Nanomedicine: Innovative Strategies and Recent Advances in Targeted Cancer Therapy
- Authors: Gautam R.1, Mittal P.2, Goyal R.3, Dua K.4, Mishra D.5, Sharma S.6, Singla R.1
-
Affiliations:
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University
- Chitkara College of Pharmacy, Chitkara University
- Maharishi Markandeshwar (Deemed to be) University, M. M. College of Pharmacy
- Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney
- Department of Pharmaceutics, Indore Institute of Pharmacy
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy
- Issue: Vol 31, No 28 (2024)
- Pages: 4479-4494
- Section: Anti-Infectives and Infectious Diseases
- URL: https://permmedjournal.ru/0929-8673/article/view/645230
- DOI: https://doi.org/10.2174/0109298673258987231004092334
- ID: 645230
Cite item
Full Text
Abstract
Nanomedicine's application of nanotechnology in medicine holds tremendous potential for diagnosing and treating life-threatening diseases such as cancer. Unlike conventional therapies, nanomedicine offers a promising strategy to enhance clinical outcomes while minimizing severe side effects. The principle of drug targeting enables specific delivery of therapeutic agents to their intended sites, making it a more precise and effective therapy. Combination strategies, such as the co-delivery of chemotherapeutic drugs with nucleic acids or receptor-specific molecules, are being employed to enhance therapeutic outcomes. Nanocarriers and drug delivery systems designed using these approaches offer resourceful co-delivery of therapeutic agents for anticancer therapy. Targeted drug delivery via nanotechnology-based techniques has become an urgent need and has shown significant improvements in therapeutic implications, pharmacokinetics, specificity, reduced toxicity, and biocompatibility. This review discusses the extrapolation of nanomaterials for developing innovative and novel drug delivery systems for effective anticancer therapy. Additionally, we explore the role of nanotechnology-based concepts in drug delivery research.
About the authors
Rupesh Gautam
Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University
Author for correspondence.
Email: info@benthamscience.net
Pooja Mittal
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Rajat Goyal
Maharishi Markandeshwar (Deemed to be) University, M. M. College of Pharmacy
Email: info@benthamscience.net
Kamal Dua
Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney
Email: info@benthamscience.net
Dinesh Mishra
Department of Pharmaceutics, Indore Institute of Pharmacy
Email: info@benthamscience.net
Sanjay Sharma
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy
Email: info@benthamscience.net
Rajeev Singla
Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University
Author for correspondence.
Email: info@benthamscience.net
References
- Adlercreutz, H. Phyto-oestrogens and cancer. Lancet Oncol., 2002, 3(6), 364-373. doi: 10.1016/S1470-2045(02)00777-5 PMID: 12107024
- Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibodydrug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol., 2010, 14(4), 529-537. doi: 10.1016/j.cbpa.2010.06.170 PMID: 20643572
- Chavda, V.P.; Nalla, L.V.; Balar, P.; Bezbaruah, R.; Apostolopoulos, V.; Singla, R.K.; Khadela, A.; Vora, L.; Uversky, V.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers., 2023, 15(4), 1023. doi: 10.3390/cancers15041023 PMID: 36831369
- Sultana, A.; Alam, M.S.; Liu, X.; Sharma, R.; Singla, R.K.; Gundamaraju, R.; Shen, B. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches. Transl. Oncol., 2023, 27, 101571. doi: 10.1016/j.tranon.2022.101571 PMID: 36401966
- Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962. doi: 10.1038/nmat3792 PMID: 24150413
- Liu, J.; Zhang, R.; Xu, Z.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small, 2019, 15(32), 1900262. doi: 10.1002/smll.201900262 PMID: 30908864
- Akash, S.; Kumer, A.; Rahman, M.M.; Emran, T.B.; Sharma, R.; Singla, R.K.; Alhumaydhi, F.A.; Khandaker, M.U.; Park, M.N.; Idris, A.M.; Wilairatana, P.; Kim, B. Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: A computational and SAR approach. Front. Cell. Infect. Microbiol., 2022, 12, 952297. doi: 10.3389/fcimb.2022.952297 PMID: 36237438
- Rani, N.; Singla, R.K.; Redhu, R.; Narwal, S.; Sonia; Bhatt, A. A review on green synthesis of silver nanoparticles and its role against cancer. Curr. Top. Med. Chem., 2022, 22(18), 1460-1471. doi: 10.2174/1568026622666220601165005 PMID: 35652404
- Singla, R.K.; Scotti, M.T.; Kar, S. Editorial: Exploration of natural product leads for multitarget-based treatment of cancer-computational to experimental journey. Front. Pharmacol., 2022, 13, 850151. doi: 10.3389/fphar.2022.850151 PMID: 35273512
- Singla, R.K.; Sharma, P.; Kumar, D.; Gautam, R.K.; Goyal, R.; Tsagkaris, C.; Dubey, A.K.; Bansal, H.; Sharma, R.; Shen, B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front. Pharmacol., 2022, 13, 987088. doi: 10.3389/fphar.2022.987088 PMID: 36386196
- Singla, R.K.; Wang, X.; Gundamaraju, R.; Joon, S.; Tsagkaris, C.; Behzad, S.; Khan, J.; Gautam, R.; Goyal, R.; Rakmai, J.; Dubey, A.K.; Simal-Gandara, J.; Shen, B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: A comprehensive review of preclinical and clinical studies. Crit. Rev. Food Sci. Nutr., 2022, 1-45. doi: 10.1080/10408398.2022.2097196 PMID: 35838143
- Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83. doi: 10.1016/j.imlet.2017.07.015 PMID: 28760499
- Xue, S.; Ruan, G.; Li, J.; Madry, H.; Zhang, C.; Ding, C. Bio-responsive and multi-modality imaging nanomedicine for osteoarthritis theranostics. Biomater. Sci., 2023, 11(15), 5095-5107. doi: 10.1039/D3BM00370A PMID: 37305990
- Rouco, H.; García-García, P.; Briffault, E.; Diaz-Rodriguez, P. Modulating osteoclasts with nanoparticles: A path for osteoporosis management? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(4), e1885. doi: 10.1002/wnan.1885 PMID: 37037204
- Chen, Y.; Wu, X.; Li, J.; Jiang, Y.; Xu, K.; Su, J. Bone-targeted nanoparticle drug delivery system: An emerging strategy for bone-related disease. Front. Pharmacol., 2022, 13, 909408. doi: 10.3389/fphar.2022.909408 PMID: 35712701
- Yang, L.; Chaves, L.; Kutscher, H.L.; Karki, S.; Tamblin, M.; Kenney, P.; Reynolds, J.L. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front. Bioeng. Biotechnol., 2023, 11, 1095926. doi: 10.3389/fbioe.2023.1095926 PMID: 37304141
- Giordo, R.; Wehbe, Z.; Paliogiannis, P.; Eid, A.H.; Mangoni, A.A.; Pintus, G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin. Cancer Biol., 2022, 86(Pt 2), 784-804. doi: 10.1016/j.semcancer.2022.03.001 PMID: 35257860
- Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433. doi: 10.1016/j.nano.2021.102433 PMID: 34171467
- Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021, 21(14), 1798-1812. doi: 10.2174/18755607MTEziOTEv4 PMID: 33535949
- Gowthami, P.; Kosiha, A.; Meenakshi, S.; Boopathy, G.; Ramu, A.G.; Choi, D. Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Sci. Rep., 2023, 13(1), 9002. doi: 10.1038/s41598-023-35877-z PMID: 37268654
- Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574. doi: 10.1056/NEJM199705293362206 PMID: 9164814
- Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161. doi: 10.1016/j.nano.2015.09.004 PMID: 26410277
- Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 2016, 21(3), 342. doi: 10.3390/molecules21030342 PMID: 26978341
- Chu, E. Cancer chemotherapy. In: Basic & Clinical Pharmacology, 15e; Katzung, B.G.; Vanderah, T.W., Eds.; McGraw-Hill: New York, NY, 2021.
- Dadwal, A.; Baldi, A.; Kumar, N.R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 295-305. doi: 10.1080/21691401.2018.1457039
- DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653. doi: 10.1158/0008-5472.CAN-07-6611 PMID: 18974103
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, 21(2), 137-148. doi: 10.1016/j.immuni.2004.07.017 PMID: 15308095
- Ehdaie, B. Application of nanotechnology in cancer research: Review of progress in the national cancer institutes alliance for nanotechnology. Int. J. Biol. Sci., 2007, 3(2), 108-110. doi: 10.7150/ijbs.3.108 PMID: 17304339
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20. doi: 10.1021/nn900002m PMID: 19206243
- Ferrari, M. Cancer nanotechnology: Ogpportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171. doi: 10.1038/nrc1566 PMID: 15738981
- Ferrari, M. Beyond drug delivery. Nat. Nanotechnol., 2008, 3(3), 131-132. doi: 10.1038/nnano.2008.46 PMID: 18654480
- Firer, M.A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol., 2012, 5(1), 70. doi: 10.1186/1756-8722-5-70 PMID: 23140144
- Frei, E., III; Canellos, G.P. Dose: A critical factor in cancer chemotherapy. Am. J. Med., 1980, 69(4), 585-594. doi: 10.1016/0002-9343(80)90472-6 PMID: 6999898
- Grobmyer, S.R.; Iwakuma, N.; Sharma, P.; Moudgil, B.M. What is cancer nanotechnology? Methods Mol. Biol., 2010, 624, 1-9. doi: 10.1007/978-1-60761-609-2_1
- Gustafson, D.L.; Page, R.L. Cancer chemotherapy. Withrow MacEwen's Small Ani. Clini. Oncol., 2013, 157-179.
- Jain, K.K. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 407-416. doi: 10.1177/153303460500400408 PMID: 16029059
- Jain, K.K. Editorial: Targeted drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 311-313. doi: 10.1177/153303460500400401 PMID: 16029052
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692. doi: 10.1016/j.cell.2007.01.029 PMID: 17320506
- Kolhe, S.; Parikh, K. Application of nanotechnology in cancer: A review. Int. J. Bioinform. Res. Appl., 2012, 8(1/2), 112-125. doi: 10.1504/IJBRA.2012.045954 PMID: 22450274
- Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191. doi: 10.3109/1061186X.2015.1051049 PMID: 26061298
- Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141. doi: 10.1016/j.jsps.2011.04.001 PMID: 23960751
- Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174. doi: 10.1080/02841860151116204 PMID: 11441929
- Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052. doi: 10.1016/j.drudis.2012.05.010 PMID: 22652342
- Patri, A.K.; Majoros, I.J.; Baker, J.R., Jr Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6(4), 466-471. doi: 10.1016/S1367-5931(02)00347-2 PMID: 12133722
- Pillai, G. Nanotechnology toward treating Cancer: A comprehensive review. App. Targeted Nano Drugs Deliv. Sys., 2019, 221-256. doi: 10.1016/B978-0-12-814029-1.00009-0
- Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720. doi: 10.1016/j.cbi.2019.06.033 PMID: 31226287
- Singhvi, G.; Rapalli, V.K.; Nagpal, S.; Dubey, S.K.; Saha, R.N. Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine; Springer, 2020; pp. 51-88. doi: 10.1007/978-3-030-29207-2_2
- Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13. doi: 10.1016/j.semcancer.2022.08.006 PMID: 36028154
- Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917. doi: 10.1158/1535-7163.MCT-06-0141 PMID: 16928810
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/pva based hydrogel films loaded with honey for wound healing application. Gels, 2022, 8(2), 111. doi: 10.3390/gels8020111 PMID: 35200493
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779. doi: 10.1039/C1CS15237H PMID: 22109657
- Kim, M.; Lee, J.H.; Nam, J.M. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci., 2019, 6(17)
- Tarkistani, M.A.M.; Komalla, V.; Kayser, V. Recent advances in the use of irongold hybrid nanoparticles for biomedical applications. Nanomaterials., 2021, 11(5), 1227. doi: 10.3390/nano11051227 PMID: 34066549
- Zamborlin, A.; Voliani, V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov. Today, 2023, 28(2), 103438. doi: 10.1016/j.drudis.2022.103438 PMID: 36375738
- Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A.J. Polymer carriers for drug delivery in tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 187-206. doi: 10.1016/j.addr.2007.04.001 PMID: 17540473
- Su, J.; Chen, F.; Cryns, V.L.; Messersmith, P.B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc., 2011, 133(31), 11850-11853. doi: 10.1021/ja203077x PMID: 21751810
- Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2(1), 16. doi: 10.1186/1745-6673-2-16 PMID: 18053152
- Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 2014, 1-12. doi: 10.1155/2014/939378
- Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374. doi: 10.1177/153303460500400405 PMID: 16029056
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339. doi: 10.1186/s11671-018-2728-6 PMID: 30361809
- Tong, R.; Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev., 2007, 47(3), 345-381. doi: 10.1080/15583720701455079
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16. doi: 10.1146/annurev-bioeng-071811-150124 PMID: 22524388
- Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740. doi: 10.1158/0008-5472.CAN-05-4199 PMID: 16818648
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nanobio interface. Nat. Mater., 2009, 8(7), 543-557. doi: 10.1038/nmat2442 PMID: 19525947
- Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499. doi: 10.1016/j.jconrel.2014.06.038 PMID: 24984011
- Rivolta, I.; Panariti; Miserocchi The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnol. Sci. Appl., 2012, 87. doi: 10.2147/NSA.S25515
- Schiffelers, R.M.; Storm, G. Liposomal nanomedicines as anticancer therapeutics: Beyond targeting tumor cells. Int. J. Pharm., 2008, 364(2), 258-264. doi: 10.1016/j.ijpharm.2008.08.005 PMID: 18773947
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96. doi: 10.1016/j.addr.2019.04.008 PMID: 31022434
- Chopra, H.; Kaur, A.; Singh, I.; Sharma, R.K.; Emran, T.B. Nano-based targeting strategies for cancer treatment. Int. J. Surg., 2022, 105, 106864. doi: 10.1016/j.ijsu.2022.106864 PMID: 36031069
- Khan, H.; Tiwari, P.; Kaur, A.; Singh, T.G. Sirtuin acetylation and deacetylation: A complex paradigm in neurodegenerative disease. Mol. Neurobiol., 2021, 58(8), 3903-3917. doi: 10.1007/s12035-021-02387-w PMID: 33877561
- Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; Akhtar, M.F.; Saleem, A.; Abdel-Daim, M.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother., 2021, 140, 111729. doi: 10.1016/j.biopha.2021.111729 PMID: 34044274
- Grewal, A.K.; Singh, N.; Singh, T.G. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemiareperfusion-induced injury in mice. J. Pharm. Pharmacol., 2019, 71(6), 956-970. doi: 10.1111/jphp.13073 PMID: 30809806
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Future J. Pharm. Sci., 2021, 7(1)
- Compston, J.E.; Rosen, C. Fast Facts: Osteoporosis; Karger Medical and Scientific Publishers: Basel, Switzerland, 2009. doi: 10.1159/isbn.978-1-905832-60-6
- Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics, 2023, 15(4), 1181. doi: 10.3390/pharmaceutics15041181 PMID: 37111666
Supplementary files
