Nanomedicine: Innovative Strategies and Recent Advances in Targeted Cancer Therapy

  • Authors: Gautam R.1, Mittal P.2, Goyal R.3, Dua K.4, Mishra D.5, Sharma S.6, Singla R.1
  • Affiliations:
    1. Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University
    2. Chitkara College of Pharmacy, Chitkara University
    3. Maharishi Markandeshwar (Deemed to be) University, M. M. College of Pharmacy
    4. Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney
    5. Department of Pharmaceutics, Indore Institute of Pharmacy
    6. Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy
  • Issue: Vol 31, No 28 (2024)
  • Pages: 4479-4494
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://permmedjournal.ru/0929-8673/article/view/645230
  • DOI: https://doi.org/10.2174/0109298673258987231004092334
  • ID: 645230

Cite item

Full Text

Abstract

Nanomedicine's application of nanotechnology in medicine holds tremendous potential for diagnosing and treating life-threatening diseases such as cancer. Unlike conventional therapies, nanomedicine offers a promising strategy to enhance clinical outcomes while minimizing severe side effects. The principle of drug targeting enables specific delivery of therapeutic agents to their intended sites, making it a more precise and effective therapy. Combination strategies, such as the co-delivery of chemotherapeutic drugs with nucleic acids or receptor-specific molecules, are being employed to enhance therapeutic outcomes. Nanocarriers and drug delivery systems designed using these approaches offer resourceful co-delivery of therapeutic agents for anticancer therapy. Targeted drug delivery via nanotechnology-based techniques has become an urgent need and has shown significant improvements in therapeutic implications, pharmacokinetics, specificity, reduced toxicity, and biocompatibility. This review discusses the extrapolation of nanomaterials for developing innovative and novel drug delivery systems for effective anticancer therapy. Additionally, we explore the role of nanotechnology-based concepts in drug delivery research.

About the authors

Rupesh Gautam

Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University

Author for correspondence.
Email: info@benthamscience.net

Pooja Mittal

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Rajat Goyal

Maharishi Markandeshwar (Deemed to be) University, M. M. College of Pharmacy

Email: info@benthamscience.net

Kamal Dua

Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney

Email: info@benthamscience.net

Dinesh Mishra

Department of Pharmaceutics, Indore Institute of Pharmacy

Email: info@benthamscience.net

Sanjay Sharma

Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy

Email: info@benthamscience.net

Rajeev Singla

Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Adlercreutz, H. Phyto-oestrogens and cancer. Lancet Oncol., 2002, 3(6), 364-373. doi: 10.1016/S1470-2045(02)00777-5 PMID: 12107024
  2. Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody–drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol., 2010, 14(4), 529-537. doi: 10.1016/j.cbpa.2010.06.170 PMID: 20643572
  3. Chavda, V.P.; Nalla, L.V.; Balar, P.; Bezbaruah, R.; Apostolopoulos, V.; Singla, R.K.; Khadela, A.; Vora, L.; Uversky, V.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers., 2023, 15(4), 1023. doi: 10.3390/cancers15041023 PMID: 36831369
  4. Sultana, A.; Alam, M.S.; Liu, X.; Sharma, R.; Singla, R.K.; Gundamaraju, R.; Shen, B. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches. Transl. Oncol., 2023, 27, 101571. doi: 10.1016/j.tranon.2022.101571 PMID: 36401966
  5. Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962. doi: 10.1038/nmat3792 PMID: 24150413
  6. Liu, J.; Zhang, R.; Xu, Z.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small, 2019, 15(32), 1900262. doi: 10.1002/smll.201900262 PMID: 30908864
  7. Akash, S.; Kumer, A.; Rahman, M.M.; Emran, T.B.; Sharma, R.; Singla, R.K.; Alhumaydhi, F.A.; Khandaker, M.U.; Park, M.N.; Idris, A.M.; Wilairatana, P.; Kim, B. Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: A computational and SAR approach. Front. Cell. Infect. Microbiol., 2022, 12, 952297. doi: 10.3389/fcimb.2022.952297 PMID: 36237438
  8. Rani, N.; Singla, R.K.; Redhu, R.; Narwal, S.; Sonia; Bhatt, A. A review on green synthesis of silver nanoparticles and its role against cancer. Curr. Top. Med. Chem., 2022, 22(18), 1460-1471. doi: 10.2174/1568026622666220601165005 PMID: 35652404
  9. Singla, R.K.; Scotti, M.T.; Kar, S. Editorial: Exploration of natural product leads for multitarget-based treatment of cancer-computational to experimental journey. Front. Pharmacol., 2022, 13, 850151. doi: 10.3389/fphar.2022.850151 PMID: 35273512
  10. Singla, R.K.; Sharma, P.; Kumar, D.; Gautam, R.K.; Goyal, R.; Tsagkaris, C.; Dubey, A.K.; Bansal, H.; Sharma, R.; Shen, B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front. Pharmacol., 2022, 13, 987088. doi: 10.3389/fphar.2022.987088 PMID: 36386196
  11. Singla, R.K.; Wang, X.; Gundamaraju, R.; Joon, S.; Tsagkaris, C.; Behzad, S.; Khan, J.; Gautam, R.; Goyal, R.; Rakmai, J.; Dubey, A.K.; Simal-Gandara, J.; Shen, B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: A comprehensive review of preclinical and clinical studies. Crit. Rev. Food Sci. Nutr., 2022, 1-45. doi: 10.1080/10408398.2022.2097196 PMID: 35838143
  12. Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83. doi: 10.1016/j.imlet.2017.07.015 PMID: 28760499
  13. Xue, S.; Ruan, G.; Li, J.; Madry, H.; Zhang, C.; Ding, C. Bio-responsive and multi-modality imaging nanomedicine for osteoarthritis theranostics. Biomater. Sci., 2023, 11(15), 5095-5107. doi: 10.1039/D3BM00370A PMID: 37305990
  14. Rouco, H.; García-García, P.; Briffault, E.; Diaz-Rodriguez, P. Modulating osteoclasts with nanoparticles: A path for osteoporosis management? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(4), e1885. doi: 10.1002/wnan.1885 PMID: 37037204
  15. Chen, Y.; Wu, X.; Li, J.; Jiang, Y.; Xu, K.; Su, J. Bone-targeted nanoparticle drug delivery system: An emerging strategy for bone-related disease. Front. Pharmacol., 2022, 13, 909408. doi: 10.3389/fphar.2022.909408 PMID: 35712701
  16. Yang, L.; Chaves, L.; Kutscher, H.L.; Karki, S.; Tamblin, M.; Kenney, P.; Reynolds, J.L. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front. Bioeng. Biotechnol., 2023, 11, 1095926. doi: 10.3389/fbioe.2023.1095926 PMID: 37304141
  17. Giordo, R.; Wehbe, Z.; Paliogiannis, P.; Eid, A.H.; Mangoni, A.A.; Pintus, G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin. Cancer Biol., 2022, 86(Pt 2), 784-804. doi: 10.1016/j.semcancer.2022.03.001 PMID: 35257860
  18. Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433. doi: 10.1016/j.nano.2021.102433 PMID: 34171467
  19. Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021, 21(14), 1798-1812. doi: 10.2174/18755607MTEziOTEv4 PMID: 33535949
  20. Gowthami, P.; Kosiha, A.; Meenakshi, S.; Boopathy, G.; Ramu, A.G.; Choi, D. Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Sci. Rep., 2023, 13(1), 9002. doi: 10.1038/s41598-023-35877-z PMID: 37268654
  21. Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574. doi: 10.1056/NEJM199705293362206 PMID: 9164814
  22. Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161. doi: 10.1016/j.nano.2015.09.004 PMID: 26410277
  23. Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 2016, 21(3), 342. doi: 10.3390/molecules21030342 PMID: 26978341
  24. Chu, E. Cancer chemotherapy. In: Basic & Clinical Pharmacology, 15e; Katzung, B.G.; Vanderah, T.W., Eds.; McGraw-Hill: New York, NY, 2021.
  25. Dadwal, A.; Baldi, A.; Kumar, N.R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 295-305. doi: 10.1080/21691401.2018.1457039
  26. DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653. doi: 10.1158/0008-5472.CAN-07-6611 PMID: 18974103
  27. Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, 21(2), 137-148. doi: 10.1016/j.immuni.2004.07.017 PMID: 15308095
  28. Ehdaie, B. Application of nanotechnology in cancer research: Review of progress in the national cancer institute’s alliance for nanotechnology. Int. J. Biol. Sci., 2007, 3(2), 108-110. doi: 10.7150/ijbs.3.108 PMID: 17304339
  29. Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20. doi: 10.1021/nn900002m PMID: 19206243
  30. Ferrari, M. Cancer nanotechnology: Ogpportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171. doi: 10.1038/nrc1566 PMID: 15738981
  31. Ferrari, M. Beyond drug delivery. Nat. Nanotechnol., 2008, 3(3), 131-132. doi: 10.1038/nnano.2008.46 PMID: 18654480
  32. Firer, M.A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol., 2012, 5(1), 70. doi: 10.1186/1756-8722-5-70 PMID: 23140144
  33. Frei, E., III; Canellos, G.P. Dose: A critical factor in cancer chemotherapy. Am. J. Med., 1980, 69(4), 585-594. doi: 10.1016/0002-9343(80)90472-6 PMID: 6999898
  34. Grobmyer, S.R.; Iwakuma, N.; Sharma, P.; Moudgil, B.M. What is cancer nanotechnology? Methods Mol. Biol., 2010, 624, 1-9. doi: 10.1007/978-1-60761-609-2_1
  35. Gustafson, D.L.; Page, R.L. Cancer chemotherapy. Withrow MacEwen's Small Ani. Clini. Oncol., 2013, 157-179.
  36. Jain, K.K. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 407-416. doi: 10.1177/153303460500400408 PMID: 16029059
  37. Jain, K.K. Editorial: Targeted drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 311-313. doi: 10.1177/153303460500400401 PMID: 16029052
  38. Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692. doi: 10.1016/j.cell.2007.01.029 PMID: 17320506
  39. Kolhe, S.; Parikh, K. Application of nanotechnology in cancer: A review. Int. J. Bioinform. Res. Appl., 2012, 8(1/2), 112-125. doi: 10.1504/IJBRA.2012.045954 PMID: 22450274
  40. Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191. doi: 10.3109/1061186X.2015.1051049 PMID: 26061298
  41. Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141. doi: 10.1016/j.jsps.2011.04.001 PMID: 23960751
  42. Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174. doi: 10.1080/02841860151116204 PMID: 11441929
  43. Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052. doi: 10.1016/j.drudis.2012.05.010 PMID: 22652342
  44. Patri, A.K.; Majoros, I.J.; Baker, J.R., Jr Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6(4), 466-471. doi: 10.1016/S1367-5931(02)00347-2 PMID: 12133722
  45. Pillai, G. Nanotechnology toward treating Cancer: A comprehensive review. App. Targeted Nano Drugs Deliv. Sys., 2019, 221-256. doi: 10.1016/B978-0-12-814029-1.00009-0
  46. Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720. doi: 10.1016/j.cbi.2019.06.033 PMID: 31226287
  47. Singhvi, G.; Rapalli, V.K.; Nagpal, S.; Dubey, S.K.; Saha, R.N. Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine; Springer, 2020; pp. 51-88. doi: 10.1007/978-3-030-29207-2_2
  48. Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13. doi: 10.1016/j.semcancer.2022.08.006 PMID: 36028154
  49. Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917. doi: 10.1158/1535-7163.MCT-06-0141 PMID: 16928810
  50. Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/pva based hydrogel films loaded with honey for wound healing application. Gels, 2022, 8(2), 111. doi: 10.3390/gels8020111 PMID: 35200493
  51. Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779. doi: 10.1039/C1CS15237H PMID: 22109657
  52. Kim, M.; Lee, J.H.; Nam, J.M. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci., 2019, 6(17)
  53. Tarkistani, M.A.M.; Komalla, V.; Kayser, V. Recent advances in the use of iron–gold hybrid nanoparticles for biomedical applications. Nanomaterials., 2021, 11(5), 1227. doi: 10.3390/nano11051227 PMID: 34066549
  54. Zamborlin, A.; Voliani, V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov. Today, 2023, 28(2), 103438. doi: 10.1016/j.drudis.2022.103438 PMID: 36375738
  55. Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A.J. Polymer carriers for drug delivery in tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 187-206. doi: 10.1016/j.addr.2007.04.001 PMID: 17540473
  56. Su, J.; Chen, F.; Cryns, V.L.; Messersmith, P.B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc., 2011, 133(31), 11850-11853. doi: 10.1021/ja203077x PMID: 21751810
  57. Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2(1), 16. doi: 10.1186/1745-6673-2-16 PMID: 18053152
  58. Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 2014, 1-12. doi: 10.1155/2014/939378
  59. Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374. doi: 10.1177/153303460500400405 PMID: 16029056
  60. Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339. doi: 10.1186/s11671-018-2728-6 PMID: 30361809
  61. Tong, R.; Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev., 2007, 47(3), 345-381. doi: 10.1080/15583720701455079
  62. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
  63. Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16. doi: 10.1146/annurev-bioeng-071811-150124 PMID: 22524388
  64. Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740. doi: 10.1158/0008-5472.CAN-05-4199 PMID: 16818648
  65. Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater., 2009, 8(7), 543-557. doi: 10.1038/nmat2442 PMID: 19525947
  66. Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499. doi: 10.1016/j.jconrel.2014.06.038 PMID: 24984011
  67. Rivolta, I.; Panariti; Miserocchi The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnol. Sci. Appl., 2012, 87. doi: 10.2147/NSA.S25515
  68. Schiffelers, R.M.; Storm, G. Liposomal nanomedicines as anticancer therapeutics: Beyond targeting tumor cells. Int. J. Pharm., 2008, 364(2), 258-264. doi: 10.1016/j.ijpharm.2008.08.005 PMID: 18773947
  69. Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96. doi: 10.1016/j.addr.2019.04.008 PMID: 31022434
  70. Chopra, H.; Kaur, A.; Singh, I.; Sharma, R.K.; Emran, T.B. Nano-based targeting strategies for cancer treatment. Int. J. Surg., 2022, 105, 106864. doi: 10.1016/j.ijsu.2022.106864 PMID: 36031069
  71. Khan, H.; Tiwari, P.; Kaur, A.; Singh, T.G. Sirtuin acetylation and deacetylation: A complex paradigm in neurodegenerative disease. Mol. Neurobiol., 2021, 58(8), 3903-3917. doi: 10.1007/s12035-021-02387-w PMID: 33877561
  72. Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; Akhtar, M.F.; Saleem, A.; Abdel-Daim, M.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother., 2021, 140, 111729. doi: 10.1016/j.biopha.2021.111729 PMID: 34044274
  73. Grewal, A.K.; Singh, N.; Singh, T.G. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia–reperfusion-induced injury in mice. J. Pharm. Pharmacol., 2019, 71(6), 956-970. doi: 10.1111/jphp.13073 PMID: 30809806
  74. Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Future J. Pharm. Sci., 2021, 7(1)
  75. Compston, J.E.; Rosen, C. Fast Facts: Osteoporosis; Karger Medical and Scientific Publishers: Basel, Switzerland, 2009. doi: 10.1159/isbn.978-1-905832-60-6
  76. Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics, 2023, 15(4), 1181. doi: 10.3390/pharmaceutics15041181 PMID: 37111666

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers