Essential Trace Elements in Patients with Dyslipidemia: A Meta-analysis


Cite item

Full Text

Abstract

Background:Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism.Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism.

Methods:In this study, we reviewed articles on the relationship between alterations in somatic levels of zinc, iron, calcium, copper, chrome, manganese, selenium, and lipid metabolism. In this systematic review and mate-analysis, databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), Wanfang was searched for articles on the relationship published between January 1, 1900, and July 12, 2022. The meta-analysis was performed using Review Manager5.3 (Cochrane Collaboration).

Results:No significant association was found between serum zinc and dyslipidemia, while other serum trace elements (iron, selenium, copper, chromium, and manganese) were associated with hyperlipidemia.

Conclusion:The present study suggested that the human body's zinc, copper, and calcium content may be related to lipid metabolism. However, findings on lipid metabolism and Iron, Manganese have not been conclusive. In addition, the relationship between lipid metabolism disorders and selenium levels still needs to be further studied. Further research is needed on treating lipid metabolism diseases by changing trace elements.

About the authors

Cui-Ping Li

School of Medicine, Taizhou University

Email: info@benthamscience.net

Yu-Xin Song

School of Medicine, Taizhou University,

Email: info@benthamscience.net

Zi-Jun Lin

School of Medicine, Taizhou University

Email: info@benthamscience.net

Mei-Lin Ma

School of Medicine, Taizhou University

Email: info@benthamscience.net

Lian-Ping He

School of Medicine, Taizhou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci., 2015, 16(1), 924-949. doi: 10.3390/ijms16010924 PMID: 25561239
  2. Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472. doi: 10.1007/s11154-019-09512-0 PMID: 31707624
  3. Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 2012, 15(3), 279-291. doi: 10.1016/j.cmet.2011.12.018 PMID: 22405066
  4. DeBose-Boyd, R.A. Significance and regulation of lipid metabolism. Semin. Cell Dev. Biol., 2018, 81, 97. doi: 10.1016/j.semcdb.2017.12.003 PMID: 29246858
  5. Liu, K.; Czaja, M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ., 2013, 20(1), 3-11. doi: 10.1038/cdd.2012.63 PMID: 22595754
  6. de Kroon, A.I.P.M. Lipidomics in research on yeast membrane lipid homeostasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(8), 797-799. doi: 10.1016/j.bbalip.2017.02.007 PMID: 28219720
  7. Furt, F.; Moreau, P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int. J. Biochem. Cell Biol., 2009, 41(10), 1828-1836. doi: 10.1016/j.biocel.2009.02.005 PMID: 19703652
  8. Parhofer, K.G. The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int., 2016, 113(15), 261-268. doi: 10.3238/arztebl.2016.0261 PMID: 27151464
  9. Natesan, V.; Kim, S.J. Lipid metabolism, disorders and therapeutic drugs - review. Biomol. Ther., 2021, 29(6), 596-604. doi: 10.4062/biomolther.2021.122 PMID: 34697272
  10. Vergès, B. Lipid disorders in type 1 diabetes. Diabetes Metab., 2009, 35(5), 353-360. doi: 10.1016/j.diabet.2009.04.004 PMID: 19733492
  11. Vergès, B. Lipid modification in type 2 diabetes: The role of LDL and HDL. Fundam. Clin. Pharmacol., 2009, 23(6), 681-685. doi: 10.1111/j.1472-8206.2009.00739.x PMID: 19650852
  12. Walldius, G.; de Faire, U.; Alfredsson, L.; Leander, K.; Westerholm, P.; Malmström, H.; Ivert, T.; Hammar, N. Long-term risk of a major cardiovascular event by apoB, apoA-1, and the apoB/apoA-1 ratio-Experience from the Swedish AMORIS cohort: A cohort study. PLoS Med., 2021, 18(12), e1003853. doi: 10.1371/journal.pmed.1003853 PMID: 34851955
  13. Zambon, A.; Brown, B.G.; Deeb, S.S.; Brunzell, J.D. Genetics of apolipoprotein B and apolipoprotein AI and premature coronary artery disease. J. Intern. Med., 2006, 259(5), 473-480. doi: 10.1111/j.1365-2796.2006.01645.x PMID: 16629853
  14. Georgieva, A.M.; van Greevenbroek, M.M.J.; Krauss, R.M.; Brouwers, M.C.G.J.; Vermeulen, V.M.M.J.; Robertus-Teunissen, M.G.; van der Kallen, C.J.H.; de Bruin, T.W.A. Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: Relationship to multiple lipoprotein phenotype. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 744-749. doi: 10.1161/01.ATV.0000119681.47218.a4 PMID: 14751815
  15. Fraga, C.G.; Oteiza, P.I.; Keen, C.L. Trace elements and human health. Mol. Aspects Med., 2005, 26(4-5), 233-234. doi: 10.1016/j.mam.2005.07.014 PMID: 16122783
  16. Zheng, W. Systemic impact of trace elements on human health and diseases: Nutrition, toxicity, and beyond. J. Trace Elem. Med. Biol., 2020, 62, 126634. doi: 10.1016/j.jtemb.2020.126634 PMID: 32827865
  17. Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
  18. Huang, H.Y.; Caballero, B.; Chang, S.; Alberg, A.J.; Semba, R.D.; Schneyer, C.R.; Wilson, R.F.; Cheng, T.Y.; Vassy, J.; Prokopowicz, G.; Barnes, G.J., II; Bass, E.B. The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: A systematic review for a National Institutes of Health state-of-the-science conference. Ann. Intern. Med., 2006, 145(5), 372-385. doi: 10.7326/0003-4819-145-5-200609050-00135 PMID: 16880453
  19. Maroney, M.J.; Hondal, R.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med., 2018, 127, 228-237. doi: 10.1016/j.freeradbiomed.2018.03.035 PMID: 29588180
  20. Kramer, C.K.; Zinman, B.; Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(11), 758-769. doi: 10.7326/0003-4819-159-11-201312030-00008 PMID: 24297192
  21. Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace elements, PPARs, and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(7), 2612. doi: 10.3390/ijms21072612 PMID: 32283758
  22. Li, Y.; Ma, Z.; Jiang, S.; Hu, W.; Li, T.; Di, S.; Wang, D.; Yang, Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog. Lipid Res., 2017, 66, 42-49. doi: 10.1016/j.plipres.2017.04.002 PMID: 28392404
  23. Ji, Z.; Shen, Y.; Feng, X.; Kong, Y.; Shao, Y.; Meng, J.; Zhang, X.; Yang, G. Deregulation of lipid metabolism: The critical factors in ovarian cancer. Front. Oncol., 2020, 10, 593017. doi: 10.3389/fonc.2020.593017 PMID: 33194756
  24. Alannan, M.; Fayyad-Kazan, H.; Trézéguet, V.; Merched, A. Targeting lipid metabolism in liver cancer. Biochemistry, 2020, 59(41), 3951-3964. doi: 10.1021/acs.biochem.0c00477 PMID: 32930581
  25. Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 2000, 283(15), 2008-2012. doi: 10.1001/jama.283.15.2008 PMID: 10789670
  26. Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; Carpenter, J.R.; Chan, A.W.; Churchill, R.; Deeks, J.J.; Hróbjartsson, A.; Kirkham, J.; Jüni, P.; Loke, Y.K.; Pigott, T.D.; Ramsay, C.R.; Regidor, D.; Rothstein, H.R.; Sandhu, L.; Santaguida, P.L.; Schünemann, H.J.; Shea, B.; Shrier, I.; Tugwell, P.; Turner, L.; Valentine, J.C.; Waddington, H.; Waters, E.; Wells, G.A.; Whiting, P.F.; Higgins, J.P.T. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 2016, 355, i4919. doi: 10.1136/bmj.i4919 PMID: 27733354
  27. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560. doi: 10.1136/bmj.327.7414.557 PMID: 12958120
  28. Song, F.; Gilbody, S. Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. BMJ, 1998, 316(7129), 471. PMID: 9492690
  29. Ngu, Y.J.; Skalny, A.V.; Tinkov, A.A.; Tsai, C.S.; Chang, C.C.; Chuang, Y.K.; Nikolenko, V.N.; Zotkin, D.A.; Chiu, C.F.; Chang, J.S. Association between essential and non-essential metals, body composition, and metabolic syndrome in adults. Biol. Trace Elem. Res., 2022, 200(12), 4903-4915. doi: 10.1007/s12011-021-03077-3 PMID: 34993913
  30. Li, X.H.; Feng, L.; Zhao, C.F.; Zhang, J.L.; Wang, H.M. Observation and analysis of blood glucose, blood lipid and serum zinc, copper and magnesium in patients with type 2 diabetes mellitus. Zhongguo Laonianxue Zazhi, 2008, (15), 1521-1522.
  31. Costarelli, L.; Muti, E.; Malavolta, M.; Cipriano, C.; Giacconi, R.; Tesei, S.; Piacenza, F.; Pierpaoli, S.; Gasparini, N.; Faloia, E.; Tirabassi, G.; Boscaro, M.; Polito, A.; Mauro, B.; Maiani, F.; Raguzzini, A.; Marcellini, F.; Giuli, C.; Papa, R.; Emanuelli, M.; Lattanzio, F.; Mocchegiani, E. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem., 2010, 21(5), 432-437. doi: 10.1016/j.jnutbio.2009.02.001 PMID: 19427184
  32. Yeung, D.C.Y.; Lam, K.S.L.; Wang, Y.; Tso, A.W.K.; Xu, A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J. Clin. Endocrinol. Metab., 2009, 94(7), 2531-2536. doi: 10.1210/jc.2009-0058 PMID: 19351730
  33. Maxel, T.; Smidt, K.; Larsen, A.; Bennetzen, M.; Cullberg, K.; Fjeldborg, K.; Lund, S.; Pedersen, S.B.; Rungby, J. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes., 2015, 2(1), 46. doi: 10.1186/s40608-015-0076-y PMID: 26623077
  34. Yerlikaya, F.H.; Can, U.; Alpaydin, M.S.; Aribas, A. The relationship between plasma microRNAs and serum trace elements levels in primary hyperlipidemia. Bratisl. Med. J., 2019, 120(5), 344-348. doi: 10.4149/BLL_2019_056 PMID: 31113196
  35. Cheng, W.L.; Lin, Y.Q. Determination of trace elements in serum of elderly patients with diabetes, coronary heart disease and hyperlipidemia. Biol. Trace. Elem. Res., 1995, (04), 15-16.
  36. Xu, G.Y.; Yu, P.; Wang, X.S. Determination of serum zinc, calcium and magnesium in middle-aged and elderly patients with hyperlipidemia. Trace Elem Res., 1997, 04, 50-51.
  37. Yu, S.M.; Fan, Z.W.; Zang, H.M. Clinical significance of determination of serum copper and zinc in patients with coronary heart disease. Preven. Control Chronic Dis. Chin., 1998, 1998(03), 46-47.
  38. Li, J.R.; Gong, L.; Kang, Y.; Yu, B.; Zhang, X.G. Correlation between serum calcium, magnesium and zinc trace elements and hyperlipidemia. J. Cardiopulm. Rehabil. Prev., 2001, (04), 359-360.
  39. Pei, W.J.; Ju, L.; Wang, J. Correlation between plasma zinc copper magnesium and prostacyclin and thromboxane in patients with hyperlipidemia. Chin. Med. J., 2001, (02), 143-144.
  40. He, B.P.; Zhang, X.R.; Wu, Q.Y.; Xu, J.M.; Zhang, J.; Zhu, M.; Liu, X.Y.; Ma, J.W.; Zheng, H.Y.; Du, X.W. Study on the relationship between copper and zinc and apolipoprotein in hypertensive patients with hyperlipidemia. Guangdong Trace Elements Sci., 2003, (11), 32-35.
  41. Zhuang, Y.Y.; Yu, Y.H.; Zhang, Y.; Meng, L.; Chen, H.B. Changes in micronutrient levels in hyperlipidemia. Zhongguo Laonianxue Zazhi, 2008, (14), 1443-1444.
  42. Yan, X.M.; Meng, X.X.; Zhang, Y. Determination and correlation analysis of serum total cholesterol, triglyceride, copper and zinc in the aged. Zhongguo Laonianxue Zazhi, 2013, 33(11), 2630-2631.
  43. Yang, C.J.; Hou, D.L.; Wang, X.K.; Wang, S.S. Correlation between types of dyslipidemia and trace elements. J. Med. Philos., 2015, 36(10), 62-65.
  44. Yao, Y.F.; Fang, R.C.; Tang, Y.; Lan, J.H. Correlation between serum zinc and copper levels and blood lipids in patients with diabetes mellitus complicated with coronary heart disease. Zhejiang Clin. Med., 2017, 19(5), 955-956.
  45. Nead, K.G.; Halterman, J.S.; Kaczorowski, J.M.; Auinger, P.; Weitzman, M. Overweight children and adolescents: A risk group for iron deficiency. Pediatrics, 2004, 114(1), 104-108. doi: 10.1542/peds.114.1.104 PMID: 15231915
  46. Zhou, B.; Ren, H.; Zhou, X.; Yuan, G. Associations of iron status with apolipoproteins and lipid ratios: A cross-sectional study from the China Health and Nutrition Survey. Lipids Health Dis., 2020, 19(1), 140. doi: 10.1186/s12944-020-01312-9 PMID: 32546165
  47. Tussing-Humphreys, L.M.; Liang, H.; Nemeth, E.; Freels, S.; Braunschweig, C.A. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J. Am. Diet. Assoc., 2009, 109(2), 297-302. doi: 10.1016/j.jada.2008.10.044 PMID: 19167957
  48. Aranda, N.; Fernandez-Cao, J.C.; Tous, M.; Arija, V. Increased iron levels and lipid peroxidation in a Mediterranean population of Spain. Eur. J. Clin. Invest., 2016, 46(6), 520-526. doi: 10.1111/eci.12625 PMID: 26999720
  49. Tang, L.H.; Yuan, Q.M.; Luo, B.Y. Relationship between serum ferritin and metabolic syndrome. 2007, 2007(13), 1331-1333.
  50. Fan, LM; Zhang, D.Z.; Ye, Y.L. Correlation between serum ferritin and metabolic syndrome in patients with type 2 diabetes mellitus. Beijing Med., 2015, 37(02), 173-174..
  51. Zhang, L.C.; Cheng, J.; Zhong, C. Plasma ferritin and oxidative stress in patients with hyperlipidemia. World's Latest Med. Info. Digest, 2015, 15(63), 33.
  52. Lee, H.S.; Park, E. Association of serum ferritin level and depression with respect to the body mass index in Korean male adults. Nutr. Res. Pract., 2019, 13(3), 263-267. doi: 10.4162/nrp.2019.13.3.263 PMID: 31214295
  53. Bleys, J.; Navas-Acien, A.; Stranges, S.; Menke, A.; Miller, E.R., III; Guallar, E. Serum selenium and serum lipids in US adults. Am. J. Clin. Nutr., 2008, 88(2), 416-423. doi: 10.1093/ajcn/88.2.416 PMID: 18689378
  54. Zhao, Z.; Barcus, M.; Kim, J.; Lum, K.L.; Mills, C.; Lei, X.G. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J. Nutr., 2016, 146(9), 1625-1633. doi: 10.3945/jn.116.229955 PMID: 27466604
  55. Ju, W.; Ji, M.; Li, X.; Li, Z.; Wu, G.; Fu, X.; Yang, X.; Gao, X. Relationship between higher serum selenium level and adverse blood lipid profile. Clin. Nutr., 2018, 37(5), 1512-1517. doi: 10.1016/j.clnu.2017.08.025 PMID: 28943111
  56. Chen, C.; Jin, Y.; Unverzagt, F.W.; Cheng, Y.; Hake, A.M.; Liang, C.; Ma, F.; Su, L.; Liu, J.; Bian, J.; Li, P.; Gao, S. The association between selenium and lipid levels: A longitudinal study in rural elderly Chinese. Arch. Gerontol. Geriatr., 2015, 60(1), 147-152. doi: 10.1016/j.archger.2014.09.005 PMID: 25263027
  57. Cold, F.; Winther, K.H.; Pastor-Barriuso, R.; Rayman, M.P.; Guallar, E.; Nybo, M.; Griffin, B.A.; Stranges, S.; Cold, S. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br. J. Nutr., 2015, 114(11), 1807-1818. doi: 10.1017/S0007114515003499 PMID: 26420334
  58. Boskabadi, H.; Maamouri, G.; Rezagholizade Omran, F.; Mafinejad, S.; Tara, F.; Rayman, M.P.; Ghayour-Mobarhan, M.; Sahebkar, A.; Tavallaie, S.; Shakeri, M.T.; Mohammadi, M.; Ferns, G.A. Effect of prenatal selenium supplementation on cord blood selenium and lipid profile. Pediatr. Neonatol., 2012, 53(6), 334-339. doi: 10.1016/j.pedneo.2012.08.008 PMID: 23276436
  59. Moon, S.; Chung, H.S.; Yu, J.M.; Yoo, H.J.; Park, J.H.; Kim, D.S.; Park, Y.K.; Yoon, S.N. Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J. Trace Elem. Med. Biol., 2019, 52, 83-88. doi: 10.1016/j.jtemb.2018.12.005 PMID: 30732904
  60. Ma, J.; Xie, Y.; Zhou, Y.; Wang, D.; Cao, L.; Zhou, M.; Wang, X.; Wang, B.; Chen, W. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. Environ. Pollut., 2020, 267, 115647. doi: 10.1016/j.envpol.2020.115647 PMID: 33254652
  61. Chen, J.; Lan, C.; An, H.; Jin, Y.; Li, Q.; Ge, S.; Yu, Y.; Shen, G.; Pan, B.; Xu, Y.; Ye, R.; Li, Z.; Wang, B. Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. Sci. Total Environ., 2021, 760, 143375. doi: 10.1016/j.scitotenv.2020.143375 PMID: 33189376
  62. Jürimäe, J.; Mäestu, E.; Mengel, E.; Remmel, L.; Purge, P.; Tillmann, V. Association between dietary calcium intake and adiposity in male adolescents. Nutrients, 2019, 11(7), 1454. doi: 10.3390/nu11071454 PMID: 31252547
  63. Setayesh, L.; Amini, A.; Bagheri, R.; Moradi, N.; Yarizadeh, H.; Asbaghi, O.; Casazza, K.; Yekaninejad, M.S.; Wong, A.; Suzuki, K.; Mirzaei, K. Elevated plasma concentrations of vitamin d-binding protein are associated with lower high-density lipoprotein and higher fat mass index in overweight and obese women. Nutrients, 2021, 13(9), 3223. doi: 10.3390/nu13093223 PMID: 34579103
  64. Zhou, Z.; Lu, Y.; Pi, H.; Gao, P.; Li, M.; Zhang, L.; Pei, L.; Mei, X.; Liu, L.; Zhao, Q.; Qin, Q.Z.; Chen, Y.; Jiang, Y.; Zhang, Z.; Yu, Z. Cadmium exposure is associated with the prevalence of dyslipidemia. Cell. Physiol. Biochem., 2016, 40(3-4), 633-643. doi: 10.1159/000452576 PMID: 27898410
  65. Asgary, S.; Movahedian, A.; Keshvari, M.; Taleghani, M.; Sahebkar, A.; Sarrafzadegan, N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere, 2017, 180, 540-544. doi: 10.1016/j.chemosphere.2017.03.069 PMID: 28431391
  66. Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci., 2018, 68(1), 19-31. doi: 10.1007/s12576-017-0571-7 PMID: 28965330
  67. Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of serum zinc levels in overweight and obesity. Biol. Trace Elem. Res., 2020, 198(1), 51-57. doi: 10.1007/s12011-020-02060-8 PMID: 32020525
  68. Fukunaka, A.; Fujitani, Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci., 2018, 19(2), 476. doi: 10.3390/ijms19020476 PMID: 29415457
  69. Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and function of zinc-α2-glycoprotein. Neurosci. Bull., 2019, 35(3), 540-550. doi: 10.1007/s12264-018-00332-x PMID: 30610461
  70. Banaszak, M.; Górna, I.; Przysławski, J. Zinc and the innovative Zinc-α2-Glycoprotein adipokine play an important role in lipid metabolism: A critical review. Nutrients, 2021, 13(6), 2023. doi: 10.3390/nu13062023 PMID: 34208404
  71. Thoen, R.U.; Barther, N.N.; Schemitt, E.; Bona, S.; Fernandes, S.; Coral, G.; Marroni, N.P.; Tovo, C.; Guedes, R.P.; Porawski, M. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl. Physiol. Nutr. Metab., 2019, 44(6), 580-586. doi: 10.1139/apnm-2018-0519 PMID: 30339765
  72. Qi, Y.; Zhang, Z.; Liu, S.; Aluo, Z.; Zhang, L.; Yu, L.; Li, Y.; Song, Z.; Zhou, L. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J. Agric. Food Chem., 2020, 68(18), 5189-5200. doi: 10.1021/acs.jafc.0c01103 PMID: 32290656
  73. Hughes, S.; Samman, S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J. Am. Coll. Nutr., 2006, 25(4), 285-291. doi: 10.1080/07315724.2006.10719537 PMID: 16943449
  74. Ranasinghe, P.; Wathurapatha, W.S.; Ishara, M.H.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab., 2015, 12(1), 26. doi: 10.1186/s12986-015-0023-4 PMID: 26244049
  75. Barbara, M.; Mindikoglu, A.L. The role of zinc in the prevention and treatment of nonalcoholic fatty liver disease. Metabolism Open, 2021, 11, 100105. doi: 10.1016/j.metop.2021.100105 PMID: 34337376
  76. Abbasi, U.; Abbina, S.; Gill, A.; Takuechi, L.E.; Kizhakkedathu, J.N. Role of iron in the molecular pathogenesis of diseases and therapeutic opportunities. ACS Chem. Biol., 2021, 16(6), 945-972. doi: 10.1021/acschembio.1c00122 PMID: 34102834
  77. Banach, W.; Nitschke, K.; Krajewska, N.; Mongiałło, W.; Matuszak, O.; Muszyński, J.; Skrypnik, D. The association between excess body mass and disturbances in somatic mineral levels. Int. J. Mol. Sci., 2020, 21(19), 7306. doi: 10.3390/ijms21197306 PMID: 33022938
  78. Liu, Q.; Sun, L.; Tan, Y.; Wang, G.; Lin, X.; Cai, L. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr. Med. Chem., 2009, 16(1), 113-129. doi: 10.2174/092986709787002862 PMID: 19149565
  79. Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093. doi: 10.1111/obr.12323 PMID: 26395622
  80. Wang, H.; Jiang, X.; Wu, J.; Zhang, L.; Huang, J.; Zhang, Y.; Zou, X.; Liang, B. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics, 2016, 203(1), 241-253. doi: 10.1534/genetics.116.186742 PMID: 27017620
  81. Hider, R.C.; Kong, X. Iron: Effect of overload and deficiency. Met. Ions Life Sci., 2013, 13, 229-294. doi: 10.1007/978-94-007-7500-8_8 PMID: 24470094
  82. Lin, Z.; Liu, J.; Kang, R.; Yang, M.; Tang, D. Lipid metabolism in ferroptosis. Adv. Biol., 2021, 5(8), 2100396. doi: 10.1002/adbi.202100396 PMID: 34015188
  83. Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 108. doi: 10.1038/s41392-020-00216-5 PMID: 32606298
  84. Jiang, Y.; Mao, C.; Yang, R.; Yan, B.; Shi, Y.; Liu, X.; Lai, W.; Liu, Y.; Wang, X.; Xiao, D.; Zhou, H.; Cheng, Y.; Yu, F.; Cao, Y.; Liu, S.; Yan, Q.; Tao, Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics, 2017, 7(13), 3293-3305. doi: 10.7150/thno.19988 PMID: 28900510
  85. Habib, A.; Finn, A.V. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol., 2014, 5, 195. doi: 10.3389/fphar.2014.00195 PMID: 25221512
  86. Zhu, X.H.; Ding, G.Q.; Zhang, R.H.; Zhou, B. Research progress of Iron, Zinc, Copper, Selenium, Manganese and metabolic syndrome. 2016, 36(01), 197-200.
  87. Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, 18(3), 3292-3311. doi: 10.3390/molecules18033292 PMID: 23486107
  88. Steinbrenner, H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic. Biol. Med., 2013, 65, 1538-1547. doi: 10.1016/j.freeradbiomed.2013.07.016 PMID: 23872396
  89. Huang, J.Q.; Zhou, J.C.; Wu, Y.Y.; Ren, F.Z.; Lei, X.G. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic. Biol. Med., 2018, 127, 108-115. doi: 10.1016/j.freeradbiomed.2018.05.077 PMID: 29800654
  90. Liang, W.; Zhao, Y.J.; Yang, H.; Shen, L.H. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin. Exp. Res., 2017, 29(2), 141-146. doi: 10.1007/s40520-016-0564-z PMID: 27075629
  91. Nido, S.A.; Shituleni, S.A.; Mengistu, B.M.; Liu, Y.; Khan, A.Z.; Gan, F.; Kumbhar, S.; Huang, K. Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol. Trace Elem. Res., 2016, 171(2), 399-409. doi: 10.1007/s12011-015-0552-8 PMID: 26546553
  92. Christensen, K.; Werner, M.; Malecki, K. Serum selenium and lipid levels: Associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ. Res., 2015, 140, 76-84. doi: 10.1016/j.envres.2015.03.020 PMID: 25836721
  93. Stranges, S.; Tabák, A.G.; Guallar, E.; Rayman, M.P.; Akbaraly, T.N.; Laclaustra, M.; Alfthan, G.; Mussalo-Rauhamaa, H.; Viikari, J.S.A.; Raitakari, O.T.; Kivimäki, M. Selenium status and blood lipids: The cardiovascular risk in young finns study. J. Intern. Med., 2011, 270(5), 469-477. doi: 10.1111/j.1365-2796.2011.02398.x PMID: 21554435
  94. Zhao, Z.; Kim, J.; Lei, X.G. High dietary fat and selenium concentrations exert tissue- and glutathione peroxidase 1–Dependent impacts on lipid metabolism of young-adult mice. J. Nutr., 2020, 150(7), 1738-1748. doi: 10.1093/jn/nxaa130 PMID: 32386229
  95. Blades, B.; Ayton, S.; Hung, Y.H.; Bush, A.I.; La Fontaine, S. Copper and lipid metabolism: A reciprocal relationship. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(11), 129979. doi: 10.1016/j.bbagen.2021.129979 PMID: 34364973
  96. Weiss, K.H.; Zischka, H. Copper directly affects intestinal lipid turnover. Gastroenterology, 2018, 154(1), 15-17. doi: 10.1053/j.gastro.2017.11.016 PMID: 29174544
  97. Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis., 2018, 22(1), 23-37. doi: 10.1016/j.cld.2017.08.007 PMID: 29128059
  98. Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. JAMA, 2015, 313(22), 2263-2273. doi: 10.1001/jama.2015.5370 PMID: 26057287
  99. Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864. doi: 10.1053/j.gastro.2020.01.052 PMID: 32061595
  100. Divella, R.; Mazzocca, A.; Daniele, A.; Sabbà, C.; Paradiso, A. Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int. J. Biol. Sci., 2019, 15(3), 610-616. doi: 10.7150/ijbs.29599 PMID: 30745847
  101. Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 2017, 69(4), 263-270. doi: 10.1002/iub.1613 PMID: 28271632
  102. Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97. doi: 10.1016/j.metabol.2018.11.014 PMID: 30502373
  103. Pierson, H.; Muchenditsi, A.; Kim, B.E.; Ralle, M.; Zachos, N.; Huster, D.; Lutsenko, S. The function of ATPase copper transporter ATP7B in intestine. Gastroenterology, 2018, 154(1), 168-180.e5. doi: 10.1053/j.gastro.2017.09.019 PMID: 28958857
  104. Kaler, S.G. ATP7A-related copper transport diseases- emerging concepts and future trends. Nat. Rev. Neurol., 2011, 7(1), 15-29. doi: 10.1038/nrneurol.2010.180 PMID: 21221114
  105. Tadini-Buoninsegni, F.; Smeazzetto, S. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life, 2017, 69(4), 218-225. doi: 10.1002/iub.1603 PMID: 28164426
  106. Hummel, M.; Standl, E.; Schnell, O. Chromium in metabolic and cardiovascular disease. Horm. Metab. Res., 2007, 39(10), 743-751. doi: 10.1055/s-2007-985847 PMID: 17952838
  107. Racek, J. Chromium as an essential element. Cas. Lek. Cesk., 2003, 142(6), 335-339. PMID: 12924032
  108. Iskra, R.; Ianovych, V.G. Biochemical mechanisms of chromium action in the human and animal organism. Ukr Biokhim Zh, 2011, 83(5), 5-12.
  109. Zabłocka-Słowińska, K.; Grajeta, H. The role of manganese in etiopathogenesis and prevention of selected diseases. Postepy Hig. Med. Dosw., 2012, 66, 549-553. doi: 10.5604/17322693.1006411 PMID: 22922155
  110. Lee, S.H.; Jouihan, H.A.; Cooksey, R.C.; Jones, D.; Kim, H.J.; Winge, D.R.; McClain, D.A. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology, 2013, 154(3), 1029-1038. doi: 10.1210/en.2012-1445 PMID: 23372018
  111. Zhou, B.; Su, X.; Su, D.; Zeng, F.; Wang, M.H.; Huang, L.; Huang, E.; Zhu, Y.; Zhao, D.; He, D.; Zhu, X.; Yeoh, E.; Zhang, R.; Ding, G. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Br. J. Nutr., 2016, 116(5), 853-863. doi: 10.1017/S0007114516002580 PMID: 27385039
  112. Zhang, F.; Ye, J.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Jiang, Q.; Wang, S. Anti-obesity effects of dietary calcium: The evidence and possible mechanisms. Int. J. Mol. Sci., 2019, 20(12), 3072. doi: 10.3390/ijms20123072 PMID: 31234600
  113. Song, Q.; Sergeev, I.N. Calcium and vitamin D in obesity. Nutr. Res. Rev., 2012, 25(1), 130-141. doi: 10.1017/S0954422412000029 PMID: 22588363
  114. Schrager, S. Dietary calcium intake and obesity. J. Am. Board Fam. Med., 2005, 18(3), 205-210. doi: 10.3122/jabfm.18.3.205 PMID: 15879568
  115. Peterlik, M.; Cross, H.S. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur. J. Clin. Nutr., 2009, 63(12), 1377-1386. doi: 10.1038/ejcn.2009.105 PMID: 19724293
  116. Peterlik, M.; Cross, H.S. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur. J. Clin. Invest., 2005, 35(5), 290-304. doi: 10.1111/j.1365-2362.2005.01487.x PMID: 15860041

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers