Treatment of MRSA Infection: Where are We?
- Authors: Nazli A.1, Tao W.2, You H.1, He X.2, He Y.1
-
Affiliations:
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
- , Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing)
- Issue: Vol 31, No 28 (2024)
- Pages: 4425-4460
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645228
- DOI: https://doi.org/10.2174/0109298673249381231130111352
- ID: 645228
Cite item
Full Text
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including anti-MRSA, antibiotic, antimicrobial, clinical trial, clinical phase, clinical studies, and pipeline. The information extracted from articles was compared to information provided on the drug manufacturers website and ClinicalTrials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
About the authors
Adila Nazli
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Email: info@benthamscience.net
Wenlan Tao
, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing)
Email: info@benthamscience.net
Hengyao You
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Email: info@benthamscience.net
Xiaoli He
, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing)
Author for correspondence.
Email: info@benthamscience.net
Yun He
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University
Author for correspondence.
Email: info@benthamscience.net
References
- Walsh, L.; Johnson, C.N.; Hill, C.; Ross, R.P. Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front. Mol. Biosci., 2021, 8(4), 654038. doi: 10.3389/fmolb.2021.654038 PMID: 33996906
- Diekema, D.J.; Climo, M. Preventing MRSA infections. JAMA, 2008, 299(10), 1190-1192. doi: 10.1001/jama.299.10.1190 PMID: 18334697
- Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol., 2017, 18(1), 130-141. doi: 10.1186/s13059-017-1252-9 PMID: 28724393
- Morell, E.A.; Balkin, D.M. Methicillin-resistant Staphylococcus aureus: A pervasive pathogen highlights the need for new antimicrobial development. Yale J. Biol. Med., 2010, 83(4), 223-233. PMID: 21165342
- Shanmuganathan, V.A.; Armstrong, M.; Buller, A.; Tullo, A.B. External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye (Lond.), 2005, 19(3), 284-291. doi: 10.1038/sj.eye.6701465 PMID: 15375372
- Villegas-Estrada, A.; Lee, M.; Hesek, D.; Vakulenko, S.B.; Mobashery, S. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: Potent inhibition of PBP 2a by two anti-MRSA β-lactam antibiotics. J. Am. Chem. Soc., 2008, 130(29), 9212-9213. doi: 10.1021/ja8029448 PMID: 18582062
- El Amin, N.M.; Faidah, H.S. Methicillin-resistant Staphylococcus aureus in the Western region of Saudi Arabia: Prevalence and antibiotic susceptibility pattern. Ann. Saudi Med., 2012, 32(5), 513-516. doi: 10.5144/0256-4947.2012.513 PMID: 22871621
- Chatterjee, S.S.; Ray, P.; Aggarwal, A.; Das, A.; Sharma, M. A community-based study on nasal carriage of Staphylococcus aureus. Indian J. Med. Res., 2009, 130(6), 742-748. PMID: 20090137
- Stefani, S.; Chung, D.R.; Lindsay, J.A.; Friedrich, A.W.; Kearns, A.M.; Westh, H.; MacKenzie, F.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents, 2012, 39(4), 273-282. doi: 10.1016/j.ijantimicag.2011.09.030 PMID: 22230333
- von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med., 2001, 344(1), 11-16. doi: 10.1056/NEJM200101043440102 PMID: 11136954
- Clarridge, J.E., III; Harrington, A.T.; Roberts, M.C.; Soge, O.O.; Maquelin, K. Impact of strain typing methods on assessment of relationship between paired nares and wound isolates of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol., 2013, 51(1), 224-231. doi: 10.1128/JCM.02423-12 PMID: 23135945
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-18. doi: 10.1128/CMR.00020-18 PMID: 30209034
- David, M.Z.; Cadilla, A.; Boyle-Vavra, S.; Daum, R.S. Replacement of HA-MRSA by CA-MRSA infections at an academic medical center in the midwestern United States, 2004-5 to 2008. PLoS One, 2014, 9(4), e92760. doi: 10.1371/journal.pone.0092760 PMID: 24755631
- Bean, H.D.; Zhu, J.; Sengle, J.C.; Hill, J.E. Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS). J. Breath Res., 2014, 8(4), 041001-41001. doi: 10.1088/1752-7155/8/4/041001 PMID: 25307159
- Tenover, F.; Biddle, J.W.; Lancaster, M.V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg. Infect. Dis., 2001, 7(2), 327-332. doi: 10.3201/eid0702.010237 PMID: 11294734
- Shrivastava, S.; Shrivastava, P.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Society, 2018, 32(1), 76-77. doi: 10.4103/jms.jms_25_17
- Bassetti, M.; Del Puente, F.; Magnasco, L.; Giacobbe, D.R. Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus : Advances in phase I and II trials. Expert Opin. Investig. Drugs, 2020, 29(5), 495-506. doi: 10.1080/13543784.2020.1750595 PMID: 32242469
- French, G.L. Bactericidal agents in the treatment of MRSA infections--the potential role of daptomycin. J. Antimicrob. Chemother., 2006, 58(6), 1107-1117. doi: 10.1093/jac/dkl393 PMID: 17040922
- Zeller, J.L.; Burke, A.E.; Glass, R.M. MRSA Infections. JAMA, 2007, 298(15), 1826-1826. doi: 10.1001/jama.298.15.1826 PMID: 17940240
- Wilcox, M.H.; Hall, J.; Pike, H.; Templeton, P.A.; Fawley, W.N.; Parnell, P.; Verity, P. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J. Hosp. Infect., 2003, 54(3), 196-201. doi: 10.1016/S0195-6701(03)00147-6 PMID: 12855234
- Hsu, D.I.; Hidayat, L.K.; Quist, R.; Hindler, J.; Karlsson, A.; Yusof, A.; Wong-Beringer, A. Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. Int. J. Antimicrob. Agents, 2008, 32(5), 378-385. doi: 10.1016/j.ijantimicag.2008.05.007 PMID: 18701261
- Kurosu, M.; Siricilla, S.; Mitachi, K. Advances in MRSA drug discovery: Where are we and where do we need to be? Expert Opin. Drug Discov., 2013, 8(9), 1095-1116. doi: 10.1517/17460441.2013.807246 PMID: 23829425
- Weis, F.; Beiras-Fernandez, A.; Schelling, G. Daptomycin, a lipopeptide antibiotic in clinical practice. Curr. Opin. Investig. Drugs, 2008, 9(8), 879-884. PMID: 18666036
- Tedesco, K.L.; Rybak, M.J. Daptomycin. Pharmacotherapy, 2004, 24(1), 41-57. doi: 10.1592/phco.24.1.41.34802 PMID: 14740787
- Enoch, D.A.; Bygott, J.M.; Daly, M.L.; Karas, J.A. Daptomycin. J. Infect., 2007, 55(3), 205-213. doi: 10.1016/j.jinf.2007.05.180 PMID: 17629567
- Patel, J.B.; Jevitt, L.A.; Hageman, J.; McDonald, L.C.; Tenover, F.C. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin. Infect. Dis., 2006, 42(11), 1652-1653. doi: 10.1086/504084 PMID: 16652325
- Kishor, K.; Dhasmana, N.; Kamble, S.; Sahu, R. Linezolid induced adverse drug reactions-an update. Curr. Drug Metab., 2015, 16(7), 553-559. doi: 10.2174/1389200216666151001121004 PMID: 26424176
- Stein, G.E.; Wells, E.M. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus : Vancomycin and linezolid. Curr. Med. Res. Opin., 2010, 26(3), 571-588. doi: 10.1185/03007990903512057 PMID: 20055750
- Greer, N.D. Tigecycline (Tygacil): The first in the glycylcycline class of antibiotics. Proc. Bayl. Univ. Med. Cent., 2006, 19(2), 155-161. doi: 10.1080/08998280.2006.11928154 PMID: 16609746
- Frei, C.R.; Miller, M.L.; Lewis, J.S., II; Lawson, K.A.; Hunter, J.M.; Oramasionwu, C.U.; Talbert, R.L. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J. Am. Board Fam. Med., 2010, 23(6), 714-719. doi: 10.3122/jabfm.2010.06.090270 PMID: 21057066
- Goldstein, E.J.C.; Proctor, R.A. Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis., 2008, 46(4), 584-593. doi: 10.1086/525536 PMID: 18197761
- Kollef, M.H. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin. Infect. Dis., 2007, 45(3)(Suppl. 3), S191-S195. doi: 10.1086/519470 PMID: 17712746
- Bassetti, M.; Peghin, M.; Castaldo, N.; Giacobbe, D.R. The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin. Drug Saf., 2019, 18(8), 635-650. doi: 10.1080/14740338.2019.1621288 PMID: 31106600
- Jevitt, L.A.; Smith, A.J.; Williams, P.P.; Raney, P.M.; McGowan, J.E., Jr; Tenover, F.C. In vitro activities of Daptomycin, Linezolid, and Quinupristin-Dalfopristin against a challenge panel of Staphylococci and Enterococci, including vancomycin-intermediate staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Microb. Drug Resist., 2003, 9(4), 389-393. doi: 10.1089/107662903322762833 PMID: 15000746
- Sakoulas, G.; Alder, J.; Thauvin-Eliopoulos, C.; Moellering, R.C., Jr; Eliopoulos, G.M. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob. Agents Chemother., 2006, 50(4), 1581-1585. doi: 10.1128/AAC.50.4.1581-1585.2006 PMID: 16569891
- Arbeit, R.D.; Maki, D.; Tally, F.P.; Campanaro, E.; Eisenstein, B.I. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis., 2004, 38(12), 1673-1681. doi: 10.1086/420818 PMID: 15227611
- Aikawa, N.; Kusachi, S.; Mikamo, H.; Takesue, Y.; Watanabe, S.; Tanaka, Y.; Morita, A.; Tsumori, K.; Kato, Y.; Yoshinari, T. Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J. Infect. Chemother., 2013, 19(3), 447-455. doi: 10.1007/s10156-012-0501-9 PMID: 23085743
- Quinn, D.K.; Stern, T.A. Linezolid and serotonin syndrome. Prim. Care Companion J. Clin. Psychiatry, 2009, 11(6), 353-356. doi: 10.4088/PCC.09r00853 PMID: 20098528
- Van Wart, S.A.; Cirincione, B.B.; Ludwig, E.A.; Meagher, A.K.; Korth-Bradley, J.M.; Owen, J.S. Population pharmacokinetics of tigecycline in healthy volunteers. J. Clin. Pharmacol., 2007, 47(6), 727-737. doi: 10.1177/0091270007300263 PMID: 17519399
- Murchison, A. Quinupristindalfopristin: A streptogramin antibiotic. Prim. Care Update Ob Gyns, 2002, 9(5), 176-177. doi: 10.1016/S1068-607X(02)00113-0
- Eliopoulos, G.M.; Eliopoulos, G.M. Quinupristin-dalfopristin and linezolid: Evidence and opinion. Clin. Infect. Dis., 2003, 36(4), 473-481. doi: 10.1086/367662 PMID: 12567306
- Ma, H.; Cheng, J.; Peng, L.; Gao, Y.; Zhang, G.; Luo, Z. Adjunctive rifampin for the treatment of Staphylococcus aureus bacteremia with deep infections: A meta-analysis. PLoS One, 2020, 15(3), e0230383. doi: 10.1371/journal.pone.0230383 PMID: 32191760
- Dryden, M.; Zhang, Y.; Wilson, D.; Iaconis, J.P.; Gonzalez, J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J. Antimicrob. Chemother., 2016, 71(12), 3575-3584. doi: 10.1093/jac/dkw333 PMID: 27585969
- Corey, G.R.; Wilcox, M.; Talbot, G.H.; Friedland, H.D.; Baculik, T.; Witherell, G.W.; Critchley, I.; Das, A.F.; Thye, D. Integrated analysis of CANVAS 1 and 2: Phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis., 2010, 51(6), 641-650. doi: 10.1086/655827 PMID: 20695801
- Blumenthal, K.G.; Kuhlen, J.L., Jr; Weil, A.A.; Varughese, C.A.; Kubiak, D.W.; Banerji, A.; Shenoy, E.S. Adverse drug reactions associated with ceftaroline use: A 2-center retrospective cohort. J. Allergy Clin. Immunol. Pract., 2016, 4(4), 740-746. doi: 10.1016/j.jaip.2016.03.008 PMID: 27130709
- Smieja, M. Current indications for the use of clindamycin: A critical review. Can. J. Infect. Dis., 1998, 9(1), 22-28. doi: 10.1155/1998/538090 PMID: 22346533
- Geric, B.; Rupnik, M.; Gerding, D.N.; Grabnar, M.; Johnson, S. Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J. Med. Microbiol., 2004, 53(9), 887-894. doi: 10.1099/jmm.0.45610-0 PMID: 15314196
- Miller, L.G.; Daum, R.S.; Creech, C.B.; Young, D.; Downing, M.D.; Eells, S.J.; Pettibone, S.; Hoagland, R.J.; Chambers, H.F. Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections. N. Engl. J. Med., 2015, 372(12), 1093-1103. doi: 10.1056/NEJMoa1403789 PMID: 25785967
- Crellin, E.; Mansfield, K.E.; Leyrat, C.; Nitsch, D.; Douglas, I.J.; Root, A.; Williamson, E.; Smeeth, L.; Tomlinson, L.A. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: Cohort study. BMJ, 2018, 360, k341. doi: 10.1136/bmj.k341 PMID: 29438980
- Talan, D.A.; Mower, W.R.; Krishnadasan, A.; Abrahamian, F.M.; Lovecchio, F.; Karras, D.J.; Steele, M.T.; Rothman, R.E.; Hoagland, R.; Moran, G.J. Trimethoprimsulfamethoxazole versus placebo for uncomplicated skin abscess. N. Engl. J. Med., 2016, 374(9), 823-832. doi: 10.1056/NEJMoa1507476 PMID: 26962903
- Shorr, A.F.; Lodise, T.P.; Corey, G.R.; De Anda, C.; Fang, E.; Das, A.F.; Prokocimer, P. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2015, 59(2), 864-871. doi: 10.1128/AAC.03688-14 PMID: 25421472
- Wilson, A.P.R. Comparative safety of teicoplanin and vancomycin. Int. J. Antimicrob. Agents, 1998, 10(2), 143-152. doi: 10.1016/S0924-8579(98)00025-9 PMID: 9716291
- Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med., 2014, 370(23), 2169-2179. doi: 10.1056/NEJMoa1310480 PMID: 24897082
- Bouza, E.; Valerio, M.; Soriano, A.; Morata, L.; Carus, E.G.; Rodríguez-González, C.; Hidalgo-Tenorio, M.C.; Plata, A.; Muñoz, P.; Vena, A.; Alvarez-Uria, A.; Fernández-Cruz, A.; Nieto, A.A.; Artero, A.; Allende, J.M.B.; Morell, E.B.; Candel-González, F.J.; Castelo, L.; Cobo, J.; del Carmen Gálvez Contreras, M.; Fernández, R.G.; Horcajada, J.P.; Guisado-Vasco, P.; Losa, J.E.; Hervás, R.; Iftimie, S.M.; Mejías, M.E.J.; Jover, F.; Ferreiro, J.L.L.; Serrano, A.B.L.; Malmierca, E.; Masiá, M.; Sempere, M.R.O.; Nieto, A.R.; Rodriguez-Pardo, D.; Alvarez, S.J.R.; San Juan, R.; Cepeda, C.S.; Berrocal, M.A.S.; Sobrino, B.; Sorlí, L. Dalbavancin in the treatment of different gram-positive infections: A real-life experience. Int. J. Antimicrob. Agents, 2018, 51(4), 571-577. doi: 10.1016/j.ijantimicag.2017.11.008 PMID: 29180276
- Stryjewski, M.E.; Graham, D.R.; Wilson, S.E.; ORiordan, W.; Young, D.; Lentnek, A.; Ross, D.P.; Fowler, V.G.; Hopkins, A.; Friedland, H.D.; Barriere, S.L.; Kitt, M.M.; Corey, G.R. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin. Infect. Dis., 2008, 46(11), 1683-1693. doi: 10.1086/587896 PMID: 18444791
- Graham, D.R.; Talan, D.A.; Nichols, R.L.; Lucasti, C.; Corrado, M.; Morgan, N.; Fowler, C.L. Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillin-clavulanate for complicated skin and skin-structure infections: A randomized, open-label trial. Clin. Infect. Dis., 2002, 35(4), 381-389. doi: 10.1086/341026 PMID: 12145720
- Nicodemo, A.C.; Robledo, J.A.; Jasovich, A.; Neto, W. A multicentre, double-blind, randomised study comparing the efficacy and safety of oral levofloxacin versus ciprofloxacin in the treatment of uncomplicated skin and skin structure infections. Int. J. Clin. Pract., 1998, 52(2), 69-74. doi: 10.1111/j.1742-1241.1998.tb11567.x PMID: 9624783
- Vick-Fragoso, R.; Hernández-Oliva, G.; Cruz-Alcázar, J.; Amábile-Cuevas, C.F.; Arvis, P.; Reimnitz, P.; Bogner, J.R.; Group, S.S. Efficacy and safety of sequential intravenous/oral moxifloxacin vs intravenous/oral amoxicillin/clavulanate for complicated skin and skin structure infections. Infection, 2009, 37(5), 407-417. doi: 10.1007/s15010-009-8468-x PMID: 19768381
- Smith, K.; Leyden, J.J. Safety of doxycycline and minocycline: A systematic review. Clin. Ther., 2005, 27(9), 1329-1342. doi: 10.1016/j.clinthera.2005.09.005 PMID: 16291409
- Hershberger, E.; Donabedian, S.; Konstantinou, K.; Zervos, M.J.; Eliopoulos, G.M. Quinupristin-dalfopristin resistance in gram-positive bacteria: Mechanism of resistance and epidemiology. Clin. Infect. Dis., 2004, 38(1), 92-98. doi: 10.1086/380125 PMID: 14679454
- Yamaoka, T. The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA. J. Infect. Chemother., 2007, 13(3), 141-146. doi: 10.1007/s10156-007-0521-Z PMID: 17593499
- Saravolatz, L.D.; Pawlak, J.; Johnson, L.; Bonilla, H.; Saravolatz, L.D., II; Fakih, M.G.; Fugelli, A.; Olsen, W.M. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob. Agents Chemother., 2012, 56(8), 4478-4482. doi: 10.1128/AAC.00194-12 PMID: 22585222
- Nilsson, A.C.; Janson, H.; Wold, H.; Fugelli, A.; Andersson, K.; Håkangård, C.; Olsson, P.; Olsen, W.M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(1), 145-151. doi: 10.1128/AAC.03513-14 PMID: 25331699
- Giuliani, A.; Rinaldi, A.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci., 2011, 68(13), 2255-2266. doi: 10.1007/s00018-011-0717-3 PMID: 21598022
- Méndez-Samperio, P. Peptidomimetics as a new generation of antimicrobial agents: Current progress. Infect. Drug Resist., 2014, 7, 229-237. doi: 10.2147/IDR.S49229 PMID: 25210467
- Mercer, D.K.; ONeil, D.A. Innate inspiration: Antifungal peptides and other immunotherapeutics from the host immune response. Front. Immunol., 2020, 11, 2177-2205. doi: 10.3389/fimmu.2020.02177 PMID: 33072081
- Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795. doi: 10.1021/jm200450h PMID: 21732630
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev., 2021, 170, 261-280. doi: 10.1016/j.addr.2020.12.016 PMID: 33400958
- Saravolatz, L.D.; Pawlak, J.; Martin, H.; Saravolatz, S.; Johnson, L.; Wold, H.; Husbyn, M.; Olsen, W.M. Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett. Appl. Microbiol., 2017, 65(5), 410-413. doi: 10.1111/lam.12792 PMID: 28802058
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. (Hoboken), 2019, 111(5), e24122. doi: 10.1002/pep2.24122
- Xu, Z.Q.; Flavin, M.T.; Flavin, J. Combating multidrug-resistant gram-negative bacterial infections. Expert Opin. Investig. Drugs, 2014, 23(2), 163-182. doi: 10.1517/13543784.2014.848853 PMID: 24215473
- Rakesh, K.P.; Marichannegowda, M.H.; Srivastava, S.; Chen, X.; Long, S.; Karthik, C.S.; Mallu, P.; Qin, H.L. Combating a master manipulator: Staphylococcus aureus immunomodulatory molecules as targets for combinatorial drug discovery. ACS Comb. Sci., 2018, 20(12), 681-693. doi: 10.1021/acscombsci.8b00088 PMID: 30372025
- Kowalski, R.P.; Romanowski, E.G.; Yates, K.A.; Mah, F.S. An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J. Ocul. Pharmacol. Ther., 2016, 32(1), 23-27. doi: 10.1089/jop.2015.0098 PMID: 26501484
- Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73-91. doi: 10.3389/fnins.2017.00073 PMID: 28261050
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 x 20 Progress--development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2013, 56(12), 1685-1694. doi: 10.1093/cid/cit152 PMID: 23599308
- Wang, M.; Odom, T.; Cai, J. Challenges in the development of next-generation antibiotics: Opportunities of small molecules mimicking mode of action of host-defense peptides. Expert Opin. Ther. Pat., 2020, 30(5), 303-305. doi: 10.1080/13543776.2020.1740683 PMID: 32149532
- Mercer, D.K.; ONeil, D.A. Peptides as the next generation of anti-infectives. Future Med. Chem., 2013, 5(3), 315-337. doi: 10.4155/fmc.12.213 PMID: 23464521
- Tillotson, G.S.; Theriault, N. New and alternative approaches to tackling antibiotic resistance. F1000Prime Rep., 2013, 5, 51-60. doi: 10.12703/P5-51 PMID: 24381727
- McCool, R.; Gould, I.M.; Eales, J.; Barata, T.; Arber, M.; Fleetwood, K.; Glanville, J.; Kauf, T.L. Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA. BMC Infect. Dis., 2017, 17(1), 39. doi: 10.1186/s12879-016-2100-3 PMID: 28061827
- Jorgensen, D.; Scott, R.; ORiordan, W.; Tack, K. A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin & skin structure infections (ABSSSI 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), 2015, pp. 25-28.
- Takahashi, Y.; Igarashi, M. Destination of aminoglycoside antibiotics in the post-antibiotic era. J. Antibiot. (Tokyo), 2018, 71(1), 4-14. doi: 10.1038/ja.2017.117 PMID: 29066797
- Singh, G.S. Carbohydrates in Drug Discovery and Development.Carbohydrate-based antibiotics: Opportunities and challenges, 1st ed.; Elsevier Academic Press: Amsterdam, 2006, pp. 523-559.
- Lakota, E.A.; Sato, N.; Koresawa, T.; Kondo, K.; Bhavnani, S.M.; Ambrose, P.G.; Rubino, C.M. Population pharmacokinetic analyses for arbekacin after administration of ME1100 inhalation solution. Antimicrob. Agents Chemother., 2019, 63(8), e00267-19. doi: 10.1128/AAC.00267-19 PMID: 31182524
- Koulenti, D.; Xu, E.; Song, A.; Sum Mok, I.Y.; Karageorgopoulos, D.E.; Armaganidis, A.; Tsiodras, S.; Lipman, J. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms, 2020, 8(2), 191-231. doi: 10.3390/microorganisms8020191 PMID: 32019171
- AB Naafs, M. The antimicrobial peptides: Ready for clinical trials. Biomed. J. Sci. Tech. Res., 2018, 7(4), 6038-6042. doi: 10.26717/BJSTR.2018.07.001536
- Appelbaum, P.C. 2012 and beyond: Potential for the start of a second pre-antibiotic era? J. Antimicrob. Chemother., 2012, 67(9), 2062-2068. doi: 10.1093/jac/dks213 PMID: 22687888
- de Souza Mendes, C.; de Souza Antunes, A. Pipeline of known chemical classes of antibiotics. Antibiotics (Basel), 2013, 2(4), 500-534. doi: 10.3390/antibiotics2040500 PMID: 27029317
- Peric, M.; Jacobs, M.R.; Appelbaum, P.C. Antianaerobic activity of a novel fluoroquinolone, WCK 771, compared to those of nine other agents. Antimicrob. Agents Chemother., 2004, 48(8), 3188-3192. doi: 10.1128/AAC.48.8.3188-3192.2004 PMID: 15273148
- Liapikou, A.; Cillóniz, C.; Torres, A. Investigational drugs in phase I and phase II clinical trials for the treatment of community-acquired pneumonia. Expert Opin. Investig. Drugs, 2017, 26(11), 1239-1248. doi: 10.1080/13543784.2017.1385761 PMID: 28952384
- Jabes, D. The antibiotic R&D pipeline: An update. Curr. Opin. Microbiol., 2011, 14(5), 564-569. doi: 10.1016/j.mib.2011.08.002 PMID: 21873107
- Lipsky, B.A.; Tsai, C.Y.; Chang, L.W.; Chang, Y.T.; Hsu, M.C. WITHDRAWN: Nemonoxacin treatment of patients with diabetic foot infection: A pilot study. J. Microbiol. Immunol. Infect., 2019, 72, 397-404. doi: 10.1016/j.jmii.2019.05.015
- ORiordan, W.; Tiffany, C.; Scangarella-Oman, N.; Perry, C.; Hossain, M.; Ashton, T.; Dumont, E. Efficacy, safety, and tolerability of Gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2017, 61(6), e02095-16. doi: 10.1128/AAC.02095-16 PMID: 28373199
- Jeong, J.W.; Jung, S.J.; Lee, H.H.; Kim, Y.Z.; Park, T.K.; Cho, Y.L.; Chae, S.E.; Baek, S.Y.; Woo, S.H.; Lee, H.S.; Kwak, J.H. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob. Agents Chemother., 2010, 54(12), 5359-5362. doi: 10.1128/AAC.00723-10 PMID: 20855730
- Vuong, C.; Yeh, A.J.; Cheung, G.Y.C.; Otto, M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin. Investig. Drugs, 2016, 25(1), 73-93. doi: 10.1517/13543784.2016.1109077 PMID: 26536498
- Cho, Y.S.; Lim, H.S.; Lee, S.H.; Cho, Y.L.; Nam, H.; Bae, K.S. Pharmacokinetics, pharmacodynamics, and tolerability of single-dose oral LCB01-0371, a novel oxazolidinone with broad-spectrum activity, in healthy volunteers. ntimicrob. Antimicrob. Agents Chemother., 2018, 62(7), e00451-18. doi: 10.1128/AAC.00451-18
- Carvalhaes, C.G.; Duncan, L.R.; Wang, W.; Sader, H.S. In vitro activity and potency of the novel Oxazolidinone Contezolid (MRX-I) tested against Gram-positive clinical isolates from US and Europe. Antimicrob. Agents Chemother., 2020, 64(11), e01195-20. doi: 10.1128/AAC.01195-20 PMID: 32778552
- Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Hu, X.X.; Zhang, F.; Wang, Y.C. Antibacterial activity and structure− activity relationship of a series of newly synthesized Pleuromutilin derivatives. Chem. Biodivers., 2019, 16(2), e1800560. doi: 10.1002/cbdv.201800560 PMID: 30467968
- Pucci, M.J.; Bush, K. Investigational antimicrobial agents of 2013. Clin. Microbiol. Rev., 2013, 26(4), 792-821. doi: 10.1128/CMR.00033-13 PMID: 24092856
- Paukner, S.; Riedl, R. Pleuromutilins: Potent drugs for resistant bugsmode of action and resistance. Cold Spring Harb. Perspect. Med., 2017, 7(1), a027110. doi: 10.1101/cshperspect.a027110 PMID: 27742734
- Jones, J.A.; Virga, K.G.; Gumina, G.; Hevener, K.E. Recent advances in the rational design and optimization of antibacterial agents. MedChemComm, 2016, 7(9), 1694-1715. doi: 10.1039/C6MD00232C PMID: 27642504
- Giacobbe, D.R.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Pea, F.; Petrosillo, N.; Rossolini, G.M.; Tascini, C.; Tumbarello, M.; Viale, P.; Bassetti, M. Ceftobiprole: Drug evaluation and place in therapy. Expert Rev. Anti Infect. Ther., 2019, 17(9), 689-698. doi: 10.1080/14787210.2019.1667229 PMID: 31553250
- Parkes, A.L.; Yule, I.A. Hybrid antibiotics clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680. doi: 10.1080/17460441.2016.1187597 PMID: 27169483
- Blais, J.; Lewis, S.R.; Krause, K.M.; Benton, B.M. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob. Agents Chemother., 2012, 56(3), 1584-1587. doi: 10.1128/AAC.05532-11 PMID: 22203585
- Leuthner, K.D.; Vidaillac, C.; Cheung, C.M.; Rybak, M.J. In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Antimicrob. Agents Chemother., 2010, 54(9), 3799-3803. doi: 10.1128/AAC.00452-10 PMID: 20585126
- Hegde, S.S.; Okusanya, O.O.; Skinner, R.; Shaw, J.P.; Obedencio, G.; Ambrose, P.G.; Blais, J.; Bhavnani, S.M. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob. Agents Chemother., 2012, 56(3), 1578-1583. doi: 10.1128/AAC.05382-11 PMID: 22155835
- Itoh, H.; Tokumoto, K.; Kaji, T.; Paudel, A.; Panthee, S.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Total synthesis and biological mode of action of WAP-8294A2: A menaquinone-targeting antibiotic. J. Org. Chem., 2018, 83(13), 6924-6935. doi: 10.1021/acs.joc.7b02318 PMID: 29019678
- Kato, A.; Nakaya, S.; Ohashi, Y.; Hirata, H.; Fujii, K.; Harada, K. WAP-8294A2, a novel anti-MRSA antibiotic produced by Lysobacter sp. J. Am. Chem. Soc., 1997, 119(28), 6680-6681. doi: 10.1021/ja970895o
- Kato, A.; Hirata, H.; Ohashi, Y.; Fujii, K.; Mori, K.; Harada, K. A new anti-MRSA antibiotic complex, WAP-8294A II. Structure characterization of minor components by ESI LCMS and MS/MS. J. Antibiot. (Tokyo), 2011, 64(5), 373-379. doi: 10.1038/ja.2011.9 PMID: 21326252
- Ling, J.; Zhu, R.; Laborda, P.; Jiang, T.; Jia, Y.; Zhao, Y.; Liu, F. LbDSF, the Lysobacter brunescens quorum sensing system diffusible signalling factor, regulates anti-xanthomonas XSAC biosynthesis, colony morphology, and surface motility. Front. Microbiol., 2019, 10, 1230-1244. doi: 10.3389/fmicb.2019.01230 PMID: 31275253
- Hafkin, B.; Kaplan, N.; Murphy, B. Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob. Agents Chemother., 2016, 60(3), 1695-1701. doi: 10.1128/AAC.01741-15 PMID: 26711777
- Butler, M.S.; Paterson, D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. (Tokyo), 2020, 73(6), 329-364. doi: 10.1038/s41429-020-0291-8 PMID: 32152527
- Fisher, C.R.; Schmidt-Malan, S.M.; Ma, Z.; Yuan, Y.; He, S.; Patel, R. In vitro activity of TNP-2092 against periprosthetic joint infectionassociated staphylococci. Diagn. Microbiol. Infect. Dis., 2020, 97(3), 115040-115065. doi: 10.1016/j.diagmicrobio.2020.115040 PMID: 32354459
- Motley, M.P.; Banerjee, K.; Fries, B.C. Monoclonal antibody-based therapies for bacterial infections. Curr. Opin. Infect. Dis., 2019, 32(3), 210-216. doi: 10.1097/QCO.0000000000000539 PMID: 30950853
- Peck, M.; Rothenberg, M.E.; Deng, R.; Lewin-Koh, N.; She, G.; Kamath, A.V.; Carrasco-Triguero, M.; Saad, O.; Castro, A.; Teufel, L.; Dickerson, D.S.; Leonardelli, M.; Tavel, J.A. A phase 1, randomized, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody-antibiotic conjugate, in healthy volunteers. Antimicrob. Agents Chemother., 2019, 63(6), e02588-18. doi: 10.1128/AAC.02588-18 PMID: 30910894
- Fernandes, P.; Pereira, D. Efforts to support the development of fusidic acid in the United States. Clin. Infect. Dis., 2011, 52(7)(Suppl. 7), S542-S546. doi: 10.1093/cid/cir170 PMID: 21546632
- Shukla, M.; Soni, I.; Dasgupta, A.; Chopra, S. Drugs under preclinical and clinical testing for the treatment of infections caused due to Staphylococcus aureus. An update, in infectious diseases and your health., (1st ed.. ) 2018, , 239-255.
- Biedenbach, D.J.; Rhomberg, P.R.; Mendes, R.E.; Jones, R.N. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn. Microbiol. Infect. Dis., 2010, 66(3), 301-307. doi: 10.1016/j.diagmicrobio.2009.10.014 PMID: 20159376
- Noeske, J.; Huang, J.; Olivier, N.B.; Giacobbe, R.A.; Zambrowski, M.; Cate, J.H.D. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother., 2014, 58(9), 5269-5279. doi: 10.1128/AAC.03389-14 PMID: 24957822
- Liapikou, A.; Torres, A. Emerging drugs on methicillin-resistant Staphylococcus aureus. Expert Opin. Emerg. Drugs, 2013, 18(3), 291-305. doi: 10.1517/14728214.2013.813480 PMID: 23848400
- Pankuch, G.A.; Lin, G.; Clark, C.; Appelbaum, P.C. Time-kill activity of the streptogramin NXL 103 against gram-positive and -negative bacteria. Antimicrob. Agents Chemother., 2011, 55(4), 1787-1791. doi: 10.1128/AAC.01159-10 PMID: 21245439
- Politano, A.D.; Sawyer, R.G. NXL-103, a combination of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr. Opin. Investig. Drugs, 2010, 11(2), 225-236. PMID: 20112172
- Lepak, A.J.; Parhi, A.; Madison, M.; Marchillo, K.; VanHecker, J.; Andes, D.R. In vivo pharmacodynamic evaluation of an FtsZ Inhibitor, TXA-709, and its active metabolite, TXA-707, in a murine neutropenic thigh infection model. Antimicrob. Agents Chemother., 2015, 59(10), 6568-6574. doi: 10.1128/AAC.01464-15 PMID: 26259789
- Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol., 2020, 18(5), 286-298. doi: 10.1038/s41579-020-0340-0 PMID: 32152509
- Stephens, L.J.; Werrett, M.V.; Sedgwick, A.C.; Bull, S.D.; Andrews, P.C. Antimicrobial innovation: A current update and perspective on the antibiotic drug development pipeline. Future Med. Chem., 2020, 12(22), 2035-2065. doi: 10.4155/fmc-2020-0225 PMID: 33169622
- Kaul, M.; Mark, L.; Zhang, Y.; Parhi, A.K.; Lyu, Y.L.; Pawlak, J.; Saravolatz, S.; Saravolatz, L.D.; Weinstein, M.P.; LaVoie, E.J.; Pilch, D.S. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(8), 4845-4855. doi: 10.1128/AAC.00708-15 PMID: 26033735
- Naderer, O.J.; Dumont, E.; Zhu, J.; Kurtinecz, M.; Jones, L.S. Single-dose safety, tolerability, and pharmacokinetics of the antibiotic GSK1322322, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother., 2013, 57(5), 2005-2009. doi: 10.1128/AAC.01779-12 PMID: 23403431
- Corey, R.; Naderer, O.J.; ORiordan, W.D.; Dumont, E.; Jones, L.S.; Kurtinecz, M.; Zhu, J.Z. Safety, tolerability, and efficacy of GSK1322322 in the treatment of acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2014, 58(11), 6518-6527. doi: 10.1128/AAC.03360-14 PMID: 25136015
- Alm, R.A.; Lahiri, S.D. Narrow-spectrum antibacterial agentsbenefits and challenges. Antibiotics (Basel), 2020, 9(7), 418-426. doi: 10.3390/antibiotics9070418 PMID: 32708925
- Page, J.E.; Walker, S. Natural products that target the cell envelope. Curr. Opin. Microbiol., 2021, 61, 16-24. doi: 10.1016/j.mib.2021.02.001 PMID: 33662818
- Traczewski, M.M.; Ambler, J.E.; Schuch, R. Determination of MIC quality control parameters for Exebacase, a novel lysin with anti-staphylococcal activity. J. Clin. Microbiol., 2021, 59(7), e03117-20. doi: 10.1128/JCM.03117-20 PMID: 33910968
- Watson, A.; Oh, J.T.; Sauve, K.; Bradford, P.A.; Cassino, C.; Schuch, R. Antimicrobial activity of exebacase (lysin CF-301) against the most common causes of infective endocarditis. Antimicrob. Agents Chemother., 2019, 63(10), e01078-19. doi: 10.1128/AAC.01078-19 PMID: 31332073
- Kim, N.H.; Park, W.B.; Cho, J.E.; Choi, Y.J.; Choi, S.J.; Jun, S.Y.; Kang, C.K.; Song, K.H.; Choe, P.G.; Bang, J.H.; Kim, E.S.; Park, S.W.; Kim, N.J.; Oh, M.; Kim, H.B. Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob. Agents Chemother., 2018, 62(10), e00731-18. doi: 10.1128/AAC.00731-18 PMID: 30038042
- Caflisch, K.M.; Patel, R. Implications of bacteriophage-and bacteriophage component-based therapies for the clinical microbiology laboratory. J. Clin. Microbiol., 2019, 57(8), e00229-19. doi: 10.1128/JCM.00229-19 PMID: 31092596
- Jun, S.Y.; Jung, G.M.; Yoon, S.J.; Youm, S.Y.; Han, H.Y.; Lee, J.H.; Kang, S.H. Pharmacokinetics of the phage endolysin-based candidate drug SAL 200 in monkeys and its appropriate intravenous dosing period. Clin. Exp. Pharmacol. Physiol., 2016, 43(10), 1013-1016. doi: 10.1111/1440-1681.12613 PMID: 27341401
- Channabasappa, S.; Chikkamadaiah, R.; Durgaiah, M.; Kumar, S.; Ramesh, K.; Sreekanthan, A.; Sriram, B. Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. J. Antimicrob. Chemother., 2018, 73(12), 3398-3404. doi: 10.1093/jac/dky365 PMID: 30215762
- ClinicalTrials.gov. Safety & efficacy of an antibacterial protein molecule applied topically to the nostrils of volunteers and patients. Available From: https://clinicaltrials.gov/ct2/show/NCT01746654
- Bagnoli, F. Staphylococcus aureus toxin antibodies: Good companions of antibiotics and vaccines. Virulence, 2017, 8(7), 1037-1042. doi: 10.1080/21505594.2017.1295205 PMID: 28267417
- Varshney, A.K.; Kuzmicheva, G.A.; Lin, J.; Sunley, K.M.; Bowling, R.A., Jr; Kwan, T.Y.; Mays, H.R.; Rambhadran, A.; Zhang, Y.; Martin, R.L.; Cavalier, M.C.; Simard, J.; Shivaswamy, S. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One, 2018, 13(1), e0190537. doi: 10.1371/journal.pone.0190537 PMID: 29364906
- Falcó, V.; Burgos, J.; Papiol, E.; Ferrer, R.; Almirante, B. Investigational drugs in phase I and phase II clincial trials for the treatment of hospital-acquired pneumonia. Expert Opin. Investig. Drugs, 2016, 25(6), 653-665. doi: 10.1517/13543784.2016.1168803 PMID: 26998623
- Wang-Lin, S.; Balthasar, J. Pharmacokinetic and pharmacodynamic considerations for the use of monoclonal antibodies in the treatment of bacterial infections. Antibodies (Basel), 2018, 7(1), 5-25. doi: 10.3390/antib7010005 PMID: 31544858
- Vignon, P.; Laterre, P.F.; Daix, T.; François, B. New agents in development for sepsis: Any reason for hope? Drugs, 2020, 80(17), 1751-1761. doi: 10.1007/s40265-020-01402-z PMID: 32951149
- Tabor, D.E.; Yu, L.; Mok, H.; Tkaczyk, C.; Sellman, B.R.; Wu, Y.; Oganesyan, V.; Slidel, T.; Jafri, H.; McCarthy, M.; Bradford, P.; Esser, M.T. Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob. Agents Chemother., 2016, 60(9), 5312-5321. doi: 10.1128/AAC.00357-16 PMID: 27324766
- François, B.; Jafri, H.S.; Chastre, J.; Sánchez-García, M.; Eggimann, P.; Dequin, P.F.; Huberlant, V.; Viña Soria, L.; Boulain, T.; Bretonnière, C.; Pugin, J.; Trenado, J.; Hernandez Padilla, A.C.; Ali, O.; Shoemaker, K.; Ren, P.; Coenjaerts, F.E.; Ruzin, A.; Barraud, O.; Timbermont, L.; Lammens, C.; Pierre, V.; Wu, Y.; Vignaud, J.; Colbert, S.; Bellamy, T.; Esser, M.T.; Dubovsky, F.; Bonten, M.J.; Goossens, H.; Laterre, P.F.; Chochrad, D.; Dive, A.; Foret, F.; Simon, M.; Spapen, H.; Creteur, J.; Bouckaert, Y.; Biston, P.; Bourgeois, M.; Novacek, M.; Vymazal, T.; Svoboda, P.; Pachl, J.; Sramek, V.; Hanauer, M.; Hruby, T.; Balik, M.; Suchy, T.; Lepape, A.; Argaud, L.; Dailler, F.; Desachy, A.; Guitton, C.; Mercat, A.; Meziani, F.; Navellou, J-C.; Robert, R.; Souweine, B.; Tadie, J-M.; Maamar, A.; Annane, D.; Tamion, F.; Gros, A.; Nseir, S.; Schwebel, C.; Francony, G.; Lefrant, J-Y.; Schneider, F.; Gründling, M.; Motsch, J.; Reill, L.; Rolfes, C.; Welte, T.; Cornely, O.; Bloos, F.; Deja, M.; Schmidt, K.; Wappler, F.; Meier-Hellmann, A.; Komnos, A.; Bekos, V.; Koulouras, V.; Soultati, I.; Baltopoulos, G.; Filntisis, G.; Zakynthinos, E.; Zakynthinos, S.; Pnevmatikos, I.; Krémer, I.; Szentkereszty, Z.; Sarkany, A.; Marjanek, Z.; Moura, P.; Pintado Delgado, M.C.; Montejo González, J.C.; Ramirez, P.; Torres Marti, A.; Valia, J.C.; Lorente, J.; Loza Vazquez, A.; De Pablo Sanchez, R.; Escudero, D.; Ferrer Roca, R.; Pagani, J-L.; Maggiorini, M. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis., 2021, 21(9), 1313-1323. doi: 10.1016/S1473-3099(20)30995-6 PMID: 33894131
- Jacobs, M.R.; Appelbaum, P.C. Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin. Pharmacother., 2006, 7(14), 1957-1966. doi: 10.1517/14656566.7.14.1957 PMID: 17020421
- Lautre, C.; Sharma, S.; Sahu, J.K. Chemistry, biological properties and analytical methods of Levonadifloxacin:A review. Crit. Rev. Anal. Chem., 2020, 50, 1-9. PMID: 33307757
- Baliga, S.; Mamtora, D.K.; Gupta, V.; Shanmugam, P.; Biswas, S.; Mukherjee, D.N.; Shenoy, S. Assessment of antibacterial activity of levonadifloxacin against contemporary gram-positive clinical isolates collected from various Indian hospitals using disk-diffusion assay. Indian J. Med. Microbiol., 2020, 38(3-4), 307-312. doi: 10.4103/ijmm.IJMM_20_307 PMID: 33154240
- Veeraraghavan, B.; Bakthavatchalam, Y.D.; Manesh, A.; Lal, B.; Swaminathan, S.; Ansari, A.; Subbareddy, K.; Rangappa, P.; Choudhuri, A.H.; Nagvekar, V.; Mehta, Y.; Appalaraju, B.; Baveja, S.; Baliga, S.; Shenoy, S.; Bhardwaj, R.; Kongre, V.; Dattatraya, G.S.; Verma, B.; Mukherjee, D.N.; Gupta, S.; Shanmugam, P.; Iravane, J.; Mishra, S.R.; Barman, P.; Chopra, S.; Hariharan, M.; Surpam, R.; Pratap, R.; Turbadkar, D.; Taklikar, S. India-discovered levonadifloxacin & alalevonadifloxacin: A review on susceptibility testing methods, CLSI quality control and breakpoints along with a brief account of their emerging therapeutic profile as a novel standard-of-care. Indian J. Med. Microbiol., 2023, 41(3), 71-80. doi: 10.1016/j.ijmmb.2022.11.005 PMID: 36509611
- Rodvold, K.A.; Gotfried, M.H.; Chugh, R.; Gupta, M.; Yeole, R.; Patel, A.; Bhatia, A. Intrapulmonary pharmacokinetics of Levonadifloxacin following oral administration of Alalevonadifloxacin to healthy adult subjects. Antimicrob. Agents Chemother., 2018, 62(3), e02297-17. doi: 10.1128/AAC.02297-17 PMID: 29263070
- Jones, T.; Johnson, S.; DiMondi, V.P.; Wilson, D.T. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect. Drug Resist., 2016, 9, 119-128. doi: 10.2147/IDR.S105620 PMID: 27354817
- Covington, P.; Davenport, J.M.; Andrae, D.; ORiordan, W.; Liverman, L.; McIntyre, G.; Almenoff, J. Randomized, double-blind, phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob. Agents Chemother., 2011, 55(12), 5790-5797. doi: 10.1128/AAC.05044-11 PMID: 21947389
- Chang, L-W.; Hsu, M-C.; Zhang, Y-Y. Nemonoxacin (Taigexyn®): A new non-fluorinated Quinolone. Staphylococcus and Streptococcus, 1st ed.; Elsevier: Amsterdam, 2019, pp. 1-95.
- Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 34-42. doi: 10.1186/s12941-016-0150-4 PMID: 27215369
- Cheng, S.L.; Wu, R.G.; Chuang, Y.C.; Perng, W.C.; Tsao, S.M.; Chang, Y.T.; Chang, L.W.; Hsu, M.C. Integrated safety summary of phase II and III studies comparing oral nemonoxacin and levofloxacin in community-acquired pneumonia. J. Microbiol. Immunol. Infect., 2019, 52(5), 743-751. doi: 10.1016/j.jmii.2018.11.006 PMID: 30616912
- Lai, C.C.; Lee, K.Y.; Lin, S.W.; Chen, Y.H.; Kuo, H.Y.; Hung, C.C.; Hsueh, P.R. Nemonoxacin (TG-873870) for treatment of community-acquired pneumonia. Expert Rev. Anti Infect. Ther., 2014, 12(4), 401-417. doi: 10.1586/14787210.2014.894881 PMID: 24579813
- Adam, H.J.; Laing, N.M.; King, C.R.; Lulashnyk, B.; Hoban, D.J.; Zhanel, G.G. In vitro activity of nemonoxacin, a novel non fluorinated quinolone, against 2,440 clinical isolates. Antimicrob. Agents Chemother., 2009, 53(11), 4915-4920. doi: 10.1128/AAC.00078-09 PMID: 19738018
- Liu, Y.; Zhang, Y.; Wu, J.; Zhu, D.; Sun, S.; Zhao, L.; Wang, X.; Liu, H.; Ren, Z.; Wang, C.; Xiu, Q.; Xiao, Z.; Cao, Z.; Cui, S.; Yang, H.; Liang, Y.; Chen, P.; Lv, Y.; Hu, C.; Lv, X.; Liu, S.; Kuang, J.; Li, J.; Wang, D.; Chang, L. A randomized, double-blind, multicenter Phase II study comparing the efficacy and safety of oral nemonoxacin with oral levofloxacin in the treatment of community-acquired pneumonia. J. Microbiol. Immunol. Infect., 2017, 50(6), 811-820. doi: 10.1016/j.jmii.2015.09.005 PMID: 26748734
- Aoki, H.; Ke, L.; Poppe, S.M.; Poel, T.J.; Weaver, E.A.; Gadwood, R.C.; Thomas, R.C.; Shinabarger, D.L.; Ganoza, M.C. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob. Agents Chemother., 2002, 46(4), 1080-1085. doi: 10.1128/AAC.46.4.1080-1085.2002 PMID: 11897593
- Cho, Y.S.; Lim, H.S.; Cho, Y.L.; Nam, H.S.; Bae, K.S. Multiple-dose safety, tolerability, pharmacokinetics, and pharmacodynamics of oral LCB01-0371 in healthy male volunteers. Clin. Ther., 2018, 40(12), 2050-2064. doi: 10.1016/j.clinthera.2018.10.007 PMID: 30420289
- Egorova, A.; Jackson, M.; Gavrilyuk, V.; Makarov, V. Pipeline of anti Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med. Res. Rev., 2021, 41(4), 2350-2387. doi: 10.1002/med.21798 PMID: 33645845
- Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220(4), 68-97. doi: 10.1016/j.trsl.2020.03.007 PMID: 32275897
- Cho, Y.S.; Lim, H.S.; Han, S.; Yoon, S.K.; Kim, H.; Cho, Y.L.; Nam, H.S.; Bae, K.S. Single-dose intravenous safety, tolerability, and pharmacokinetics and absolute bioavailability of LCB01-0371. Clin. Ther., 2019, 41(1), 92-106. doi: 10.1016/j.clinthera.2018.11.009 PMID: 30559004
- Cho, Y.L.; Jang, J. Development of delpazolid for the treatment of tuberculosis. Appl. Sci. (Basel), 2020, 10(7), 2211. doi: 10.3390/app10072211
- Gao, X.; Zhao, W.; Huo, F.; Jiang, G.; Dong, L.; Zhao, L.; Wang, F.; Yu, X.; Huang, H. In vitro efficacy comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid against rapid growing Mycobacteria isolated in Beijing, China. BioRxiv, 2020.
- Kaku, N.; Morinaga, Y.; Takeda, K.; Kosai, K.; Uno, N.; Hasegawa, H.; Miyazaki, T.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, compared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. J. Antimicrob. Chemother., 2017, 72(4), 1123-1128. PMID: 27999047
- Bhagwat, S.S.; Nandanwar, M.; Kansagara, A.; Patel, A.; Takalkar, S.; Chavan, R.; Hariharan, P.; Yeole, R.; Deshpande, P.; Bhavsar, S.; Bhatia, A.; Ahdal, J.; Jain, R.; Patel, M. Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: Review of current evidence. Drug Des. Devel. Ther., 2019, 13, 4351-4365. doi: 10.2147/DDDT.S229882 PMID: 31920285
- Wu, X.; Zhang, J.; Guo, B.; Zhang, Y.; Yu, J.; Cao, G.; Chen, Y.; Zhu, D.; Ye, X.; Wu, J.; Shi, Y.; Chang, L.; Chang, Y.; Tsai, C. Pharmacokinetics and pharmacodynamics of multiple-dose intravenous nemonoxacin in healthy Chinese volunteers. Antimicrob. Agents Chemother., 2015, 59(3), 1446-1454. doi: 10.1128/AAC.04039-14 PMID: 25534726
- Negash, K.; Andonian, C.; Felgate, C.; Chen, C.; Goljer, I.; Squillaci, B.; Nguyen, D.; Pirhalla, J.; Lev, M.; Schubert, E.; Tiffany, C.; Hossain, M.; Ho, M. The metabolism and disposition of GSK2140944 in healthy human subjects. Xenobiotica, 2016, 46(8), 683-702. doi: 10.3109/00498254.2015.1112933 PMID: 26586303
- Choi, Y.; Lee, S.W.; Kim, A.; Jang, K.; Nam, H.; Cho, Y.L.; Yu, K.S.; Jang, I.J.; Chung, J.Y. Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects. J. Antimicrob. Chemother., 2018, 73(1), 183-190. doi: 10.1093/jac/dkx367 PMID: 29069400
- Eckburg, P.B.; Ge, Y.; Hafkin, B. Single-and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus Linezolid in healthy adult subjects. Antimicrob. Agents Chemother., 2017, 61(4), e02181-16. doi: 10.1128/AAC.02181-16 PMID: 28167545
- Yang, D.; Chen, L.; Lai, L.; Ren, M.; Zhang, G.; Pan, Z.; Fang, B. Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens. Zhongguo Nongye Daxue Xuebao, 2015, 36(4), 26-31.
- Zeitlinger, M.; Schwameis, R.; Burian, A.; Burian, B.; Matzneller, P.; Müller, M.; Wicha, W.W.; Strickmann, D.B.; Prince, W. Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J. Antimicrob. Chemother., 2016, 71(4), 1022-1026. doi: 10.1093/jac/dkv442 PMID: 26747098
- Schmitt-Hoffmann, A.; Roos, B.; Schleimer, M.; Sauer, J.; Man, A.; Nashed, N.; Brown, T.; Perez, A.; Weidekamm, E.; Kovács, P. Single-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob. Agents Chemother., 2004, 48(7), 2570-2575. doi: 10.1128/AAC.48.7.2570-2575.2004 PMID: 15215110
- Stryjewski, M.E.; Potgieter, P.D.; Li, Y.P.; Barriere, S.L.; Churukian, A.; Kingsley, J.; Corey, G.R. TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother., 2012, 56(11), 5476-5483. doi: 10.1128/AAC.00712-12 PMID: 22869571
- Kaplan, N.; Hafkin, B. 2014. Preclinical pharmacokinetics and efficacy of Debio 1450 (Previously AFN-1720), a prodrug of the Staphylococcocal-specific Antibiotic Debio 1452 (Previously AFN-1252). In: 24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2014.
- Morgan, A.; Cofer, C.; Stevens, D.L. Iclaprim: A novel dihydrofolate reductase inhibitor for skin and soft tissue infections. Future Microbiol., 2009, 4(2), 131-144. doi: 10.2217/17460913.4.2.131 PMID: 19257839
- Weiss, W.; Pulse, M.; Nguyen, P.; Ma, Z. In vivo efficacy of dual-action molecule TNP-2092 in mouse H. pylori infection model as compared to triple therapies and distribution within the gastric mucosal layer. In: American Society of Microbiology General Meeting, Poster. 2016, pp. 460
- Zhou, C.; Lehar, S.; Gutierrez, J.; Rosenberger, C.M.; Ljumanovic, N.; Dinoso, J.; Koppada, N.; Hong, K.; Baruch, A.; Carrasco-Triguero, M.; Saad, O.; Mariathasan, S.; Kamath, A.V. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs, 2016, 8(8), 1612-1619. doi: 10.1080/19420862.2016.1229722 PMID: 27653831
- Still, J.G.; Clark, K.; Degenhardt, T.P.; Scott, D.; Fernandes, P.; Gutierrez, M.J. Pharmacokinetics and safety of single, multiple, and loading doses of fusidic acid in healthy subjects. Clin. Infect. Dis., 2011, 52(7)(Suppl. 7), S504-S512. doi: 10.1093/cid/cir174 PMID: 21546627
- Pankuch, G.A.; Hoellman, D.; Bryskier, A.; Lowther, J.; Appelbaum, P.C. Effects of various media on the activity of NXL103 (formerly XRP 2868), a new oral streptogramin, against Haemophilus influenzae. Antimicrob. Agents Chemother., 2006, 50(11), 3914-3916. doi: 10.1128/AAC.00587-06 PMID: 17065630
- Andes, D.; Craig, W.A. Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models. Antimicrob. Agents Chemother., 2006, 50(1), 243-249. doi: 10.1128/AAC.50.1.243-249.2006 PMID: 16377693
- Naderer, O.J.; Jones, L.S.; Zhu, J.; Kurtinecz, M.; Dumont, E. Safety, tolerability, and pharmacokinetics of oral and intravenous administration of GSK1322322, a peptide deformylase inhibitor. J. Clin. Pharmacol., 2013, 53(11), 1168-1176. doi: 10.1002/jcph.150 PMID: 23907665
- Cassino, C.; Murphy, M.; Boyle, J.; Rotolo, J.; Wittekind, M. Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers proceedings of the 26th European congress of clinical microbiology and infectious diseases, Amsterdam, The Netherlands, 2016. doi: 10.26226/morressier.56ebbf52d462b80296c97eca
- Jun, S.Y.; Jang, I.J.; Yoon, S.; Jang, K.; Yu, K.S.; Cho, J.Y.; Seong, M.W.; Jung, G.M.; Yoon, S.J.; Kang, S.H. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother., 2017, 61(6), e02629-16. doi: 10.1128/AAC.02629-16 PMID: 28348152
- Hariharan, S.; Keelara, S.; Paul, V.D.; Sriram, B.; Vipra, A.A.; Balganesh, T. Phage therapybacteriophage and phage-derived products as anti-infective drugs. Drug discovery targeting drug-resistant bacteria, 1st ed.; Elsevier: Amsterdam, 2020, pp. 301-359.
- Rupp, M.E.; Stecher, M.; Mckinnon, J.; Jung, N.; Huynh, T. Pharmacokinetics of a novel monoclonal antibody targeting Staphylococcal Protein A in patients hospitalized with S. aureus bacteremia. Open Forum Infect. Dis., 2016, 3(1)(Suppl. 1), 1985. doi: 10.1093/ofid/ofw172.1533
- François, B.; Mercier, E.; Gonzalez, C.; Asehnoune, K.; Nseir, S.; Fiancette, M.; Desachy, A.; Plantefève, G.; Meziani, F.; de Lame, P.A.; Laterre, P.F. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: First-in-human trial. Intensive Care Med., 2018, 44(11), 1787-1796. doi: 10.1007/s00134-018-5229-2 PMID: 30343314
- Yu, X-Q.; Robbie, G.J.; Wu, Y.; Esser, M.T.; Jensen, K.; Schwartz, H.I.; Bellamy, T.; Hernandez-Illas, M.; Jafri, H.S. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother., 2016, 61(1), 1020-1036. PMID: 27795368
- Reddy, D.S.; Sinha, A.; Kumar, A.; Saini, V.K. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch. Pharm. (Weinheim), 2022, 355(11), 2200214. doi: 10.1002/ardp.202200214 PMID: 35841594
- Bae, I.G.; Tonthat, G.T.; Stryjewski, M.E.; Rude, T.H.; Reilly, L.F.; Barriere, S.L.; Genter, F.C.; Corey, G.R.; Fowler, V.G., Jr Presence of genes encoding the panton-valentine leukocidin exotoxin is not the primary determinant of outcome in patients with complicated skin and skin structure infections due to methicillin-resistant Staphylococcus aureus: Results of a multinational trial. J. Clin. Microbiol., 2009, 47(12), 3952-3957. doi: 10.1128/JCM.01643-09 PMID: 19846653
- Wang, W.; Voss, K.M.; Liu, J.; Gordeev, M.F. Nonclinical evaluation of antibacterial oxazolidinones Contezolid and Contezolid Acefosamil with low serotonergic neurotoxicity. Chem. Res. Toxicol., 2021, 34(5), 1348-1354. doi: 10.1021/acs.chemrestox.0c00524 PMID: 33913699
- Wu, J.; Cao, G.; Wu, H.; Chen, Y.; Guo, B.; Wu, X.; Yu, J.; Ni, K.; Qian, J.; Wang, L.; Wu, J.; Wang, Y.; Yuan, H.; Zhang, J.; Xi, Y. Evaluation of the effect of Contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo-and positive-controlled crossover study in healthy Chinese volunteers. Antimicrob. Agents Chemother., 2020, 64(6), e02158-19. doi: 10.1128/AAC.02158-19 PMID: 32229495
- Michalska, K.; Gruba, E.; Bocian, W.; Cielecka-Piontek, J. Enantioselective recognition of radezolid by cyclodextrin modified capillary electrokinetic chromatography and electronic circular dichroism. J. Pharm. Biomed. Anal., 2017, 139, 98-108. doi: 10.1016/j.jpba.2017.01.041 PMID: 28279932
- Kaur, M.; Rai, J.; Randhawa, G.K. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10. doi: 10.4103/2229-516X.112229 PMID: 23776832
- Silverberg, N.; Block, S. Uncomplicated skin and skin structure infections in children: Diagnosis and current treatment options in the United States. Clin. Pediatr. (Phila.), 2008, 47(3), 211-219. doi: 10.1177/0009922807307186 PMID: 18354031
- Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep., 2016, 6(1), 39004. doi: 10.1038/srep39004 PMID: 27958389
- Goethe, O.; Heuer, A.; Ma, X.; Wang, Z.; Herzon, S.B. Antibacterial properties and clinical potential of pleuromutilins. Nat. Prod. Rep., 2019, 36(1), 220-247. doi: 10.1039/C8NP00042E PMID: 29979463
- Yi, Y.; Fu, Y.; Dong, P.; Qin, W.; Liu, Y.; Liang, J.; Shang, R. Synthesis and biological activity evaluation of novel heterocyclic pleuromutilin derivatives. Molecules, 2017, 22(6), 996. doi: 10.3390/molecules22060996 PMID: 28617344
- Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Wang, Y.C.; Zhang, F. Design, synthesis, and biological activity evaluation of a series of pleuromutilin derivatives with novel C14 side chains. Bioorg. Med. Chem. Lett., 2020, 30(7), 126969. doi: 10.1016/j.bmcl.2020.126969 PMID: 32014384
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacotherapy, 2018, 38(9), 935-946. doi: 10.1002/phar.2166 PMID: 30019769
- Mercuro, N.J.; Veve, M.P. Clinical utility of Lefamulin: If not now, when? Curr. Infect. Dis. Rep., 2020, 22(9), 25. doi: 10.1007/s11908-020-00732-z PMID: 32834786
- Zhanel, G.G.; Deng, C.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Irfan, N.; Bay, D.; Lagacé-Wiens, P.; Walkty, A.; Mandell, L.; Lynch, J.P., III; Karlowsky, J.A. Lefamulin: A novel oral and intravenous pleuromutilin for the treatment of community-acquired bacterial pneumonia. Drugs, 2021, 81(2), 233-256. doi: 10.1007/s40265-020-01443-4 PMID: 33247830
- Koulenti, D.; Xu, E.; Yin Sum Mok, I.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms, 2019, 7(10), 386-390. doi: 10.3390/microorganisms7100386 PMID: 31554342
- Anderson, S.D.; Gums, J.G. Ceftobiprole: An extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann. Pharmacother., 2008, 42(6), 806-816. doi: 10.1345/aph.1L016 PMID: 18477729
- Zhanel, G.G.; Lam, A.; Schweizer, F.; Thomson, K.; Walkty, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Ceftobiprole. A review of a broad spectrum and anti-MRSA cephalosporin. Am. J. Clin. Dermatol., 2008, 9(4), 245-254. doi: 10.2165/00128071-200809040-00004 PMID: 18572975
- Noel, G.J.; Strauss, R.S.; Amsler, K.; Heep, M.; Pypstra, R.; Solomkin, J.S. Treatment of complicated skin and skin structure infections caused by gram-positive bacteria with Ceftobiprole: Results of a double-blind, randomized trial. Antimicrob. Agents Chemother., 2007, 52, 37-44. doi: 10.1128/AAC.00551-07 PMID: 17954698
- Noel, G.J.; Bush, K.; Bagchi, P.; Ianus, J.; Strauss, R.S. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis., 2008, 46(5), 647-655. doi: 10.1086/526527 PMID: 18225981
- Bhavnani, S.M.; Hammel, J.P.; Lakota, E.A.; Safir, M.C.; VanScoy, B.D.; Nagira, Y.; Rubino, C.M.; Sato, N.; Koresawa, T.; Kondo, K.; Ambrose, P.G. Pharmacokinetic-pharmacodynamic target attainment analyses to support dose selection for ME1100, an Arbekacin inhalation solution. Antimicrob. Agents Chemother., 2020, 64(10), e02367-19. doi: 10.1128/AAC.02367-19 PMID: 32661000
- Chavan, R.; Zope, V.; Chavan, N.; Shaikh, J.; Patil, K.; Yeole, R.; Bhagwat, S.; Patel, M. Assessment of in vitro inhibitory effects of novel anti MRSA benzoquinolizine fluoroquinolone WCK 771 (levonadifloxacin) and its metabolite on human liver cytochrome P450 enzymes. Xenobiotica, 2020, 50(10), 1149-1157. doi: 10.1080/00498254.2020.1756007 PMID: 32283993
- Mason, J.W.; Chugh, R.; Patel, A.; Gutte, R.; Bhatia, A. Electrocardiographic effects of a supratherapeutic dose of WCK 2349, a benzoquinolizine fluoroquinolone. Clin. Transl. Sci., 2019, 12(1), 47-52. doi: 10.1111/cts.12594 PMID: 30369076
- Yuan, J.; Mo, B.; Ma, Z.; Lv, Y.; Cheng, S.L.; Yang, Y.; Tong, Z.; Wu, R.; Sun, S.; Cao, Z.; Wu, J.; Zhu, D.; Chang, L.; Zhang, Y.; Zhao, L.; Wang, X.; Wang, X.; Wang, D.; Li, X.; Peng, Y.; Liang, Y.; Liu, H.; Xiao, Z.; Lv, X.; Wu, S.; Dai, Y.; Huang, Y.; Hu, Z.; Qiu, C.; Li, X.; Zhang, S.; Li, W.; Liu, S.; Shi, Y.; Xiong, C.; Kuang, J.; Xiu, Q.; Cui, S.; Li, J.; Lin, Q.; Huang, W.; Wan, Y.; Qimanguli; Shen, C.; Xiao, Y.; Wu, X.; Chuang, Y.C.; Perng, W.C.; Tsao, S-M.; Hsu, J-Y.; Wang, C-C.; Wang, J-H.; Yeh, P-F.; Lin, H-H.; Kuo, P.H.; Lin, M-S.; Su, W-J. Safety and efficacy of oral nemonoxacin versus levofloxacin in treatment of community-acquired pneumonia: A phase 3, multicenter, randomized, double-blind, double-dummy, active-controlled, non-inferiority trial. J. Microbiol. Immunol. Infect., 2019, 52(1), 35-44. doi: 10.1016/j.jmii.2017.07.011 PMID: 30181096
- Wu, J.; Wu, H.; Wang, Y.; Chen, Y.; Guo, B.; Cao, G.; Wu, X.; Yu, J.; Wu, J.; Zhu, D.; Guo, Y.; Yuan, H.; Hu, F.; Zhang, J. Tolerability and pharmacokinetics of Contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of Contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis. Clin. Ther., 2019, 41(6), 1164-1174.e4. doi: 10.1016/j.clinthera.2019.04.025 PMID: 31126694
- Bassetti, M.; Righi, E. Safety profiles of old and new antimicrobials for the treatment of MRSA infections. Expert Opin. Drug Saf., 2016, 15(4), 467-481. doi: 10.1517/14740338.2016.1142528 PMID: 26764972
- Goldberg, L.; Das, A. Efficacy and safety of iv-to-oral lefamulin, a pleuromutilin antibiotic, for treatment of communityacquired bacterial pneumonia: The phase 3 LEAP 1 Trial. Clin. Infect. Dis., 2019, 69, 1856-1867. doi: 10.1093/cid/ciz090 PMID: 30722059
- Overcash, J.S.; Kim, C.; Keech, R.; Gumenchuk, I.; Ninov, B.; Gonzalez-Rojas, Y.; Waters, M.; Simeonov, S.; Engelhardt, M.; Saulay, M.; Ionescu, D.; Smart, J.I.; Jones, M.E.; Hamed, K.A. Ceftobiprole compared with Vancomycin plus Aztreonam in the treatment of acute bacterial skin and skin structure infections: Results of a Phase 3, randomized, double-blind trial (TARGET). Clin. Infect. Dis., 2021, 73(7), e1507-e1517. doi: 10.1093/cid/ciaa974 PMID: 32897367
- Schiebel, J.; Chang, A.; Shah, S.; Lu, Y.; Liu, L.; Pan, P.; Hirschbeck, M.W.; Tareilus, M.; Eltschkner, S.; Yu, W.; Cummings, J.E.; Knudson, S.E.; Bommineni, G.R.; Walker, S.G.; Slayden, R.A.; Sotriffer, C.A.; Tonge, P.J.; Kisker, C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J. Biol. Chem., 2014, 289(23), 15987-16005. doi: 10.1074/jbc.M113.532804 PMID: 24739388
- Wittke, F.; Vincent, C.; Chen, J.; Heller, B.; Kabler, H.; Overcash, J.S.; Leylavergne, F.; Dieppois, G. Afabicin, a first-in-class anti-staphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: Clinical non-inferiority to vancomycin/linezolid. Antimicrob. Agents Chemother., 2020, 64(10), e00250-20. doi: 10.1128/AAC.00250-20 PMID: 32747361
- Yendewa, G.A.; Griffiss, J.M.; Jacobs, M.R.; Fulton, S.A.; ORiordan, M.A.; Gray, W.A.; Proskin, H.M.; Winkle, P.; Salata, R.A. A two-part phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: A previously investigated 0.5 mg/g viscosified gel formulation versus a modified formulation. J. Glob. Antimicrob. Resist., 2020, 21, 171-180. doi: 10.1016/j.jgar.2019.09.017 PMID: 31600598
- Krievins, D.; Brandt, R.; Hawser, S.; Hadvary, P.; Islam, K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob. Agents Chemother., 2009, 53(7), 2834-2840. doi: 10.1128/AAC.01383-08 PMID: 19414572
- TAXIS. Our Pipeline. 2022. Available From: https://www.taxispharma.com/research development/our-pipeline/
- Huynh, T.; Stecher, M.; Mckinnon, J.; Jung, N.; Rupp, M.E. Safety and tolerability of 514G3, a true human anti-protein a monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect. Dis., 2016, 3(1)(Suppl. 1), 1354. doi: 10.1093/ofid/ofw172.1057
- Schneider, T.; Müller, A.; Miess, H.; Gross, H. Cyclic lipopeptides as antibacterial agents Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol., 2014, 304(1), 37-43. doi: 10.1016/j.ijmm.2013.08.009 PMID: 24119568
- Chen, X.; Li, S.; Yu, L.; Miller, A.; Du, L. Systematic optimization for production of the anti- MRSA antibiotics WAP -8294A in an engineered strain of Lysobacter enzymogenes. Microb. Biotechnol., 2019, 12(6), 1430-1440. doi: 10.1111/1751-7915.13484 PMID: 31520522
- Butler, M.S.; Cooper, M.A. Antibiotics in the clinical pipeline in 2011. J. Antibiot. (Tokyo), 2011, 64(6), 413-425. doi: 10.1038/ja.2011.44 PMID: 21587262
- Moir, D.T.; Opperman, T.J.; Butler, M.M.; Bowlin, T.L. New classes of antibiotics. Curr. Opin. Pharmacol., 2012, 12(5), 535-544. doi: 10.1016/j.coph.2012.07.004 PMID: 22841284
- Farrell, D.J.; Robbins, M.; Rhys-Williams, W.; Love, W.G. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant gram-positive and gram-negative bacterial species. Int. J. Antimicrob. Agents, 2010, 35(6), 531-536. doi: 10.1016/j.ijantimicag.2010.02.008 PMID: 20346634
- Sakr, A.; Brégeon, F.; Rolain, J.M.; Blin, O. Staphylococcus aureus nasal decolonization strategies: A review. Expert Rev. Anti Infect. Ther., 2019, 17(5), 327-340. doi: 10.1080/14787210.2019.1604220 PMID: 31012332
- Laue, H.; Weiss, L.; Bernardi, A.; Hawser, S.; Lociuro, S.; Islam, K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother., 2007, 60(6), 1391-1394. doi: 10.1093/jac/dkm409 PMID: 17962215
- Kohlhoff, S.A.; Sharma, R. Iclaprim. Expert Opin. Investig. Drugs, 2007, 16(9), 1441-1448. doi: 10.1517/13543784.16.9.1441 PMID: 17714029
- Sincak, C.A.; Schmidt, J.M. Iclaprim, a novel diaminopyrimidine for the treatment of resistant gram-positive infections. Ann. Pharmacother., 2009, 43(6), 1107-1114. doi: 10.1345/aph.1L167 PMID: 19435963
- Ma, Z.; Lynch, A.S. Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J. Med. Chem., 2016, 59(14), 6645-6657. doi: 10.1021/acs.jmedchem.6b00485 PMID: 27336583
- Nazli, A.; He, D.; Xu, H.; Wang, Z-P.; He, Y. A comparative insight on the newly emerging rifamycins: Rifametane, Rifalazil, TNP-2092 and TNP-2198. Curr. Med. Chem., 2021, 28, 1-30. PMID: 34365945
- Park, H.S.; Yoon, Y.M.; Jung, S.J.; Kim, C.M.; Kim, J.M.; Kwak, J.H. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J. Antimicrob. Chemother., 2007, 60(3), 568-574. doi: 10.1093/jac/dkm236 PMID: 17606482
- You, I.; Kariyama, R.; Zervos, M.J.; Kumon, H.; Chow, J.W. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis., 2000, 36(1), 37-41. doi: 10.1016/S0732-8893(99)00104-2 PMID: 10744365
- Patel, M.V.; De Souza, N.J.; Gupte, S.V.; Jafri, M.A.; Bhagwat, S.S.; Chugh, Y.; Khorakiwala, H.F.; Jacobs, M.R.; Appelbaum, P.C. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob. Agents Chemother., 2004, 48(12), 4754-4761. doi: 10.1128/AAC.48.12.4754-4761.2004 PMID: 15561853
- Farrell, D.J.; Liverman, L.C.; Biedenbach, D.J.; Jones, R.N. JNJ-Q2, a new fluoroquinolone with potent In vitro activity against Staphylococcus aureus, including methicillin- and fluoroquinolone-resistant strains. Antimicrob. Agents Chemother., 2011, 55(7), 3631-3634. doi: 10.1128/AAC.00162-11 PMID: 21555765
- Farrell, D.J.; Robbins, M.; Rhys-Williams, W.; Love, W.G. Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antimicrob. Agents Chemother., 2011, 55(3), 1177-1181. doi: 10.1128/AAC.01285-10 PMID: 21149626
- Remy, J.M.; Tow-Keogh, C.A.; McConnell, T.S.; Dalton, J.M.; DeVito, J.A. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: Resistance selection and characterization. J. Antimicrob. Chemother., 2012, 67(12), 2814-2820. doi: 10.1093/jac/dks307 PMID: 22875850
- Noviello, S.; Huang, D.B.; Corey, G.R. Iclaprim: A differentiated option for the treatment of skin and skin structure infections. Expert Rev. Anti Infect. Ther., 2018, 16(11), 793-803. doi: 10.1080/14787210.2018.1536545 PMID: 30317894
- Li, Z.; Liu, Y.; Wang, R.; Li, A. Antibacterial activities of nemonoxacin against clinical isolates of Staphylococcus aureus: An in vitro comparison with three fluoroquinolones. World J. Microbiol. Biotechnol., 2014, 30(11), 2927-2932. doi: 10.1007/s11274-014-1720-2 PMID: 25129332
- Flamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) In vitro activity against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 61(7), e00468-17. doi: 10.1128/AAC.00468-17 PMID: 28483959
- McGhee, P.; Clark, C.; Credito, K.; Beachel, L.; Pankuch, G.A.; Appelbaum, P.C.; Kosowska-Shick, K. In vitro activity of fusidic acid (CEM-102, sodium fusidate) against Staphylococcus aureus isolates from cystic fibrosis patients and its effect on the activities of tobramycin and amikacin against Pseudomonas aeruginosa and Burkholderia cepacia. Antimicrob. Agents Chemother., 2011, 55(5), 2417-2419. doi: 10.1128/AAC.01672-10 PMID: 21343445
- Sader, H.; Rhomberg, P.; Duncan, L.; Flamm, R. In vitro activity and potency of the novel oxazolidinone MRX-I tested against contemporary clinical isolates of Gram-positive bacteria. American Society for Microbiology (ASM Microbe), 2017.
- Lawrence, L.; Danese, P.; DeVito, J.; Franceschi, F.; Sutcliffe, J. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob. Agents Chemother., 2008, 52(5), 1653-1662. doi: 10.1128/AAC.01383-07 PMID: 18316525
- ODwyer, K.; Hackel, M.; Hightower, S.; Hoban, D.; Bouchillon, S.; Qin, D.; Aubart, K.; Zalacain, M.; Butler, D. Comparative analysis of the antibacterial activity of a novel peptide deformylase inhibitor, GSK1322322. Antimicrob. Agents Chemother., 2013, 57(5), 2333-2342. doi: 10.1128/AAC.02566-12 PMID: 23478958
- Heidtmann, C.V.; Voukia, F.; Hansen, L.N.; Sørensen, S.H.; Urlund, B.; Nielsen, S.; Pedersen, M.; Kelawi, N.; Andersen, B.N.; Pedersen, M.; Reinholdt, P.; Kongsted, J.; Nielsen, C.U.; Klitgaard, J.K.; Nielsen, P. Discovery of a potent adeninebenzyltriazolopleuromutilin conjugate with pronounced antibacterial activity against MRSA. J. Med. Chem., 2020, 63(24), 15693-15708. doi: 10.1021/acs.jmedchem.0c01328 PMID: 33325700
- Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2012, 56(3), 1619-1623. doi: 10.1128/AAC.05789-11 PMID: 22232289
- Nair, S.; Desai, S.; Poonacha, N.; Vipra, A.; Sharma, U. Antibiofilm activity and synergistic inhibition of Staphylococcus aureus biofilms by bactericidal protein P128 in combination with antibiotics. Antimicrob. Agents Chemother., 2016, 60(12), 7280-7289. doi: 10.1128/AAC.01118-16 PMID: 27671070
- Iqbal, Z.; Seleem, M.N.; Hussain, H.I.; Huang, L.; Hao, H.; Yuan, Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep., 2016, 6(1), 35442. doi: 10.1038/srep35442 PMID: 27739497
- Giacobbe, D.R.; Labate, L.; Vena, A.; Bassetti, M. Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Curr. Opin. Infect. Dis., 2021, 34(2), 109-117. doi: 10.1097/QCO.0000000000000708 PMID: 33395093
- Temme, J.S.; Butler, D.L.; Gildersleeve, J.C. Anti-glycan antibodies: Roles in human disease. Biochem. J., 2021, 478(8), 1485-1509. doi: 10.1042/BCJ20200610 PMID: 33881487
- Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Hiroshi Morisaki, J.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature, 2015, 527(7578), 323-328. doi: 10.1038/nature16057 PMID: 26536114
- Staben, L.R.; Koenig, S.G.; Lehar, S.M.; Vandlen, R.; Zhang, D.; Chuh, J.; Yu, S.F.; Ng, C.; Guo, J.; Liu, Y.; Fourie-ODonohue, A.; Go, M.; Linghu, X.; Segraves, N.L.; Wang, T.; Chen, J.; Wei, B.; Phillips, G.D.L.; Xu, K.; Kozak, K.R.; Mariathasan, S.; Flygare, J.A.; Pillow, T.H. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibodydrug conjugates. Nat. Chem., 2016, 8(12), 1112-1119. doi: 10.1038/nchem.2635 PMID: 27874860
- Panchal, G.; Pandit, R.; Trailokya, A.; Sharma, A. Arbekacin-a novel antibiotic for critical infections. J. Assoc. Physicians India, 2019, 67(7), 93-97. PMID: 31559785
- Singh, S.B.; Kaelin, D.E.; Wu, J.; Miesel, L.; Tan, C.M.; Meinke, P.T.; Olsen, D.B.; Lagrutta, A.; Wei, C.; Liao, Y.; Peng, X.; Wang, X.; Fukuda, H.; Kishii, R.; Takei, M.; Yajima, M.; Shibue, T.; Shibata, T.; Ohata, K.; Nishimura, A.; Fukuda, Y. Structure activity relationship of pyridoxazinone substituted RHS analogs of oxabicyclooctane-linked 1,5-naphthyridinyl novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-6). Bioorg. Med. Chem. Lett., 2015, 25(17), 3636-3643. doi: 10.1016/j.bmcl.2015.06.057 PMID: 26141771
- Shang, R.; Liu, Y.; Xin, Z.; Guo, W.; Guo, Z.; Hao, B.; Jianping, L. Synthesis and antibacterial evaluation of novel pleuromutilin derivatives. Eur. J. Med. Chem., 2013, 63, 231-238. doi: 10.1016/j.ejmech.2013.01.048 PMID: 23501109
- Scheeren, T.W.L. Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol., 2015, 10(12), 1913-1928. doi: 10.2217/fmb.15.115 PMID: 26573022
- Yum, J.H.; Kim, C.K.; Yong, D.; Lee, K.; Chong, Y.; Kim, C.M.; Kim, J.M.; Ro, S.; Cho, J.M. In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical staphylococcal strains in Korea. Antimicrob. Agents Chemother., 2007, 51(7), 2591-2593. doi: 10.1128/AAC.01562-06 PMID: 17420210
- Rautio, J.; Kärkkäinen, J.; Sloan, K.B. Prodrugs Recent approvals and a glimpse of the pipeline. Eur. J. Pharm. Sci., 2017, 109, 146-161. doi: 10.1016/j.ejps.2017.08.002 PMID: 28782609
- Ross, J.E.; Flamm, R.K.; Jones, R.N. Initial broth microdilution quality control guidelines for Debio 1452, a FabI inhibitor antimicrobial agent. Antimicrob. Agents Chemother., 2015, 59(11), 7151-7152. doi: 10.1128/AAC.01690-15 PMID: 26324261
- Schneider, P.; Hawser, S.; Islam, K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett., 2003, 13(23), 4217-4221. doi: 10.1016/j.bmcl.2003.07.023 PMID: 14623005
- Surur, A.S.; Sun, D. Macrocycle-antibiotic hybrids: A path to clinical candidates. Front Chem., 2021, 9, 659845. doi: 10.3389/fchem.2021.659845 PMID: 33996753
- De Rosa, M.; Verdino, A.; Soriente, A.; Marabotti, A. The odd couple (s): An overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int. J. Mol. Sci., 2021, 22(2), 617-638. doi: 10.3390/ijms22020617 PMID: 33435500
- Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Contrasting effect of acidic pH on the batericidal activities of CEM-102 (fusidic acid) vs. linezolid and clindamycin towards Staphylococcus aureus, 49th Interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, California, Sep 12-15, 2009.
- Marinelli, F.; Genilloud, O. Antimicrobials: New and old molecules in the fight against multi-resistant bacteria, 1st ed; Springer Science & Business Media: Berlin, 2013.
- Kaur, G.; Pavadai, E.; Wittlin, S.; Chibale, K. 3D-QSAR modeling and synthesis of new fusidic acid derivatives as antiplasmodial agents. J. Chem. Inf. Model., 2018, 58(8), 1553-1560. doi: 10.1021/acs.jcim.8b00105 PMID: 30040885
- Clinicaltrials.gov. Oral sodium fusidate (CEM-102) versus oral linezolid for the treatment of acute bacterial skin and skin structure infections. 2019. Available From: https://clinicaltrials.gov/ct2/show/NCT02570490
- Clinicaltrials.gov. Comparative study of NXL103 versus Linezolid in Adults with Acute Bacterial Skin and Skin Structure Infections (ABSSSI). 2018. Available From: https://clinicaltrials.gov/ct2/show/NCT00949130
- Cai, L.; Seiple, I.B.; Li, Q. Modular chemical synthesis of streptogramin and lankacidin antibiotics. Acc. Chem. Res., 2021, 54(8), 1891-1908. doi: 10.1021/acs.accounts.0c00894 PMID: 33792282
- Tracxn. Biocidium. 2016. Available From: https://tracxn.com/d/companies/biocidium/__A1AwtbyuPpFosPFzBrVDoWk6tH1IzPhIJlK_Tt94OiE
- Vander Elst, N.; Linden, S.B.; Lavigne, R.; Meyer, E.; Briers, Y.; Nelson, D.C. Characterization of the bacteriophage-derived endolysins PlySs2 and PlySs9 with in vitro lytic activity against bovine mastitis Streptococcus uberis. Antibiotics (Basel), 2020, 9(9), 621-635. doi: 10.3390/antibiotics9090621 PMID: 32961696
- Swift, S.M.; Sauve, K.; Cassino, C.; Schuch, R. Exebacase is active in vitro in pulmonary surfactant and is efficacious alone and synergistic with Daptomycin in a mouse model of lethal Staphylococcus aureus lung infection. Antimicrob. Agents Chemother., 2021, 65(9), e02723-20. doi: 10.1128/AAC.02723-20 PMID: 34228536
- Bamberger, D.M. Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: The potential role of daptomycin. Ther. Clin. Risk Manag., 2007, 3(4), 675-684. PMID: 18472990
- Rasmussen, R.V.; Fowler, V.G., Jr; Skov, R.; Bruun, N.E. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol., 2011, 6(1), 43-56. doi: 10.2217/fmb.10.155 PMID: 21162635
- Fowler, V.; Das, A.; Lipka, J.; Schuch, R.; Cassino, C. Exebacase (lysin CF-301) improved clinical responder rates in methicillin-resistant Staphylococcus aureus bacteremia and endocarditis compared to standard of care antibiotics alone in a first-in-patient phase 2 study. In European congress of clinical microbiology and infectious diseases, Amsterdam, Netherland, 2019.
- Clinicaltrials.gov. Safety, efficacy and pharmacokinetics of CF-301 vs. placebo in addition to antibacterial therapy for treatment of S. Aureus Bacteremia. 2021. Available From: https://clinicaltrials.gov/ct2/show/NCT03163446
- Clinicaltrials.gov. Expanded access study of exebacase in COVID-19 patients with persistent MRSA bacteremia. 2022. Available From: https://clinicaltrials.gov/ct2/show/NCT04597242
- Rello, J.; Parisella, F.R.; Perez, A. Alternatives to antibiotics in an era of difficult-to-treat resistance: New insights. Expert Rev. Clin. Pharmacol., 2019, 12(7), 635-642. doi: 10.1080/17512433.2019.1619454 PMID: 31092053
- Huang, D.B.; Sader, H.S.; Rhomberg, P.R.; Gaukel, E.; Borroto-Esoda, K. Anti-staphylococcal lysin, LSVT-1701, activity: In vitro susceptibility of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) clinical isolates from around the world collected from 2002 to 2019. Diagn. Microbiol. Infect. Dis., 2021, 101(3), 115471-115477. doi: 10.1016/j.diagmicrobio.2021.115471 PMID: 34280671
- François, B.; Barraud, O.; Jafri, H.S. Antibody-based therapy to combat Staphylococcus aureus infections. Clin. Microbiol. Infect., 2017, 23(4), 219-221. doi: 10.1016/j.cmi.2017.02.035 PMID: 28274770
- GlobeNewswire. XBiotech announces top-line results for 514G3 antibody therapy in serious Staphylococcus aureus infections. 2017. Available From: https://www.globenewswire.com/news-release/2017/04/03/953500/0/en/XBiotech-Announces-Top-Line-Results-for-514G3-Antibody-Therapy-in-Serious-Staphylococcus-aureus-Infections.html
- Clinicaltrials.gov. A study of the safety and efficacy of 514g3 in subjects hospitalized with bacteremia due to Staphylococcus aureus. 2017. Available From: https://clinicaltrials.gov/ct2/show/NCT02357966
- Hageman, J.C.; Uyeki, T.M.; Francis, J.S.; Jernigan, D.B.; Wheeler, J.G.; Bridges, C.B.; Barenkamp, S.J.; Sievert, D.M.; Srinivasan, A.; Doherty, M.C.; McDougal, L.K.; Killgore, G.E.; Lopatin, U.A.; Coffman, R.; MacDonald, J.K.; McAllister, S.K.; Fosheim, G.E.; Patel, J.B.; McDonald, L.C. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 influenza season. Emerg. Infect. Dis., 2006, 12(6), 894-899. doi: 10.3201/eid1206.051141 PMID: 16707043
- Mayor, A.; Chesnay, A.; Desoubeaux, G.; Ternant, D.; Heuzé-Vourch, N.; Sécher, T. Therapeutic antibodies for the treatment of respiratory tract infectionscurrent overview and perspectives. Vaccines (Basel), 2021, 9(2), 151-172. doi: 10.3390/vaccines9020151 PMID: 33668613
- Vanamala, K.; Tatiparti, K.; Bhise, K.; Sau, S.; Scheetz, M.H.; Rybak, M.J.; Andes, D.; Iyer, A.K. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov. Today, 2021, 26(1), 31-43. doi: 10.1016/j.drudis.2020.10.011 PMID: 33091564
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2(2), 95-108. doi: 10.1038/nrmicro821 PMID: 15040259
- Salem, A.H.; Elkhatib, W.F.; Noreddin, A.M. Pharmacodynamic assessment of vancomycinrifampicin combination against methicillin resistant Staphylococcus Aureus biofilm: A parametric response surface analysis. J. Pharm. Pharmacol., 2010, 63(1), 73-79. doi: 10.1111/j.2042-7158.2010.01183.x PMID: 21155818
- Dube, D.; Agrawal, G.P.; Vyas, S.P. Tuberculosis: From molecular pathogenesis to effective drug carrier design. Drug Discov. Today, 2012, 17(13-14), 760-773. doi: 10.1016/j.drudis.2012.03.012 PMID: 22480870
- Li, J.; Zhang, K.; Ruan, L.; Chin, S.F.; Wickramasinghe, N.; Liu, H.; Ravikumar, V.; Ren, J.; Duan, H.; Yang, L.; Chan-Park, M.B. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett., 2018, 18(7), 4180-4187. doi: 10.1021/acs.nanolett.8b01000 PMID: 29902011
- Mikkaichi, T.; Yeaman, M.R.; Hoffmann, A.; Group, M.S.I. Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLOS Comput. Biol., 2019, 15(7), e1007087. doi: 10.1371/journal.pcbi.1007087 PMID: 31295255
- Grassi, L.; Di Luca, M.; Maisetta, G.; Rinaldi, A.C.; Esin, S.; Trampuz, A.; Batoni, G. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol., 2017, 8, 1917-1929. doi: 10.3389/fmicb.2017.01917 PMID: 29046671
- Kim, W.; Hendricks, G.L.; Tori, K.; Fuchs, B.B.; Mylonakis, E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med. Chem., 2018, 10(7), 779-794. doi: 10.4155/fmc-2017-0199 PMID: 29569952
- Pacios, O.; Blasco, L.; Bleriot, I.; Fernandez-Garcia, L.; González Bardanca, M.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel), 2020, 9(2), 65-68. doi: 10.3390/antibiotics9020065 PMID: 32041137
- Hageman, J.C.; Liedtke, L.A.; Sunenshine, R.H.; Strausbaugh, L.J.; McDonald, L.C.; Tenover, F.C. Management of persistent bacteremia caused by methicillin-resistant Staphylococcus aureus: A survey of infectious diseases consultants. Clin. Infect. Dis., 2006, 43(5), e42-e45. doi: 10.1086/506568 PMID: 16886141
- Moellering, R.C., Jr MRSA: The first half century. J. Antimicrob. Chemother., 2012, 67(1), 4-11. doi: 10.1093/jac/dkr437 PMID: 22010206
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. (Tokyo), 2013, 66(10), 571-591. doi: 10.1038/ja.2013.86 PMID: 24002361
- Livermore, D.M. Introduction: The challenge of multiresistance. Int. J. Antimicrob. Agents, 2007, 29(Suppl. 3), S1-S7. doi: 10.1016/S0924-8579(07)00158-6 PMID: 17659208
- Barrett, J.F. MRSA what is it, and how do we deal with the problem? Expert Opin. Ther. Targets, 2005, 9(2), 253-265. doi: 10.1517/14728222.9.2.253 PMID: 15934914
Supplementary files
