Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis
- Authors: Mahmoudi A.1, Butler A.2, De Vincentis A.3, Jamialahmadi T.4, Sahebkar A.5
-
Affiliations:
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences
- , Royal College of Surgeons in Ireland Bahrain
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- Applied Biomedical Research Cente, Mashhad University of Medical Sciences
- Issue: Vol 31, No 23 (2024)
- Pages: 3631-3652
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645226
- DOI: https://doi.org/10.2174/0929867330666230516123028
- ID: 645226
Cite item
Full Text
Abstract
Background:Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients.
Methods:Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma.
Results:A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-valup < 0.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma.
Conclusions:This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
About the authors
Ali Mahmoudi
Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Alexandra Butler
, Royal College of Surgeons in Ireland Bahrain
Email: info@benthamscience.net
Antonio De Vincentis
Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma
Email: info@benthamscience.net
Tannaz Jamialahmadi
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Cente, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Al-Qarni, R.; Iqbal, M.; Al-Otaibi, M.; Al-Saif, F.; Alfadda, A.A.; Alkhalidi, H.; Bamehriz, F.; Hassanain, M. Validating candidate biomarkers for different stages of non-alcoholic fatty liver disease. Medicine, 2020, 99(36), e21463. doi: 10.1097/MD.0000000000021463 PMID: 32898995
- Pellicano, A.J.; Spahn, K.; Zhou, P.; Goldberg, I.D.; Narayan, P. Collagen characterization in a model of nonalcoholic steatohepatitis with fibrosis; a call for development of targeted therapeutics. Molecules, 2021, 26(11), 3316. doi: 10.3390/molecules26113316 PMID: 34205850
- Romualdo, G.R.; Da Silva, T.C.; Landi, M.F.; Morais, J.Á.; Barbisan, L.F.; Vinken, M.; Oliveira, C.P.; Cogliati, B. Sorafenib reduces steatosis-induced fibrogenesis in a human 3D co-culture model of non-alcoholic fatty liver disease. Environ. Toxicol., 2021, 36(2), 168-176. doi: 10.1002/tox.23021 PMID: 32918399
- Zeng, Y.; He, H.; An, Z. Advance of serum biomarkers and combined diagnostic panels in nonalcoholic fatty liver disease. Dis. Markers, 2022, 2022, 1-12. doi: 10.1155/2022/1254014 PMID: 35811662
- Sahebkar, A.; Sancho, E.; Abelló, D.; Camps, J.; Joven, J. Novel circulating biomarkers for non-alcoholic fatty liver disease: A systematic review. J. Cell. Physiol., 2018, 233(2), 849-855. doi: 10.1002/jcp.25779 PMID: 28063221
- De Vincentis, A.; Rahmani, Z.; Muley, M.; Vespasiani- Gentilucci, U.; Ruggiero, S.; Zamani, P.; Jamialahmadi, T.; Sahebkar, A. Long noncoding RNAs in nonalcoholic fatty liver disease and liver fibrosis: state-of-the-art and perspectives in diagnosis and treatment. Drug Discov. Today, 2020, 25(7), 1277-1286. doi: 10.1016/j.drudis.2020.05.009 PMID: 32439605
- Mahmoudi, A.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J. Cell. Physiol., 2022, 237(4), 2078-2094. doi: 10.1002/jcp.30699 PMID: 35137416
- Mahjoubin-Tehran, M.; De Vincentis, A.; Mikhailidis, D.P.; Atkin, S.L.; Mantzoros, C.S.; Jamialahmadi, T.; Sahebkar, A. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on effective therapeutics based on the gold standard method for diagnosis. Mol. Metab., 2021, 50, 101049. doi: 10.1016/j.molmet.2020.101049 PMID: 32673798
- Ranjbar, G.; Mikhailidis, D.P.; Sahebkar, A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metabolism, 2019, 101, 154001. doi: 10.1016/j.metabol.2019.154001 PMID: 31672448
- Mahmoudi, A.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov. Today, 2022, 27(8), 2363-2372. doi: 10.1016/j.drudis.2022.05.007 PMID: 35569762
- Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg. Chem. Appl., 2021, 2021, 1-13. doi: 10.1155/2021/4041415 PMID: 34659388
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther., 2022, 7(1), 287. doi: 10.1038/s41392-022-01119-3 PMID: 35963848
- Mantovani, A.; Dalbeni, A. Treatments for NAFLD: State of Art. Int. J. Mol. Sci., 2021, 26(22), 2350.
- Wei, T.; Hao, W.; Tang, L.; Wu, H.; Huang, S.; Yang, Y.; Qian, N.; Liu, J.; Yang, W.; Duan, X. Comprehensive RNA-Seq analysis of potential therapeutic targets of Gan doufumu decoction for treatment of wilson disease using a toxic milk mouse model. Front. Pharmacol., 2021, 12, 622268. doi: 10.3389/fphar.2021.622268 PMID: 33935715
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Reports, 2020, 2(2), 100067. doi: 10.1016/j.jhepr.2020.100067 PMID: 32118201
- Wong, V.W.S.; Adams, L.A.; de Lédinghen, V.; Wong, G.L.H.; Sookoian, S. Noninvasive biomarkers in NAFLD and NASH - current progress and future promise. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(8), 461-478. doi: 10.1038/s41575-018-0014-9 PMID: 29844588
- Bolón-Canedo, V.; Alonso-Betanzos, A.; López-de-Ullibarri, I.; Cao, R. Challenges and future trends for microarray analysis. Methods Mol. Biol., 2019, 1986, 283-293. doi: 10.1007/978-1-4939-9442-7_14 PMID: 31115895
- Churko, J.M.; Mantalas, G.L.; Snyder, M.P.; Wu, J.C. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ. Res., 2013, 112(12), 1613-1623. doi: 10.1161/CIRCRESAHA.113.300939 PMID: 23743227
- Nishimura, A.; Matsumoto, N. Genomic microarray analysis of human diseases. Jpn. J. Clin. Med., 2010, 68(S8), 235-241. PMID: 20976902
- Wang, S.; Cheng, Q. Microarray analysis in drug discovery and clinical applications. Methods Mol. Biol., 2006, 316, 49-65. doi: 10.1385/1-59259-964-8:49 PMID: 16671400
- Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110. doi: 10.1007/978-1-4939-3578-9_5 PMID: 27008011
- Athanasios, A.; Charalampos, V.; Vasileios, T.; Ashraf, G. Protein-protein interaction (PPI) network: Recent advances in drug discovery. Curr. Drug Metab., 2017, 18(1), 5-10. doi: 10.2174/138920021801170119204832 PMID: 28889796
- Mahmoudi, A.; Butler, A.E.; Majeed, M.; Banach, M.; Sahebkar, A. Investigation of the effect of curcumin on protein targets in nafld using bioinformatic analysis. Nutrients, 2022, 14(7), 1331. doi: 10.3390/nu14071331 PMID: 35405942
- Mahmoudi, A.; Heydari, S.; Markina, Y.V.; Barreto, G.E.; Sahebkar, A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed. Pharmacother., 2022, 153, 113304. doi: 10.1016/j.biopha.2022.113304 PMID: 35724514
- Mahmoudi, A.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Target deconvolution of fenofibrate in nonalcoholic fatty liver disease using bioinformatics analysis. BioMed Res. Int., 2021, 2021, 1-14. doi: 10.1155/2021/3654660 PMID: 34988225
- Liu, J.; Lin, B.; Chen, Z.; Deng, M.; Wang, Y.; Wang, J.; Chen, L.; Zhang, Z.; Xiao, X.; Chen, C.; Song, Y. Identification of key pathways and genes in nonalcoholic fatty liver disease using bioinformatics analysis. Arch. Med. Sci., 2020, 16(2), 374-385. doi: 10.5114/aoms.2020.93343 PMID: 32190149
- Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864. doi: 10.1053/j.gastro.2020.01.052 PMID: 32061595
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(S1), S47-S64. doi: 10.1016/j.jhep.2014.12.012 PMID: 25920090
- Liu, L.; Liu, C.; Zhao, M.; Zhang, Q.; Lu, Y.; Liu, P.; Yang, H.; Yang, J.; Chen, X.; Yao, Y. The pharmacodynamic and differential gene expression analysis of PPAR α/δ agonist GFT505 in CDAHFD-induced NASH model. PLoS One, 2020, 15(12), e0243911. doi: 10.1371/journal.pone.0243911 PMID: 33326461
- Ying, L.; Yan, F.; Zhao, Y.; Gao, H.; Williams, B.R.G.; Hu, Y.; Li, X.; Tian, R.; Xu, P.; Wang, Y. (-)-Epigallocatechin-3-gallate and atorvastatin treatment down-regulates liver fibrosis-related genes in non-alcoholic fatty liver disease. Clin. Exp. Pharmacol. Physiol., 2017, 44(12), 1180-1191. doi: 10.1111/1440-1681.12844 PMID: 28815679
- Asadipooya, K.; Lankarani, K.B.; Raj, R.; Kalantarhormozi, M. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int. J. Endocrinol., 2019, 2019, 1-11. doi: 10.1155/2019/2151302 PMID: 31641351
- Mahmoudi, A.; Atkin, S.L.; Nikiforov, N.G.; Sahebkar, A. Therapeutic role of curcumin in diabetes: An analysis based on bioinformatic findings. Nutrients, 2022, 14(15), 3244. doi: 10.3390/nu14153244 PMID: 35956419
- Hu, Q.; Wei, S.; Wen, J.; Zhang, W.; Jiang, Y.; Qu, C.; Xiang, J.; Zhao, Y.; Peng, X.; Ma, X. Network pharmacology reveals the multiple mechanisms of Xiaochaihu decoction in the treatment of non-alcoholic fatty liver disease. BioData Min., 2020, 13(1), 11. doi: 10.1186/s13040-020-00224-9 PMID: 32863886
- Zhang, M.; Yuan, Y.; Zhou, W.; Qin, Y.; Xu, K.; Men, J.; Lin, M. Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease. Comput. Biol. Chem., 2020, 86, 107248. doi: 10.1016/j.compbiolchem.2020.107248 PMID: 32208163
- Polo, M.L.; Riggio, M.; May, M.; Rodríguez, M.J.; Perrone, M.C.; Stallings-Mann, M.; Kaen, D.; Frost, M.; Goetz, M.; Boughey, J.; Lanari, C.; Radisky, D.; Novaro, V. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression. Oncotarget, 2015, 6(26), 22081-22097. doi: 10.18632/oncotarget.4203 PMID: 26098779
- Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609. PMID: 26175931
- Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst., 2015, 11(7), 1946-1954. doi: 10.1039/C5MB00101C PMID: 25924008
- Wang, R.; Song, F.; Li, S.; Wu, B.; Gu, Y.; Yuan, Y. Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des. Devel. Ther., 2019, 13, 1889-1900. doi: 10.2147/DDDT.S194787 PMID: 31213776
- Ackers, I.; Malgor, R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab. Vasc. Dis. Res., 2018, 15(1), 3-13. doi: 10.1177/1479164117738442 PMID: 29113510
- Tian, Y.; Mok, M.; Yang, P.; Cheng, A. Epigenetic activation of Wnt/β-catenin signaling in NAFLD-associated hepatocarcinogenesis. Cancers, 2016, 8(8), 76. doi: 10.3390/cancers8080076 PMID: 27556491
- Wang, X-M.; Wang, X-Y.; Huang, Y-M.; Chen, X.; Lü, M-H.; Shi, L.; Li, C.P. Role and mechanisms of action of microRNA-21 as regards the regulation of the WNT/β- catenin signaling pathway in the pathogenesis of non-alcoholic fatty liver disease. Int. J. Mol. Med., 2019, 44(6), 2201-2212. doi: 10.3892/ijmm.2019.4375 PMID: 31638173
- Wang, S.; Song, K.; Srivastava, R.; Dong, C.; Go, G.W.; Li, N.; Iwakiri, Y.; Mani, A. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J., 2015, 29(8), 3436-3445. doi: 10.1096/fj.15-271171 PMID: 25917329
- Luo, Z.Y.; Song, Q.; Xiong, X.P.; Abdulai, M.; Liu, H.H.; Li, L.; Xu, H.Y.; Hu, S.Q.; Han, C.C. The pi3k/akt/mtor signaling pathway regulates lipid metabolism mediated by endoplasmic reticulum stress in goose primary hepatocytes. Eur. Polit. Sci., 2021, 85, 1-15.
- Liu, B.; Deng, X.; Jiang, Q.; Li, G.; Zhang, J.; Zhang, N.; Xin, S.; Xu, K. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed. Pharmacother., 2020, 125, 109895. doi: 10.1016/j.biopha.2020.109895 PMID: 32000066
- Fan, Y.; He, Z.; Wang, W.; Li, J.; Hu, A.; Li, L.; Yan, L.; Li, Z.; Yin, Q. Tangganjian decoction ameliorates type 2 diabetes mellitus and nonalcoholic fatty liver disease in rats by activating the IRS/PI3K/AKT signaling pathway. Biomed. Pharmacother., 2018, 106, 733-737. doi: 10.1016/j.biopha.2018.06.089 PMID: 29990865
- Hohwieler, M.; Perkhofer, L.; Liebau, S.; Seufferlein, T.; Müller, M.; Illing, A.; Kleger, A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol. J., 2017, 5(5), 609-624. doi: 10.1177/2050640616670565 PMID: 28815024
- Mallea, J.; Bolan, C.; Cortese, C.; Harnois, D. Cystic fibrosisassociated liver disease in lung transplant recipients. Liver Transpl., 2019, 25(8), 1265-1275. doi: 10.1002/lt.25496 PMID: 31102574
- Martin, C.R.; Zaman, M.M.; Ketwaroo, G.A.; Bhutta, A.Q.; Coronel, E.; Popov, Y.; Schuppan, D.; Freedman, S.D. CFTR dysfunction predisposes to fibrotic liver disease in a murine model. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(4), G474-G481. doi: 10.1152/ajpgi.00055.2012 PMID: 22679000
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978. doi: 10.1101/cshperspect.a004978 PMID: 21421911
- Escutia-Gutiérrez, R.; Rodríguez-Sanabria, J.S.; Monraz-Méndez, C.A.; García-Bañuelos, J.; Santos-García, A.; Sandoval-Rodríguez, A.; Armendáriz-Borunda, J. Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Sci. Rep., 2021, 11(1), 11709. doi: 10.1038/s41598-021-91187-2 PMID: 34083664
- Sámano-Hernández, L.; Fierro, R.; Marchal, A.; Guéant, J.L.; González-Márquez, H.; Guéant-Rodríguez, R.M. Beneficial and deleterious effects of sitagliptin on a methionine/choline-deficient diet-induced steatohepatitis in rats. Biochimie, 2021, 181, 240-248. doi: 10.1016/j.biochi.2020.12.004 PMID: 33333172
- Fan, Y.; Fang, X.; Tajima, A.; Geng, X.; Ranganathan, S.; Dong, H.; Trucco, M.; Sperling, M.A. Evolution of hepatic steatosis to fibrosis and adenoma formation in liver-specific growth hormone receptor knockout mice. Front. Endocrinol., 2014, 5, 218. doi: 10.3389/fendo.2014.00218 PMID: 25566190
- Islam, S.; Watanabe, H. Versican: A dynamic regulator of the extracellular matrix. J. Histochem. Cytochem., 2020, 68(11), 763-775. doi: 10.1369/0022155420953922 PMID: 33131383
- Bukong, T.N.; Maurice, S.B.; Chahal, B.; Schaeffer, D.F.; Winwood, P.J. Versican: A novel modulator of hepatic fibrosis. Lab. Invest., 2016, 96(3), 361-374. doi: 10.1038/labinvest.2015.152 PMID: 26752747
- Wight, T.N.; Kang, I.; Merrilees, M.J. Versican and the control of inflammation. Matrix Biol., 2014, 35, 152-161. doi: 10.1016/j.matbio.2014.01.015 PMID: 24513039
- Kim, S.; Takahashi, H.; Lin, W.W.; Descargues, P.; Grivennikov, S.; Kim, Y.; Luo, J.L.; Karin, M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 2009, 457(7225), 102-106. doi: 10.1038/nature07623 PMID: 19122641
- Kesteloot, F.; Desmoulière, A.; Leclercq, I.; Thiry, M.; Arrese, J.E.; Prockop, D.J.; Lapière, C.M.; Nusgens, B.V.; Colige, A. ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice. Hepatology, 2007, 46(5), 1620-1631. doi: 10.1002/hep.21868 PMID: 17929299
- Bauters, D.; Spincemaille, P.; Geys, L.; Cassiman, D.; Vermeersch, P.; Bedossa, P.; Scroyen, I.; Lijnen, H.R. ADAMTS5 deficiency protects against non-alcoholic steatohepatitis in obesity. Liver Int., 2016, 36(12), 1848-1859. doi: 10.1111/liv.13181 PMID: 27254774
- Ramnath, D.; Irvine, K.M.; Lukowski, S.W.; Horsfall, L.U.; Loh, Z.; Clouston, A.D.; Patel, P.J.; Fagan, K.J.; Iyer, A.; Lampe, G.; Stow, J.L.; Schroder, K.; Fairlie, D.P.; Powell, J.E.; Powell, E.E.; Sweet, M.J. Hepatic expression profiling identifies steatosis-independent and steatosis-driven advanced fibrosis genes. JCI Insight, 2018, 3(14), e120274. doi: 10.1172/jci.insight.120274 PMID: 30046009
- Sadler, J.E. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem., 1998, 67(1), 395-424. doi: 10.1146/annurev.biochem.67.1.395 PMID: 9759493
- Groeneveld, D.J.; Poole, L.G.; Luyendyk, J.P. Targeting von Willebrand factor in liver diseases: A novel therapeutic strategy? J. Thromb. Haemost., 2021, 19(6), 1390-1408. doi: 10.1111/jth.15312 PMID: 33774926
- Rosito, G.; DAgostino, R.; Massaro, J.; Lipinska, I.; Mittleman, M.; Sutherland, P.; Wilson, P.; Levy, D.; Muller, J.; Tofler, G. Association between obesity and a prothrombotic state: The Framingham Offspring Study. Thromb. Haemost., 2004, 91(4), 683-689. doi: 10.1160/TH03-01-0014 PMID: 15045128
- Bilgir, O.; Bilgir, F.; Bozkaya, G.; Calan, M. Changes in the levels of endothelium-derived coagulation parameters in nonalcoholic fatty liver disease. Blood Coagul. Fibrinolysis, 2014, 25(2), 151-155. doi: 10.1097/MBC.0000000000000009 PMID: 24317388
- Danoy, M.; Jellali, R.; Tauran, Y.; Bruce, J.; Leduc, M.; Gilard, F.; Gakière, B.; Scheidecker, B.; Kido, T.; Miyajima, A.; Soncin, F.; Sakai, Y.; Leclerc, E. Characterization of the proteome and metabolome of human liver sinusoidal endothelial-like cells derived from induced pluripotent stem cells. Differentiation, 2021, 120, 28-35. doi: 10.1016/j.diff.2021.06.001 PMID: 34229994
- Yang, J.; Lu, Y.; Lou, X.; Wang, J.; Yu, H.; Bao, Z.; Wang, H. Von willebrand factor deficiency improves hepatic steatosis, insulin resistance, and inflammation in mice fed high-fat diet. Obesity, 2020, 28(4), 756-764. doi: 10.1002/oby.22744 PMID: 32144880
- Menggensilimu; Yuan, H.; Zhao, C.; Bao, X.; Wang, H.; Liang, J.; Yan, Y.; Zhang, C.; Jin, R.; Ma, L.; Zhang, J.; Su, X.; Ma, Y. Anti-liver fibrosis effect of total flavonoids from Scabiosa comosa Fisch. ex Roem. et Schult. on liver fibrosis in rat models and its proteomics analysis. Ann. Palliat. Med., 2020, 9(2), 272-285. doi: 10.21037/apm.2020.02.29 PMID: 32233617
- Fisher, L.W.; Torchia, D.A.; Fohr, B.; Young, M.F.; Fedarko, N.S. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Biophys. Res. Commun., 2001, 280(2), 460-465. doi: 10.1006/bbrc.2000.4146 PMID: 11162539
- Sahai, A.; Malladi, P.; Melin-Aldana, H.; Green, R.M.; Whitington, P.F. Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(1), G264-G273. doi: 10.1152/ajpgi.00002.2004 PMID: 15044174
- Banerjee, A.; Rose, R.; Johnson, G.A.; Burghardt, R.C.; Ramaiah, S.K. The influence of estrogen on hepatobiliary osteopontin (SPP1) expression in a female rodent model of alcoholic steatohepatitis. Toxicol. Pathol., 2009, 37(4), 492-501. doi: 10.1177/0192623309335633 PMID: 19387089
- Sweetwyne, M.T.; Murphy-Ullrich, J.E. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol., 2012, 31(3), 178-186. doi: 10.1016/j.matbio.2012.01.006 PMID: 22266026
- Adams, J.C.; Lawler, J. The Thrombospondins. Cold Spring Harb. Perspect. Biol., 2011, 3(10), a009712. doi: 10.1101/cshperspect.a009712 PMID: 21875984
- Maimaitiyiming, H.; Clemons, K.; Zhou, Q.; Norman, H.; Wang, S. Thrombospondin1 deficiency attenuates obesity-associated microvascular complications in ApoE-/- mice. PLoS One, 2015, 10(3), e0121403. doi: 10.1371/journal.pone.0121403 PMID: 25803585
- Wang, S.; Lincoln, T.M.; Murphy-Ullrich, J.E. Glucose downregulation of PKG-I protein mediates increased thrombospondin1-dependent TGF-β activity in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol., 2010, 298(5), C1188-C1197. doi: 10.1152/ajpcell.00330.2009 PMID: 20164378
- Lopez-Dee, Z.; Pidcock, K.; Gutierrez, L.S. Thrombospondin-1: Multiple paths to inflammation. Mediators Inflamm., 2011, 2011, 1-10. doi: 10.1155/2011/296069 PMID: 21765615
- Li, Y.; Turpin, C.P.; Wang, S. Role of thrombospondin 1 in liver diseases. Hepatol. Res., 2017, 47(2), 186-193. doi: 10.1111/hepr.12787 PMID: 27492250
- Min-DeBartolo, J.; Schlerman, F.; Akare, S.; Wang, J.; McMahon, J.; Zhan, Y.; Syed, J.; He, W.; Zhang, B.; Martinez, R.V. Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH). PLoS One, 2019, 14(12), e0226854. doi: 10.1371/journal.pone.0226854 PMID: 31891606
- Li, Y.; Qi, X.; Tong, X.; Wang, S. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell. Mol. Immunol., 2013, 10(6), 506-512. doi: 10.1038/cmi.2013.32 PMID: 23954950
- Gwag, T.; Reddy Mooli, R.G.; Li, D.; Lee, S.; Lee, E.Y.; Wang, S. Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease. JHEP Reports, 2021, 3(1), 100193. doi: 10.1016/j.jhepr.2020.100193 PMID: 33294831
- Song, Y.; Gao, L. Thrombospondin1 as a potential therapeutic target for human nonalcoholic fatty liver disease. EBioMedicine, 2020, 58, 102888. doi: 10.1016/j.ebiom.2020.102888 PMID: 32697967
- Kimura, T.; Tanaka, N.; Fujimori, N.; Yamazaki, T.; Katsuyama, T.; Iwashita, Y.; Pham, J.; Joshita, S.; Pydi, S.P.; Umemura, T. Serum thrombospondin 2 is a novel predictor for the severity in the patients with NAFLD. Liver Int., 2021, 41(3), 505-514. doi: 10.1111/liv.14776 PMID: 33386676
- Wolff, G.; Taranko, A.E.; Meln, I.; Weinmann, J.; Sijmonsma, T.; Lerch, S.; Heide, D.; Billeter, A.T.; Tews, D.; Krunic, D.; Fischer-Posovszky, P.; Müller-Stich, B.P.; Herzig, S.; Grimm, D.; Heikenwälder, M.; Kao, W.W.; Vegiopoulos, A. Diet-dependent function of the extracellular matrix proteoglycan Lumican in obesity and glucose homeostasis. Mol. Metab., 2019, 19, 97-106. doi: 10.1016/j.molmet.2018.10.007 PMID: 30409703
- Charlton, M.; Viker, K.; Krishnan, A.; Sanderson, S.; Veldt, B.; Kaalsbeek, A.J.; Kendrick, M.; Thompson, G.; Que, F.; Swain, J.; Sarr, M. Differential expression of lumican and fatty acid binding protein-1: New insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology, 2009, 49(4), 1375-1384. doi: 10.1002/hep.22927 PMID: 19330863
- Krishnan, A.; Li, X.; Kao, W.Y.; Viker, K.; Butters, K.; Masuoka, H.; Knudsen, B.; Gores, G.; Charlton, M. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Lab. Invest., 2012, 92(12), 1712-1725. doi: 10.1038/labinvest.2012.121 PMID: 23007134
- Decaris, M.L.; Li, K.W.; Emson, C.L.; Gatmaitan, M.; Liu, S.; Wang, Y.; Nyangau, E.; Colangelo, M.; Angel, T.E.; Beysen, C.; Cui, J.; Hernandez, C.; Lazaro, L.; Brenner, D.A.; Turner, S.M.; Hellerstein, M.K.; Loomba, R. Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology, 2017, 65(1), 78-88. doi: 10.1002/hep.28860 PMID: 27706836
- Chang, Y.; He, J.; Xiang, X.; Li, H. LUM is the hub gene of advanced fibrosis in nonalcoholic fatty liver disease patients. Clin. Res. Hepatol. Gastroenterol., 2021, 45(1), 101435. doi: 10.1016/j.clinre.2020.04.006 PMID: 32386798
- Karamfilova, V.; Gateva, A.; Assyov, Y.; Nedeva, I.; Velikova, T.; Cherkezov, N.; Mateva, L.; Kamenov, Z. Lumican in obese patients with nonalcoholic fatty liver disease with or without prediabetes. Metab. Syndr. Relat. Disord., 2020, 18(9), 443-448. doi: 10.1089/met.2020.0001 PMID: 32780624
- Ciupińska-Kajor, M.; Hartleb, M.; Kajor, M.; Kukla, M.; Wyleżoł, M.; Lange, D.; Liszka, Ł. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol. Int., 2013, 7(1), 233-240. doi: 10.1007/s12072-011-9320-9 PMID: 23519653
- Suzawa, K.; Kobayashi, M.; Sakai, Y.; Hoshino, H.; Watanabe, M.; Harada, O.; Ohtani, H.; Fukuda, M.; Nakayama, J. Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am. J. Gastroenterol., 2007, 102(7), 1499-1509. doi: 10.1111/j.1572-0241.2007.01189.x PMID: 17459027
- Strilić, B.; Kučera, T.; Eglinger, J.; Hughes, M.R.; McNagny, K.M.; Tsukita, S.; Dejana, E.; Ferrara, N.; Lammert, E. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell, 2009, 17(4), 505-515. doi: 10.1016/j.devcel.2009.08.011 PMID: 19853564
- Shi, J.F.; Xu, S.X.; He, P.; Xi, Z.H. Expression of carcinoembryonic antigen-related cell adhesion molecule 1(CEACAM1) and its correlation with angiogenesis in gastric cancer. Pathol. Res. Pract., 2014, 210(8), 473-476. doi: 10.1016/j.prp.2014.03.014 PMID: 24846314
- Kukla, M.; Gabriel, A.; Sabat, D.; Liszka, Ł.; Wilk, M.; Petelenz, M.; Musialik, J.; Dzindziora-Frelich, I. Association between liver steatosis and angiogenesis in chronic hepatitis C. Pol. J. Pathol., 2010, 61(3), 154-160. PMID: 21225498
- Tsuji, N.; Ishiguro, S.; Sasaki, Y.; Kudo, M. CD34 expression in noncancerous liver tissue predicts multicentric recurrence of hepatocellular carcinoma. Dig. Dis., 2013, 31(5-6), 467-471. doi: 10.1159/000355246 PMID: 24281022
- Cui, D.J.; Wu, Y.; Wen, D.H. CD34, PCNA and CK19 expressions in AFP-hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5200-5205. PMID: 30178842
- Yan, W.W.; Huang, A.; Li, Y.G.; Wang, S.S.; Dai, G.H. Expressions of CD34 and CD117 in human hepatocellular carcinomas and the clinical significance. Zhonghua Gan Zang Bing Za Zhi, 2011, 19(8), 588-593. PMID: 22152315
- Zhang, Q.; Chen, X.; Zhou, J.; Zhang, L.; Zhao, Q.; Chen, G.; Xu, J.; Feng, Q.; Chen, Z. CD147, MMP-2, MMP-9 and MVD-CD34 are significant predictors of recurrence after liver transplantation in hepatocellular carcinoma patients. Cancer Biol. Ther., 2006, 5(7), 808-814. doi: 10.4161/cbt.5.7.2754 PMID: 16775432
- Choi, W.T.; Kakar, S. Immunohistochemistry in the diagnosis of hepatocellular carcinoma. Gastroenterol. Clin. North Am., 2017, 46(2), 311-325. doi: 10.1016/j.gtc.2017.01.006 PMID: 28506367
- Li, Y.; Song, D.; Mao, L.; Abraham, D.M.; Bursac, N. Lack of Thy1 defines a pathogenic fraction of cardiac fibroblasts in heart failure. Biomaterials, 2020, 236, 119824. doi: 10.1016/j.biomaterials.2020.119824 PMID: 32028169
- Dudas, J.; Mansuroglu, T.; Batusic, D.; Saile, B.; Ramadori, G. Thy-1 is an in vivo and in vitro marker of liver myofibroblasts. Cell Tissue Res., 2007, 329(3), 503-514. doi: 10.1007/s00441-007-0437-z PMID: 17576600
- Kon, J.; Ichinohe, N.; Ooe, H.; Chen, Q.; Sasaki, K.; Mitaka, T. Thy1-positive cells have bipotential ability to differentiate into hepatocytes and biliary epithelial cells in galactosamine-induced rat liver regeneration. Am. J. Pathol., 2009, 175(6), 2362-2371. doi: 10.2353/ajpath.2009.080338 PMID: 19893024
- Zheng, J.; Wu, H.; Zhang, Z.; Yao, S. Dynamic co-expression modular network analysis in nonalcoholic fatty liver disease. Hereditas, 2021, 158(1), 31. doi: 10.1186/s41065-021-00196-8 PMID: 34419146
- Pepper, S.D.; Saunders, E.K.; Edwards, L.E.; Wilson, C.L.; Miller, C.J. The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics, 2007, 8(1), 273. doi: 10.1186/1471-2105-8-273 PMID: 17663764
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One, 2014, 9(6), e98679. doi: 10.1371/journal.pone.0098679 PMID: 24914678
Supplementary files
