Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders?
- Authors: Dell'Osso L.1, Nardi B.1, Massoni L.1, Gravina D.1, Benedetti F.1, Cremone I.1, Carpita B.1
-
Affiliations:
- Department of Clinical and Experimental Medicine, University of Pisa
- Issue: Vol 31, No 23 (2024)
- Pages: 3447-3472
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645217
- DOI: https://doi.org/10.2174/0929867330666230523155728
- ID: 645217
Cite item
Full Text
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
About the authors
Liliana Dell'Osso
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
Benedetta Nardi
Department of Clinical and Experimental Medicine, University of Pisa
Author for correspondence.
Email: info@benthamscience.net
Leonardo Massoni
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
Davide Gravina
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
Francesca Benedetti
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
Ivan Cremone
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
Barbara Carpita
Department of Clinical and Experimental Medicine, University of Pisa
Email: info@benthamscience.net
References
- Scott, D.F. The history of epileptic therapy: an account of how medication was developed; CRC Press, 2001.
- Goodwin, G.M. Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology. J. Psychopharmacol., 2003, 17(2), 149-173. doi: 10.1177/0269881103017002003 PMID: 12870562
- Lopes da Silva, F.; Post, R.M. Evaluation and prediction of effects of antiepileptic drugs in a variety of other CNS disorders. Epilepsy Res., 2002, 50(1-2), 191-193. doi: 10.1016/S0920-1211(02)00079-7 PMID: 12151128
- Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol., 2003, 53(6), 693-702. doi: 10.1002/ana.10603 PMID: 12783414
- Meldrum, B.S. Implications for neuroprotective treatments. Prog. Brain Res.,, 2002, 135, 487-495. doi: 10.1016/S0079-6123(02)35046-5 PMID: 12143367
- Trojnar, M.K.; Małek, R.; Chrościńska, M.; Nowak, S.; Błaszczyk, B.; Czuczwar, S.J. Neuroprotective effects of antiepileptic drugs Pol. J. Pharmacol., 2002, 54(6), 557-566. PMID: 12866709
- Pitkänen, A. Drug-mediated neuroprotection and antiepileptogenesis: Animal data. Neurology, 2002, 59(S5), S27-S33. doi: 10.1212/WNL.59.9_suppl_5.S27 PMID: 12428029
- Leker, R.R.; Neufeld, M.Y. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Res. Brain Res. Rev., 2003, 42(3), 187-203. doi: 10.1016/S0165-0173(03)00170-X PMID: 12791439
- Walker, M.C.; White, H.S.; Sander, J.W.A.S. Disease modification in partial epilepsy. Brain, 2002, 125(9), 1937-1950. doi: 10.1093/brain/awf203 PMID: 12183340
- Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol., 2016, 12(2), 106-116. doi: 10.1038/nrneurol.2015.243 PMID: 26782334
- Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure, 2020, 83, 251-263. doi: 10.1016/j.seizure.2020.10.018 PMID: 33334546
- Rajkowska, G. Cell pathology in bipolar disorder. Bipolar Disord., 2002, 4(2), 105-116. doi: 10.1034/j.1399-5618.2002.01149.x PMID: 12071508
- Knable, M.B.; Barci, B.M.; Webster, M.J.; Meador-Woodruff, J.; Torrey, E.F. Molecular abnormalities of the hippocampus in severe psychiatric illness: Postmortem findings from the stanley neuropathology consortium. Mol. Psychiat., , 2004, 9(6), 609-620. 544 doi: 10.1038/sj.mp.4001471 PMID: 14708030
- Lyoo, I.K.; Sung, Y.H.; Dager, S.R.; Friedman, S.D.; Lee, J.Y.; Kim, S.J.; Kim, N.; Dunner, D.L.; Renshaw, P.F. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord., 2006, 8(1), 65-74. doi: 10.1111/j.1399-5618.2006.00284.x PMID: 16411982
- Sutula, T. Antiepileptic drugs to prevent neural degeneration associated with epilepsy: Assessing the prospects for neuroprotection. Epilepsy Res., 2002, 50(1-2), 125-129. doi: 10.1016/S0920-1211(02)00074-8 PMID: 12151123
- During, M.J.; Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993, 341(8861), 1607-1610. doi: 10.1016/0140-6736(93)90754-5 PMID: 8099987
- Ueda, Y.; Yokoyama, H.; Nakajima, A.; Tokumaru, J.; Doi, T.; Mitsuyama, Y. Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp. Brain Res., 2002, 147(2), 219-226. doi: 10.1007/s00221-002-1224-4 PMID: 12410337
- Choi, D. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1988, 1(8), 623-634. doi: 10.1016/0896-6273(88)90162-6 PMID: 2908446
- Kito, M.; Maehara, M.; Watanabe, K. Antiepileptic drugs-calcium current interaction in cultured human neuroblastoma cells. Seizure, 1994, 3(2), 141-149. doi: 10.1016/S1059-1311(05)80205-5 PMID: 8081641
- Stefani, A.; Calabresi, P.; Pisani, A.; Mercuri, N.B.; Siniscalchi, A.; Bernardi, G. Felbamate inhibits dihydropyridinesensitive calcium channels in central neurons J. Pharmacol. Exp. Ther., 1996, 277(1), 121-127. PMID: 8613908
- Zhang, X.; Velumian, A.A.; Jones, O.T.; Carlen, P.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia, 2000, 41(s1), 52-60. doi: 10.1111/j.1528-1157.2000.tb02173.x PMID: 10768302
- Fink, K.; Dooley, D.J.; Meder, W.P.; Suman-Chauhan, N.; Duffy, S.; Clusmann, H.; Göthert, M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology, 2002, 42(2), 229-236. doi: 10.1016/S0028-3908(01)00172-1 PMID: 11804619
- Calabresi, P.; Murtas, M.D.; Stefani, A.; Pisani, A.; Sancesario, G.; Mercuri, N.B.; Bernardi, G. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission. Epilepsia, 1995, 36(10), 990-996. doi: 10.1111/j.1528-1157.1995.tb00957.x PMID: 7555963
- DeLorenzo, R.J. Calmodulin in neurotransmitter release and synaptic function Fed. Proc., 1982, 41(7), 2265-2272. PMID: 6122609
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568. doi: 10.1152/physrev.1999.79.4.1431 PMID: 10508238
- Rataud, J.; Debarnot, F.; Mary, V.; Pratt, J.; Stutzmann, J.M. Comparative study of voltage-sensitive sodium channel blockers in focal ischaemia and electric convulsions in rodents. Neurosci. Lett., 1994, 172(1-2), 19-23. doi: 10.1016/0304-3940(94)90652-1 PMID: 8084530
- Pitkänen, A. Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. Epilepsy Res., 2002, 50(1-2), 141-160. doi: 10.1016/S0920-1211(02)00076-1 PMID: 12151125
- Pitkänen, A.; Kubova, H. Antiepileptic drugs in neuroprotection. Expert Opin. Pharmacother., 2004, 5(4), 777-798. doi: 10.1517/14656566.5.4.777 PMID: 15102563
- Hao, Y.; Creson, T.; Zhang, L.; Li, P.; Du, F.; Yuan, P.; Gould, T.D.; Manji, H.K.; Chen, G. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci., 2004, 24(29), 6590-6599. doi: 10.1523/JNEUROSCI.5747-03.2004 PMID: 15269271
- Laeng, P.; Pitts, R.L.; Lemire, A.L.; Drabik, C.E.; Weiner, A.; Tang, H.; Thyagarajan, R.; Mallon, B.S.; Altar, C.A. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J. Neurochem., 2004, 91(1), 238-251. doi: 10.1111/j.1471-4159.2004.02725.x PMID: 15379904
- Pavone, A.; Cardile, V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia, 2003, 44(s10), 34-39. doi: 10.1046/j.1528-1157.44.s10.5.x PMID: 14511393
- Manford, M. Recent advances in epilepsy. J. Neurol., 2017, 264(8), 1811-1824. doi: 10.1007/s00415-017-8394-2 PMID: 28120042
- Carmassi, C.; Del Grande, C.; Gesi, C.; Musetti, L.; DellOsso, L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 12, 1687-1703. doi: 10.2147/NDT.S106479 PMID: 27468233
- Won, E.; Kim, Y.K. An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2679. doi: 10.3390/ijms18122679 PMID: 29232923
- Howes, O.D.; Barnes, T.R.E.; Lennox, B.R.; Markham, S.; Natesan, S. Time to re-evaluate the risks and benefits of valproate and a call for action. Br. J. Psychiat., 2022, 221(6), 711-713. doi: 10.1192/bjp.2022.94 PMID: 35795925
- Jochim, J.; Rifkin-Zybutz, R.P.; Geddes, J.; Cipriani, A. Valproate for acute mania. Cochrane Database Syst. Rev., 2019, 10(10), CD004052. PMID: 31621892
- Kishi, T.; Ikuta, T.; Matsuda, Y.; Sakuma, K.; Okuya, M.; Nomura, I.; Hatano, M.; Iwata, N. Pharmacological treatment for bipolar mania: A systematic review and network meta-analysis of double-blind randomized controlled trials. Mol. Psychiat., 2022, 27(2), 1136-1144. doi: 10.1038/s41380-021-01334-4 PMID: 34642461
- Tseng, P.T.; Chen, Y.W.; Chung, W.; Tu, K.Y.; Wang, H.Y.; Wu, C.K.; Lin, P.Y. Significant effect of valproate augmentation therapy in patients with Schizophrenia. Medicine , 2016, 95(4), e2475. doi: 10.1097/MD.0000000000002475 PMID: 26825886
- Wang, J.F.; Shao, L.; Sun, X.; Young, L.T. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J. Neurochem., 2004, 88(6), 1477-1484. doi: 10.1046/j.1471-4159.2003.02276.x PMID: 15009649
- Wang, J.F.; Bown, C.; Young, L.T. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78 Mol. Pharmacol., 1999, 55(3), 521-527. PMID: 10051536
- Chen, G.; Zeng, W.Z.; Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Zhao, Z.H.; Manji, H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem., 1999, 72(2), 879-882. doi: 10.1046/j.1471-4159.1999.720879.x PMID: 9930766
- Wang, J.F.; Azzam, J.E.; Young, L.T. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience, 2003, 116(2), 485-489. doi: 10.1016/S0306-4522(02)00655-3 PMID: 12559103
- Shao, L.; Young, L.T.; Wang, J.F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol. Psychiat., 2005, 58(11), 879-884. doi: 10.1016/j.biopsych.2005.04.052 PMID: 16005436
- Lee, J.Y.; Maeng, S.; Kang, S.R.; Choi, H.Y.; Oh, T.H.; Ju, B.G.; Yune, T.Y. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J. Neurotrauma, 2014, 31(6), 582-594. doi: 10.1089/neu.2013.3146 PMID: 24294888
- Frey, B.N.; Valvassori, S.S.; Réus, G.Z.; Martins, M.R.; Petronilho, F.C.; Bardini, K.; Dal-Pizzol, F.; Kapczinski, F.; Quevedo, J. EEffects of lithium and valproate on amphetamine- induced oxidative stress generation in an animal model of mania J. Psychiat. Neurosci., 2006, 31(5), 326-332. PMID: 16951735
- Edalatmanesh, M.A.; Hosseini, M.; Ghasemi, S.; Golestani, S.; Sadeghnia, H.R.; Mousavi, S.M.; Vafaee, F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir. J. Med. Sci., 2016, 185(1), 75-84. doi: 10.1007/s11845-014-1224-y PMID: 25638225
- Yasuda, S.; Liang, M.H.; Marinova, Z.; Yahyavi, A.; Chuang, D.M. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiat., 2009, 14(1), 51-59. doi: 10.1038/sj.mp.4002099 PMID: 17925795
- Croce, N.; Mathé, A.A.; Gelfo, F.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J. Psychopharmacol., 2014, 28(10), 964-972. doi: 10.1177/0269881114529379 PMID: 24699060
- Frey, B.N.; Andreazza, A.C.; Ceresér, K.M.M.; Martins, M.R.; Valvassori, S.S.; Réus, G.Z.; Quevedo, J.; Kapczinski, F. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci., 2006, 79(3), 281-286. doi: 10.1016/j.lfs.2006.01.002 PMID: 16460767
- Stertz, L.; Fries, G.R.; Aguiar, B.W.; Pfaffenseller, B.; Valvassori, S.S.; Gubert, C.; Ferreira, C.L.; Moretti, M.; Ceresér, K.M.; Kauer-SantAnna, M.; Quevedo, J.; Kapczinski, F. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev. Bras. Psiquiatr., 2013, 36(1), 39-46. doi: 10.1590/1516-4446-2013-1094 PMID: 24346357
- Leng, Y.; Chuang, D.M. Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J. Neurosci., 2006, 26(28), 7502-7512. doi: 10.1523/JNEUROSCI.0096-06.2006 PMID: 16837598
- Wu, X.; Chen, P.S.; Dallas, S.; Wilson, B.; Block, M.L.; Wang, C.C.; Kinyamu, H.; Lu, N.; Gao, X.; Leng, Y.; Chuang, D.M.; Zhang, W.; Lu, R.B.; Hong, J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol., 2008, 11(8), 1123-1134. doi: 10.1017/S1461145708009024 PMID: 18611290
- Tremolizzo, L.; DiFrancesco, J.C.; Rodriguez-Menendez, V.; Riva, C.; Conti, E.; Galimberti, G.; Ruffmann, C.; Ferrarese, C. Valproate induces epigenetic modifications in lymphomonocytes from epileptic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2012, 39(1), 47-51. doi: 10.1016/j.pnpbp.2012.04.016 PMID: 22584634
- Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735. doi: 10.4161/epi.5.8.13053 PMID: 20716949
- Goudarzi, M.; Nahavandi, A.; Mehrabi, S.; Eslami, M.; Shahbazi, A.; Barati, M. Valproic acid administration exerts protective effects against stress-related anhedonia in rats. J. Chem. Neuroanat., 2020, 105, 101768. doi: 10.1016/j.jchemneu.2020.101768 PMID: 32061998
- Joshi, H.; Sharma, R.; Prashar, S.; Ho, J.; Thomson, S.; Mishra, R. Differential expression of synapsin I and II upon treatment by lithium and valproic acid in various brain regions. Int. J. Neuropsychopharmacol., 2018, 21(6), 616-622. doi: 10.1093/ijnp/pyy023 PMID: 29618019
- Lee, H.J.; Dreyfus, C.; DiCicco-Bloom, E. Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat. Dev. Neurobiol., 2016, 76(7), 780-798. doi: 10.1002/dneu.22359 PMID: 26505176
- Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468. doi: 10.1016/j.lfs.2012.01.001 PMID: 22285595
- Zareie, P.; Gholami, M.; Amirpour-najafabadi, B.; Hosseini, S.; Sadegh, M. Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(10), 1085-1092. doi: 10.1007/s00210-018-1531-3 PMID: 29971457
- Biermann, J.; Grieshaber, P.; Goebel, U.; Martin, G.; Thanos, S.; Giovanni, S.D.; Lagrèze, W.A. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 526-534. doi: 10.1167/iovs.09-3903 PMID: 19628741
- Biermann, J.; Boyle, J.; Pielen, A.; Lagrèze, W.A. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol. Vis., 2011, 17, 395-403. PMID: 21311741
- Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Gutkind, J.S.; Manji, H.K.; Chen, G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem., 2001, 276(34), 31674-31683. doi: 10.1074/jbc.M104309200 PMID: 11418608
- Monti, B.; Gatta, V.; Piretti, F.; Raffaelli, S.S.; Virgili, M.; Contestabile, A. Valproic acid is neuroprotective in the rotenone rat model of Parkinsons disease: Involvement of alpha-synuclein. Neurotox. Res., 2010, 17(2), 130-141. doi: 10.1007/s12640-009-9090-5 PMID: 19626387
- Ximenes, J.C.M.; Neves, K.R.T.; Leal, L.K.A.M.; do Carmo, M.R.S.; Brito, G.A.C.; Naffah-Mazzacoratti, M.G.; Cavalheiro, É.A.; Viana, G.S.B. Valproic acid neuroprotection in the 6-ohda model of Parkinsons disease is possibly related to its anti-inflammatory and hdac inhibitory properties. J. Neurodegener. Dis., 2015, 2015, 313702. doi: 10.1155/2015/313702 PMID: 26317011
- Long, Z.; Zeng, Q.; Wang, K.; Sharma, A.; He, G. Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimers disease. Acta Biochim. Biophys. Sin. , 2016, 48(10), 930-938. doi: 10.1093/abbs/gmw085 PMID: 27614317
- Bahna, S.G.; Sathiyapalan, A.; Foster, J.A.; Niles, L.P. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: Therapeutic implications for Alzheimers disease. Neurosci. Lett., 2014, 576, 84-87. doi: 10.1016/j.neulet.2014.05.056 PMID: 24909617
- Gyawali, A.; Latif, S.; Choi, S.H.; Hyeon, S.J.; Ryu, H.; Kang, Y.S. Monocarboxylate transporter functions and neuroprotective effects of valproic acid in experimental models of amyotrophic lateral sclerosis. J. Biomed. Sci., 2022, 29(1), 2. doi: 10.1186/s12929-022-00785-3 PMID: 35012534
- Sugai, F.; Yamamoto, Y.; Miyaguchi, K.; Zhou, Z.; Sumi, H.; Hamasaki, T.; Goto, M.; Sakoda, S. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur. J. Neurosci., 2004, 20(11), 3179-3183. doi: 10.1111/j.1460-9568.2004.03765.x PMID: 15579172
- Dou, H.; Birusingh, K.; Faraci, J.; Gorantla, S.; Poluektova, L.Y.; Maggirwar, S.B.; Dewhurst, S.; Gelbard, H.A.; Gendelman, H.E. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J. Neurosci., 2003, 23(27), 9162-9170. doi: 10.1523/JNEUROSCI.23-27-09162.2003 PMID: 14534250
- Karas, B.J.; Wilder, B.J.; Hammond, E.J.; Bauman, A.W. Valproate tremors. Neurology, 1982, 32(4), 428-432. doi: 10.1212/WNL.32.4.428 PMID: 6801541
- Gram, L.; Bentsen, K.D. Valproate: An updated review. Acta Neurol. Scand., 1985, 72(2), 129-139. doi: 10.1111/j.1600-0404.1985.tb00854.x PMID: 2931939
- Verrotti, A.; Scaparrotta, A.; Cofini, M.; Chiarelli, F.; Tiboni, G.M. Developmental neurotoxicity and anticonvulsant drugs: A possible link. Reprod. Toxicol., 2014, 48, 72-80. doi: 10.1016/j.reprotox.2014.04.005 PMID: 24803404
- Miranda, C.C.; Fernandes, T.G.; Pinto, S.N.; Prieto, M.; Diogo, M.M.; Cabral, J.M.S. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol. Lett., 2018, 294, 51-60. doi: 10.1016/j.toxlet.2018.05.018 PMID: 29775723
- Bold, J.; Sakata-Haga, H.; Fukui, Y. Spinal nerve defects in mouse embryos prenatally exposed to valproic acid. Anat. Sci. Int., 2018, 93(1), 35-41. doi: 10.1007/s12565-016-0363-9 PMID: 27550043
- Wadzinski, J.; Franks, R.; Roane, D.; Bayard, M. Valproate-associated hyperammonemic encephalopathy. J. Am. Board Fam. Med., 2007, 20(5), 499-502. doi: 10.3122/jabfm.2007.05.070062 PMID: 17823470
- Yokoyama, S.; Sugawara, N.; Maruo, K.; Yasui-Furukori, N.; Shimoda, K. Blood levels of ammonia and carnitine in patients treated with valproic acid: A meta-analysis. Clin. Psychopharmacol. Neurosci., 2022, 20(3), 536-547. doi: 10.9758/cpn.2022.20.3.536
- Zhang, L.; Li, H.; Li, S.; Zou, X. Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, 202, 26-31. doi: 10.1016/j.ejogrb.2016.04.038 PMID: 27160812
- Macdonald, K.J.; Young, L.T. Newer antiepileptic drugs in bipolar disorder: rationale for use and role in therapy. CNS Drugs, 2002, 16(8), 549-562. doi: 10.2165/00023210-200216080-00004 PMID: 12096935
- Moore, A.; Derry, S.; Wiffen, P. Gabapentin for chronic neuropathic pain. JAMA, 2018, 319(8), 818-819. doi: 10.1001/jama.2017.21547 PMID: 29486015
- Tedeschi, A.; Dupraz, S.; Laskowski, C.J.; Xue, J.; Ulas, T.; Beyer, M.; Schultze, J.L.; Bradke, F. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron, 2016, 92(2), 419-434. doi: 10.1016/j.neuron.2016.09.026 PMID: 27720483
- Kim, D.S.; Li, K.W.; Boroujerdi, A.; Peter Yu, Y.; Zhou, C.Y.; Deng, P.; Park, J.; Zhang, X.; Lee, J.; Corpe, M.; Sharp, K.; Steward, O.; Eroglu, C.; Barres, B.; Zaucke, F.; Xu, Z.C.; Luo, Z.D. Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states. J. Neurosci., 2012, 32(26), 8977-8987. doi: 10.1523/JNEUROSCI.6494-11.2012 PMID: 22745497
- Eroglu, Ç.; Allen, N.J.; Susman, M.W.; ORourke, N.A.; Park, C.Y.; Özkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; Green, E.M.; Lawler, J.; Dolmetsch, R.; Garcia, K.C.; Smith, S.J.; Luo, Z.D.; Rosenthal, A.; Mosher, D.F.; Barres, B.A. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2), 380-392. doi: 10.1016/j.cell.2009.09.025 PMID: 19818485
- Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 2012, 486(7403), 410-414. doi: 10.1038/nature11059 PMID: 22722203
- Park, J.F.; Yu, Y.P.; Gong, N.; Trinh, V.N.; Luo, Z.D. The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. J. Biol. Chem., 2018, 293(42), 16453-16463. doi: 10.1074/jbc.RA118.003591 PMID: 30194282
- Park, J.; Yu, Y.P.; Zhou, C.Y.; Li, K.W.; Wang, D.; Chang, E.; Kim, D.S.; Vo, B.; Zhang, X.; Gong, N.; Sharp, K.; Steward, O.; Vitko, I.; Perez-Reyes, E.; Eroglu, C.; Barres, B.; Zaucke, F.; Feng, G.; Luo, Z.D. Central mechanisms mediating thrombospondin-4-induced pain states. J. Biol. Chem., 2016, 291(25), 13335-13348. doi: 10.1074/jbc.M116.723478 PMID: 27129212
- Stahl, S.M. Anticonvulsants and the relief of chronic pain: pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(5), 596-597. doi: 10.4088/JCP.v65n0501 PMID: 15163243
- Stahl, S.M. Anticonvulsants as anxiolytics, part 2: Pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(4), 460-461. doi: 10.4088/JCP.v65n0401 PMID: 15119905
- Cragg, J.J.; Haefeli, J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Kalke, Y.B.; Schuld, C.; Curt, A.; Kramer, J.K. Effects of pain and pain management on motor recovery of spinal cord-injured patients: A longitudinal study. Neurorehabil. Neural Repair, 2016, 30(8), 753-761. doi: 10.1177/1545968315624777 PMID: 26747127
- Aslankoc, R.; Savran, M.; Ozmen, O.; Asci, S. Hippocampus and cerebellum damage in sepsis induced by lipopolysaccharide in aged rats - Pregabalin can prevent damage. Biomed. Pharmacother., 2018, 108, 1384-1392. doi: 10.1016/j.biopha.2018.09.162 PMID: 30372841
- Warner, F.M.; Jutzeler, C.R.; Cragg, J.J.; Tong, B.; Grassner, L.; Bradke, F.; Geisler, F.; Kramer, J.K. The effect of non-gabapentinoid anticonvulsants on sensorimotor recovery after human spinal cord injury. CNS Drugs, 2019, 33(5), 503-511. doi: 10.1007/s40263-019-00622-6 PMID: 30949923
- Warner, F.M.; Cragg, J.J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Schuld, C.; Curt, A.; Kramer, J.K. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep., 2017, 18(7), 1614-1618. doi: 10.1016/j.celrep.2017.01.048 PMID: 28199834
- Sun, W.; Larson, M.J.E.; Kiyoshi, C.M.; Annett, A.J.; Stalker, W.A.; Peng, J.; Tedeschi, A. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J. Clin. Invest., 2019, 130(1), 345-358. doi: 10.1172/JCI130391 PMID: 31793909
- Ha, K.Y.; Carragee, E.; Cheng, I.; Kwon, S.E.; Kim, Y.H. Pregabalin as a neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J. Korean Med. Sci., 2011, 26(3), 404-411. doi: 10.3346/jkms.2011.26.3.404 PMID: 21394310
- Emmez, H.; Börcek, A.Ö.; Kaymaz, M.; Kaymaz, F.; Durdağ, E.; Çivi, S.; Gülbahar, Ö.; Aykol, Ş.; Paşaoğlu, A. Neuroprotective effects of gabapentin in experimental spinal cord injury. World Neurosurg., 2010, 73(6), 729-734. doi: 10.1016/j.wneu.2010.04.008 PMID: 20934165
- Kale, A.; Börcek, A.Ö.; Emmez, H.; Yildirim, Z.; Durdağ, E.; Lortlar, N.; Kurt, G.; Doğulu, F.; Kılıç, N. Neuroprotective effects of gabapentin on spinal cord ischemia-reperfusion injury in rabbits. J. Neurosurg. Spine, 2011, 15(3), 228-237. doi: 10.3171/2011.4.SPINE10583 PMID: 21599445
- Lau, L.A.; Noubary, F.; Wang, D.; Dulla, C.G. α2δ-1 signaling drives cell death, synaptogenesis, circuit reorganization, and gabapentin-mediated neuroprotection in a model of insult-induced cortical malformation. eNeuro, 2017, 4(5) ENEURO.0316-17.2017.
- Cragg, J.J.; Jutzeler, C.R.; Grassner, L.; Ramer, M.; Bradke, F.; Kramer, J.L.K. Beneficial "pharmaceutical pleiotropy" of gabapentinoids in spinal cord injury: A case for refining standard-of-care. Neurorehabil. Neural Repair, 2020, 34(8), 686-689. doi: 10.1177/1545968320931516 PMID: 32508248
- Yan, B.C.; Wang, J.; Rui, Y.; Cao, J.; Xu, P.; Jiang, D.; Zhu, X.; Won, M.H.; Bo, P.; Su, P. Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the pi3k/akt/mtor signaling pathways. J. Neuropathol. Exp. Neurol., 2019, 78(2), 157-171. doi: 10.1093/jnen/nly119 PMID: 30597043
- Mohagheghi, F.; Khalaj, L.; Ahmadiani, A.; Rahmani, B. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox. Res., 2013, 23(3), 225-237. doi: 10.1007/s12640-012-9338-3 PMID: 22773136
- Aşcı, S.; Demirci, S.; Aşcı, H.; Kumbul Doguc, D.; Onaran, I. Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med. J., 2016, 33(2), 221-227. doi: 10.5152/balkanmedj.2015.15742 PMID: 27403394
- Silva, G.A.A.; Pradella, F.; Moraes, A.; Farias, A.; Santos, L.M.B.; Oliveira, A.L.R. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav., 2014, 4(6), 925-935. doi: 10.1002/brb3.276 PMID: 25365796
- Assis, A.D.; Chiarotto, G.B.; Simões, G.F.; Oliveira, A.L.R. Pregabalin-induced neuroprotection and gait improvement in dystrophic MDX mice. Mol. Cell. Neurosci., 2021, 114, 103632. doi: 10.1016/j.mcn.2021.103632 PMID: 34058345
- Blum, R.; Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology , 2005, 20(1), 70-78. doi: 10.1152/physiol.00042.2004 PMID: 15653842
- Comim, C.M.; Ventura, L.; Freiberger, V.; Dias, P.; Bragagnolo, D.; Dutra, M.L.; Amaral, R.A.; Camargo-Fagundes, A.L.S.; Reis, P.A.; Castro-Faria-Neto, H.C.; Vainzof, M.; Rosa, M.I. Neurocognitive impairment in mdx mice. Mol. Neurobiol., 2019, 56(11), 7608-7616. doi: 10.1007/s12035-019-1573-7 PMID: 31077034
- González-Sanmiguel, J.; Burgos, C.F.; Bascuñán, D.; Fernández-Pérez, E.J.; Riffo-Lepe, N.; Boopathi, S.; Fernández-Pérez, A.; Bobadilla-Azócar, C.; González, W.; Figueroa, M.; Vicente, B.; Aguayo, L.G. Gabapentin inhibits multiple steps in the amyloid beta toxicity cascade. ACS Chem. Neurosci., 2020, 11(19), 3064-3076. doi: 10.1021/acschemneuro.0c00414 PMID: 32886489
- Brodie, M.J.; Dichter, M.A. Established antiepileptic drugs. Seizure, 1997, 6(3), 159-174. doi: 10.1016/S1059-1311(97)80001-5 PMID: 9203243
- Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895. doi: 10.1016/j.addr.2011.11.006 PMID: 22210279
- Sims, P.J.; Burton, M.; Shaw, L. Applied pharmacokinetics & pharmacodynamics principles of therapeutic drug monitoring; Lippincott Williams & Wilkins: Baltimore, 2006.
- Thorn, C.F.; Leckband, S.G.; Kelsoe, J.; Steven Leeder, J.; Müller, D.J.; Klein, T.E.; Altman, R.B. PharmGKB summary. Pharmacogenet. Genomics, 2011, 21(12), 906-910. doi: 10.1097/FPC.0b013e328348c6f2 PMID: 21738081
- Ambrósio, A.F.; Soares-da-Silva, P.; Carvalho, C.M.; Carvalho, A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem. Res., 2002, 27(1/2), 121-130. doi: 10.1023/A:1014814924965 PMID: 11926264
- Schmidt, D.; Elger, C.E. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behav., 2004, 5(5), 627-635. doi: 10.1016/j.yebeh.2004.07.004 PMID: 15380112
- Beydoun, A.; Kutluay, E. Oxcarbazepine. Expert Opin. Pharmacother., 2002, 3(1), 59-71. doi: 10.1517/14656566.3.1.59 PMID: 11772334
- Wellington, K.; Goa, K.L. Oxcarbazepine. CNS Drugs, 2001, 15(2), 137-163. doi: 10.2165/00023210-200115020-00005 PMID: 11460891
- Ambrósio, A.F.; Silva, A.P.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology, 1999, 38(9), 1349-1359. doi: 10.1016/S0028-3908(99)00058-1 PMID: 10471089
- Macdonald, R.L.; Kelly, K.M. Antiepileptic drug mechanisms of action. Epilepsia, 1993, 34(S5), S1-S8. doi: 10.1111/j.1528-1157.1993.tb05918.x PMID: 7687957
- Grunze, A.; Amann, B.L.; Grunze, H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina , 2021, 57(5), 433. doi: 10.3390/medicina57050433 PMID: 33946323
- Manji, H.K.; Duman, R.S. Impairments of neuroplasticity and cellular resilience in severe mood disorders: Implications for the development of novel therapeutics Psychopharmacol. Bull., 2001, 35(2), 5-49. PMID: 12397885
- Strakowski, S.M.; DelBello, M.P.; Adler, C.M. The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings. Mol. Psychiat., 2005, 10(1), 105-116. doi: 10.1038/sj.mp.4001585 PMID: 15340357
- Vawter, M.P.; Freed, W.J.; Kleinman, J.E. Neuropathology of bipolar disorder. Biol. Psychiat., 2000, 48(6), 486-504. doi: 10.1016/S0006-3223(00)00978-1 PMID: 11018222
- Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry., 2000, 48(8), 766-777. doi: 10.1016/S0006-3223(00)00950-1 PMID: 11063973
- Neale, E.A.; Sher, P.K.; Graubard, B.I.; Habig, W.H.; Fitzgerald, S.C.; Nelson, P.G. Differential toxicity of chronic exposure to phenytoin, phenobarbital, or carbamazepine in cerebral cortical cell cultures. Pediatr. Neurol., 1985, 1(3), 143-150. doi: 10.1016/0887-8994(85)90053-0 PMID: 3880399
- Almgren, M.; Nyengaard, J.R.; Persson, B.; Lavebratt, C. Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Neurobiol. Dis., 2008, 32(3), 364-376. doi: 10.1016/j.nbd.2008.07.025 PMID: 18773962
- Lavebratt, C.; Trifunovski, A.; Persson, A.S.; Wang, F.H.; Klason, T.; Öhman, I.; Josephsson, A.; Olson, L.; Spenger, C.; Schalling, M. Carbamazepine protects against megencephaly and abnormal expression of BDNF and Nogo signaling components in the mceph/mceph mouse. Neurobiol. Dis., 2006, 24(2), 374-383. doi: 10.1016/j.nbd.2006.07.018 PMID: 16990009
- Petersson, S.; Sandberg, N.A.C.; Schalling, M.; Lavebratt, C. The megencephaly mouse has disturbances in the insulin-like growth factor (IGF) system. Brain Res. Mol. Brain Res., 1999, 72(1), 80-88. doi: 10.1016/S0169-328X(99)00211-9 PMID: 10521601
- Petersson, S.; Lavebratt, C.; Schalling, M.; Hökfelt, T. Expression of cholecystokinin, enkephalin, galanin and neuropeptide Y is markedly changed in the brain of the megencephaly mouse. Neuroscience, 2000, 100(2), 297-317. doi: 10.1016/S0306-4522(00)00285-2 PMID: 11008168
- Diez, M.; Schweinhardt, P.; Petersson, S.; Wang, F.H.; Lavebratt, C.; Schalling, M.; Hökfelt, T.; Spenger, C. MRI and in situ hybridization reveal early disturbances in brain size and gene expression in the megencephalic (mceph/mceph) mouse. Eur. J. Neurosci., 2003, 18(12), 3218-3230. doi: 10.1111/j.1460-9568.2003.02994.x PMID: 14686896
- Park, S.W.; Lee, J.G.; Seo, M.K.; Cho, H.Y.; Lee, C.H.; Lee, J.H.; Lee, B.J.; Baek, J.H.; Seol, W.; Kim, Y.H. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord., 2015, 17(3), 278-290. doi: 10.1111/bdi.12262 PMID: 25307211
- Lessmann, V.; Gottmann, K.; Malcangio, M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol., 2003, 69(5), 341-374. doi: 10.1016/S0301-0082(03)00019-4 PMID: 12787574
- Olaibi, O.K.; Osuntokun, O.S.; Ijomone, O.M. Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Ann. Neurosci., 2014, 21(2), 57-61. doi: 10.5214/ans.0972.7531.210206 PMID: 25206062
- Gao, X.M.; Chuang, D.M. Carbamazepine-induced neurotoxicity and its prevention by NMDA in cultured cerebellar granule cells. Neurosci. Lett., 1992, 135(2), 159-162. doi: 10.1016/0304-3940(92)90426-8 PMID: 1352629
- Gao, X.M.; Margolis, R.L.; Leeds, P.; Hough, C.; Post, R.M.; Chuang, D.M. Carbamazepine induction of apoptosis in cultured cerebellar neurons: Effects ofN-methyl-d-aspartate, aurintricarboxylic acid and cycloheximide. Brain Res., 1995, 703(1-2), 63-71. doi: 10.1016/0006-8993(95)01066-1 PMID: 8719616
- Nonaka, S.; Katsube, N.; Chuang, D.M. Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine J. Pharmacol. Exp. Ther., 1998, 286(1), 539-547. PMID: 9655900
- Ambrósio, A.F.; Silva, A.P.; Araújo, I.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. Eur. J. Pharmacol., 2000, 406(2), 191-201. doi: 10.1016/S0014-2999(00)00659-2 PMID: 11020481
- Araújo, I.M.; Ambrósio, A.F.; Leal, E.C.; Verdasca, M.J.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons: A comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45(12), 1498-1505. doi: 10.1111/j.0013-9580.2004.14104.x PMID: 15571507
- Vezzani, A.; Granata, T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia, 2005, 46(11), 1724-1743. doi: 10.1111/j.1528-1167.2005.00298.x PMID: 16302852
- Stollg, G.; Jander, S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol., 1999, 58(3), 233-247. doi: 10.1016/S0301-0082(98)00083-5 PMID: 10341362
- Wang, C.H.; Hsiao, C.J.; Lin, Y.N.; Wu, J.W.; Kuo, Y.C.; Lee, C.K.; Hsiao, G. Carbamazepine attenuates inducible nitric oxide synthase expression through Akt inhibition in activated microglial cells. Pharm. Biol., 2014, 52(11), 1451-1459. doi: 10.3109/13880209.2014.898074 PMID: 25026355
- Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. , 1990, 87(4), 1620-1624. doi: 10.1073/pnas.87.4.1620 PMID: 2154753
- Block, M.L.; Hong, J.S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98. doi: 10.1016/j.pneurobio.2005.06.004 PMID: 16081203
- Iwamoto, T.; Takasugi, Y.; Higashino, H.; Ito, H.; Koga, Y.; Nakao, S. Antinociceptive action of carbamazepine on thermal hypersensitive pain at spinal level in a rat model of adjuvant-induced chronic inflammation. J. Anesth., 2011, 25(1), 78-86. doi: 10.1007/s00540-010-1046-7 PMID: 21113631
- Murakami, A.; Furui, T. Effects of the conventional anticonvulsants, phenytoin, carbamazepine, and valproic acid, on sodium-potassium-adenosine triphosphatase in acute ischemic brain Neurosurgery, 1994, 34(6), 1047-1051. PMID: 8084389
- Schirrmacher, K.; Mayer, A.; Walden, J.; Düsing, R.; Bingmann, D. Effects of carbamazepine on membrane properties of rat sensory spinal ganglion cells in vitro. Eur. Neuropsychopharmacol., 1995, 5(4), 501-507. doi: 10.1016/0924-977X(95)80010-Y PMID: 8998403
- Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem., 1984, 43(5), 1369-1374. doi: 10.1111/j.1471-4159.1984.tb05396.x PMID: 6149259
- Sırlak, M.; Eryılmaz, S.; Bahadır Inan, M.; Sırın, Y.S.; Besaltı, O.; Yazıcıoglu, L.; Ozcınar, E.; Erdemlı, E.; Tasoz, R.; Elhan, A.H.; Kaya, B.; Ozyurda, U. Effects of carbamazepine on spinal cord ischemia. J. Thorac. Cardiovasc. Surg., 2008, 136(4), 1038-1043.e4. doi: 10.1016/j.jtcvs.2007.12.068 PMID: 18954647
- Lewin, E.; Bleck, V. Cyclic AMP accumulation in cerebral cortical slices: effect of carbamazepine, phenobarbital, and phenytoin. Epilepsia, 1977, 18(2), 237-242. doi: 10.1111/j.1528-1157.1977.tb04472.x PMID: 194771
- Manji, H.K.; Chen, G.; Hsiao, J.K.; Risby, E.D.; Masana, M.I.; Potter, W.Z. Regulation of signal transduction pathways by mood-stabilizing agents: Implications for the delayed onset of therapeutic efficacy J. Clin. Psychiat., 1996, 57(S13), 34-46. PMID: 8970503
- Mai, L.; Jope, R.S.; Li, X. BDNF-mediated signal transduction is modulated by GSK3β and mood stabilizing agents. J. Neurochem., 2002, 82(1), 75-83. doi: 10.1046/j.1471-4159.2002.00939.x PMID: 12091467
- Chang, Y.C.; Rapoport, S.I.; Rao, J.S. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem. Res., 2009, 34(3), 536-541. doi: 10.1007/s11064-008-9817-3 PMID: 18719996
- Rao, J.S.; Lee, H-J.; Rapoport, S.I.; Bazinet, R.P. Mode of action of mood stabilizers: Is the arachidonic acid cascade a common target? Mol. Psychiat., 2008, 13(6), 585-596. doi: 10.1038/mp.2008.31 PMID: 18347600
- Garrido, R.; Springer, J.E.; Hennig, B.; Toborek, M. Apoptosis of spinal cord neurons by preventing depletion nicotine attenuates arachidonic acid-induced of neurotrophic factors. J. Neurotrauma, 2003, 20(11), 1201-1213. doi: 10.1089/089771503322584628 PMID: 14651807
- Kwon, K.J.; Jung, Y.S.; Lee, S.H.; Moon, C.H.; Baik, E.J. Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res., 2005, 81(1), 73-84. doi: 10.1002/jnr.20520 PMID: 15931672
- Tang, D.G.; Chen, Y.Q.; Honn, K.V. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc. Natl. Acad. Sci. , 1996, 93(11), 5241-5246. doi: 10.1073/pnas.93.11.5241 PMID: 8643560
- Bowden, C.L. Lamotrigine in the treatment of bipolar disorder. Expert Opin. Pharmacother., 2002, 3(10), 1513-1519. doi: 10.1517/14656566.3.10.1513 PMID: 12387697
- Leng, Y.; Fessler, E.B.; Chuang, D.M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. Int. J. Neuropsychopharmacol., 2013, 16(3), 607-620. doi: 10.1017/S1461145712000429 PMID: 22564541
- Naguy, A.; Al-Enezi, N. Lamotrigine uses in psychiatric practice. Am. J. Ther., 2019, 26(1), e96-e102. doi: 10.1097/MJT.0000000000000535 PMID: 30601211
- Cuomo, A.; Amore, M.; Vampini, C.; Fagiolini, A. Lamotrigina nel disturbo bipolare: prevenire la depressione per curare la malattia Riv. Psichiatr., 2021, 56(1), 1-11. PMID: 33560270
- Calabrese, J.R.; Bowden, C.L.; Sachs, G.S.; Ascher, J.A.; Monaghan, E.; Rudd, G.D. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J. Clin. Psychiat., 1999, 60(2), 79-88. doi: 10.4088/JCP.v60n0203 PMID: 10084633
- Prabhavalkar, K.S.; Poovanpallil, N.B.; Bhatt, L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Front. Pharmacol., 2015, 6, 242. doi: 10.3389/fphar.2015.00242 PMID: 26557090
- Xie, X.; Hagan, R. Cellular and molecular actions of lamotrigine: Possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology, 1998, 38(3), 119-130. doi: 10.1159/000026527 PMID: 9778599
- Ketter, T.A.; Manji, H.K.; Post, R.M. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J. Clin. Psychopharmacol., 2003, 23(5), 484-495. doi: 10.1097/01.jcp.0000088915.02635.e8 PMID: 14520126
- Redmond, J.R.; Jamison, K.L.; Bowden, C.L. Lamotrigine combined with divalproex or lithium for bipolar disorder: A case series. CNS Spectr., 2006, 11(12), 915-918. doi: 10.1017/S1092852900015091 PMID: 17146405
- Walden, J.; Hesslinger, B.; van Calker, D.; Berger, M. Addition of lamotrigine to valproate may enhance efficacy in the treatment of bipolar affective disorder. Pharmacopsychiatry., 1996, 29(5), 193-195. doi: 10.1055/s-2007-979570 PMID: 8895945
- Aldenkamp, A.P.; Baker, G. A systematic review of the effects of lamotrigine on cognitive function and quality of life. Epilepsy Behav., 2001, 2(2), 85-91. doi: 10.1006/ebeh.2001.0168 PMID: 12609190
- Calabresi, P.; Picconi, B.; Saulle, E.; Centonze, D.; Hainsworth, A.H.; Bernardi, G. Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke, 2000, 31(3), 766-773. doi: 10.1161/01.STR.31.3.766 PMID: 10700517
- Papazisis, G.; Kallaras, K.; Kaiki-Astara, A.; Pourzitaki, C.; Tzachanis, D.; Dagklis, T.; Kouvelas, D. Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int. J. Neuropsychopharmacol., 2008, 11(3), 321-329. doi: 10.1017/S1461145707008012 PMID: 17897482
- Shuaib, A.; Mahmood, R.H.; Wishart, T.; Kanthan, R.; Murabit, M.A.; Ijaz, S.; Miyashita, H.; Howlett, W. Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res., 1995, 702(1-2), 199-206. doi: 10.1016/0006-8993(95)01048-1 PMID: 8846077
- Smith, S.E.; Meldrum, B.S. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke, 1995, 26(1), 117-122. doi: 10.1161/01.STR.26.1.117 PMID: 7839380
- Wiard, R.P.; Dickerson, M.C.; Beek, O.; Norton, R.; Cooper, B.R. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Stroke, 1995, 26(3), 466-472. doi: 10.1161/01.STR.26.3.466 PMID: 7886726
- Connop, B.P.; Boegman, R.J.; Beninger, R.J.; Jhamandas, K. Malonate-induced degeneration of basal forebrain cholinergic neurons: Attenuation by lamotrigine, MK-801, and 7-nitroindazole. J. Neurochem., 1997, 68(3), 1191-1199. doi: 10.1046/j.1471-4159.1997.68031191.x PMID: 9048766
- Mancuso, M.; Galli, R.; Pizzanelli, C.; Filosto, M.; Siciliano, G.; Murri, L. Antimyoclonic effect of levetiracetam in MERRF syndrome. J. Neurol. Sci., 2006, 243(1-2), 97-99. doi: 10.1016/j.jns.2005.11.021 PMID: 16414077
- Halonen, T.; Nissinen, J.; Pitkänen, A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res., 2001, 46(3), 205-223. doi: 10.1016/S0920-1211(01)00278-9 PMID: 11518623
- Lagrue, E.; Chalon, S.; Bodard, S.; Saliba, E.; Gressens, P.; Castelnau, P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr. Res., 2007, 62(1), 14-19. doi: 10.1203/PDR.0b013e31806790d7 PMID: 17515828
- Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther., 1999, 81(3), 163-221. doi: 10.1016/S0163-7258(98)00042-4 PMID: 10334661
- Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601. doi: 10.1016/j.tins.2009.06.002 PMID: 19775759
- Rohn, T.T.; Vyas, V.; Hernandez-Estrada, T.; Nichol, K.E.; Christie, L.A.; Head, E. Lack of pathology in a triple transgenic mouse model of Alzheimers disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci., 2008, 28(12), 3051-3059. doi: 10.1523/JNEUROSCI.5620-07.2008 PMID: 18354008
- Vukosavic, S.; Stefanis, L.; Jackson-Lewis, V.; Guégan, C.; Romero, N.; Chen, C.; Dubois-Dauphin, M.; Przedborski, S. Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2000, 20(24), 9119-9125. doi: 10.1523/JNEUROSCI.20-24-09119.2000 PMID: 11124989
- Yuan, J.; Lipinski, M.; Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron, 2003, 40(2), 401-413. doi: 10.1016/S0896-6273(03)00601-9 PMID: 14556717
- Chen, R.W.; Chuang, D.M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem., 1999, 274(10), 6039-6042. doi: 10.1074/jbc.274.10.6039 PMID: 10037682
- Paul, I.A.; Skolnick, P. Glutamate and depression. Ann. N. Y. Acad. Sci., 2003, 1003(1), 250-272. doi: 10.1196/annals.1300.016 PMID: 14684451
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. Molecular psychiatry Adaptations of receptor-coupled signal transduction pathways underlying stress- and drug-induced neural plasticity. J. Nerv. Ment. Dis., 1994, 182(12), 692-700. doi: 10.1097/00005053-199412000-00003 PMID: 7989913
- Duman, R.S. Depression: A case of neuronal life and death? Biol. Psychiat., 2004, 56(3), 140-145. doi: 10.1016/j.biopsych.2004.02.033 PMID: 15271581
- Li, N.; He, X.; Zhang, Y.; Qi, X.; Li, H.; Zhu, X.; He, S. Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int. J. Neuropsychopharmacol., 2011, 14(8), 1091-1098. doi: 10.1017/S1461145710001082 PMID: 20846461
- Abelaira, H.M.; Réus, G.Z.; Ribeiro, K.F.; Zappellini, G.; Ferreira, G.K.; Gomes, L.M.; Carvalho-Silva, M.; Luciano, T.F.; Marques, S.O.; Streck, E.L.; Souza, C.T.; Quevedo, J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem. Int., 2011, 59(8), 1163-1174. doi: 10.1016/j.neuint.2011.10.007 PMID: 22044672
- Kumar, P.; Kalonia, H.; Kumar, A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur. J. Pharmacol., 2012, 674(2-3), 265-274. doi: 10.1016/j.ejphar.2011.11.030 PMID: 22154757
- Brown, E.S.; Sayed, N.; Choi, C.; Tustison, N.; Roberts, J.; Yassa, M.A.; Van Enkevort, E.; Nakamura, A.; Ivleva, E.I.; Sunderajan, P.; Khan, D.A.; Vazquez, M.; McEwen, B.; Kulikova, A.; Frol, A.B.; Holmes, T. A randomized, double-blind, placebo-controlled trial of lamotrigine for prescription corticosteroid effects on the human hippocampus. Eur. Neuropsychopharmacol., 2019, 29(3), 376-383. doi: 10.1016/j.euroneuro.2018.12.012 PMID: 30612854
- Hendricks, E. Off-label drugs for weight management. Diabetes Metab. Syndr. Obes., 2017, 10, 223-234. doi: 10.2147/DMSO.S95299 PMID: 28652791
- Manhapra, A.; Chakraborty, A.; Arias, A.J. Topiramate pharmacotherapy for alcohol use disorder and other addictions: a narrative review. J. Addict. Med., 2019, 13(1), 7-22. doi: 10.1097/ADM.0000000000000443 PMID: 30096077
- Osser, D.N. Topiramate in bipolar disorder and comorbidities: The myths and the evidence Psychiatr. Times, 2020, 37(8), 32.
- Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment P&T, 2010, 35(7), 392-415. PMID: 20689626
- Hanalioglu, S.; Narin, F.; Ustun, H.; Kilinc, K.; Bilginer, B. Topiramate as a neuroprotective agent in a rat model of spinal cord injury. Neural Regen. Res., 2017, 12(12), 2071-2076. doi: 10.4103/1673-5374.221164 PMID: 29323048
- Bischofs, S.; Zelenka, M.; Sommer, C. Evaluation of topiramate as an anti-hyperalgesic and neuroprotective agent in the peripheral nervous system. J. Peripher. Nerv. Syst., 2004, 9(2), 70-78. doi: 10.1111/j.1085-9489.2004.009205.x PMID: 15104694
- Motaghinejad, M.; Motevalian, M.; Babalouei, F.; Abdollahi, M.; Heidari, M.; Madjd, Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: Molecular, biochemical and histological evidences. Brain Res. Bull., 2017, 132, 82-98. doi: 10.1016/j.brainresbull.2017.05.011 PMID: 28552672
- Motaghinejad, M.; Motevalian, M.; Abdollahi, M.; Heidari, M.; Madjd, Z. Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox. Res., 2017, 31(3), 373-399. doi: 10.1007/s12640-016-9695-4 PMID: 28078543
- Motaghinejad, M.; Motevalian, M.; Fatima, S.; Beiranvand, T.; Mozaffari, S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural Transm. , 2017, 124(11), 1369-1387. doi: 10.1007/s00702-017-1771-2 PMID: 28795276
- Mao, X.Y.; Cao, Y.G.; Ji, Z.; Zhou, H.H.; Liu, Z.Q.; Sun, H.L. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog. Neuropsychopharmacol. Biol. Psychiat., 2015, 60, 11-17. doi: 10.1016/j.pnpbp.2015.01.015 PMID: 25661849
- Pinheiro, R.M.C.; de Lima, M.N.M.; Portal, B.C.D.; Busato, S.B.; Falavigna, L.; Ferreira, R.D.P.; Paz, A.C.; de Aguiar, B.W.; Kapczinski, F.; Schröder, N. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: Effects of valproic acid and topiramate. J. Neural Transm. , 2015, 122(5), 709-719. doi: 10.1007/s00702-014-1303-2 PMID: 25182413
- Aydin, S.; Yazici, Z.G.; Kilic, C.; Ercelen, O.B.; Kilic, F.S. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur. J. Pharmacol., 2021, 912, 174578. doi: 10.1016/j.ejphar.2021.174578 PMID: 34695423
Supplementary files
