 9(2), 70-78. doi: 10.1111/j.1085-9489.2004.009205.x PMID: 15104694
  192. Motaghinejad, M.; Motevalian, M.; Babalouei, F.; Abdollahi, M.; Heidari, M.; Madjd, Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: Molecular, biochemical and histological evidences. Brain Res. Bull., 2017, 132, 82-98. doi: 10.1016/j.brainresbull.2017.05.011 PMID: 28552672
  193. Motaghinejad, M.; Motevalian, M.; Abdollahi, M.; Heidari, M.; Madjd, Z. Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox. Res., 2017, 31(3), 373-399. doi: 10.1007/s12640-016-9695-4 PMID: 28078543
  194. Motaghinejad, M.; Motevalian, M.; Fatima, S.; Beiranvand, T.; Mozaffari, S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural Transm. , 2017, 124(11), 1369-1387. doi: 10.1007/s00702-017-1771-2 PMID: 28795276
  195. Mao, X.Y.; Cao, Y.G.; Ji, Z.; Zhou, H.H.; Liu, Z.Q.; Sun, H.L. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog. Neuropsychopharmacol. Biol. Psychiat., 2015, 60, 11-17. doi: 10.1016/j.pnpbp.2015.01.015 PMID: 25661849
  196. Pinheiro, R.M.C.; de Lima, M.N.M.; Portal, B.C.D.; Busato, S.B.; Falavigna, L.; Ferreira, R.D.P.; Paz, A.C.; de Aguiar, B.W.; Kapczinski, F.; Schröder, N. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: Effects of valproic acid and topiramate. J. Neural Transm. , 2015, 122(5), 709-719. doi: 10.1007/s00702-014-1303-2 PMID: 25182413
  197. Aydin, S.; Yazici, Z.G.; Kilic, C.; Ercelen, O.B.; Kilic, F.S. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur. J. Pharmacol., 2021, 912, 174578. doi: 10.1016/j.ejphar.2021.174578 PMID: 34695423

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers