Ferroptosis-induced Cardiotoxicity and Antitumor Drugs


Цитировать

Полный текст

Аннотация

:The induction of regulated cell death ferroptosis in tumors is emerging as an intriguing strategy for cancer treatment. Numerous antitumor drugs (e.g., doxorubicin, etoposide, tyrosine kinase inhibitors, trastuzumab, arsenic trioxide, 5-fluorouracil) induce ferroptosis. Although this mechanism of action is interesting for fighting tumors, the clinical use of drugs that induce ferroptosis is hampered by cardiotoxicity. Besides in cancer cells, ferroptosis induced by chemotherapeutics can occur in cardiomyocytes, and this feature represents an important drawback of antitumor therapy. This inconvenience has been tackled by developing less or no cardiotoxic antitumor drugs or by discovering cardioprotective agents (e.g., berberine, propofol, fisetin, salidroside, melatonin, epigallocatechin- 3gallate, resveratrol) to use in combination with conventional chemotherapeutics. This review briefly summarizes the molecular mechanisms of ferroptosis and describes the ferroptosis dependent mechanisms responsible for cardiac toxicity developed by cancer- suffering patients following the administration of some chemotherapeutics. Additionally, the pharmacological strategies very recently proposed for potentially preventing this inconvenience are considered.

Об авторах

Giovanni Beretta

Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; Patel, A.; DeCara, J.; Mitchell, J.; Harrison, E.; Moslehi, J.; Witteles, R.; Calabro, M.G.; Orecchia, R.; de Azambuja, E.; Zamorano, J.L.; Krone, R.; Iakobishvili, Z.; Carver, J.; Armenian, S.; Ky, B.; Cardinale, D.; Cipolla, C.M.; Dent, S.; Jordan, K. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol., 2020, 31(2), 171-190. doi: 10.1016/j.annonc.2019.10.023 PMID: 31959335
  2. Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; Lopez Fernandez, T.; Mohty, D.; Piepoli, M.F.; Tamargo, J.; Torbicki, A.; Suter, T.M. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J., 2016, 37(36), 2768-2801. doi: 10.1093/eurheartj/ehw211 PMID: 27567406
  3. Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Pandini, C.; Sandri, M.T.; Cipolla, C.M. Cardio-oncology: A new medical issue. Ecancermedicalscience, 2009, 3, 126. doi: 10.3332/ecancer.2008.126 PMID: 22275992
  4. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  5. Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364. doi: 10.1038/s41422-019-0164-5 PMID: 30948788
  6. Pandey, S.S.; Singh, S.; Pathak, C.; Tiwari, B.S. "Programmed cell death: A process of death for survival" – How far terminology pertinent for cell death in unicellular organisms. J. Cell Death, 2018, 11 doi: 10.1177/1179066018790259 PMID: 30116103
  7. Mishra, P.K.; Adameova, A.; Hill, J.A.; Baines, C.P.; Kang, P.M.; Downey, J.M.; Narula, J.; Takahashi, M.; Abbate, A.; Piristine, H.C.; Kar, S.; Su, S.; Higa, J.K.; Kawasaki, N.K.; Matsui, T. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(5), H891-H922. doi: 10.1152/ajpheart.00259.2019 PMID: 31418596
  8. Baker, L.H.; Boonstra, P.S.; Reinke, D.K.; Antalis, E.J.P.; Zebrack, B.J.; Weinberg, R.L. Burden of chronic diseases among sarcoma survivors treated with anthracycline chemotherapy: results from an observational study. J Cancer Metastasis Treat., 2020, 6, 24. doi: 10.20517/2394-4722.2020.36
  9. Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022, 22(7), 381-396. doi: 10.1038/s41568-022-00459-0 PMID: 35338310
  10. Friedmann Angeli, J.P.; Krysko, D.V.; Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer, 2019, 19(7), 405-414. doi: 10.1038/s41568-019-0149-1 PMID: 31101865
  11. Torti, S.V.; Torti, F.M. Winning the war with iron. Nat. Nanotechnol., 2019, 14(6), 499-500. doi: 10.1038/s41565-019-0419-9 PMID: 30911165
  12. Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23. doi: 10.1038/s41569-022-00735-4 PMID: 35788564
  13. Komai, K.; Kawasaki, N.K.; Higa, J.K.; Matsui, T. The role of ferroptosis in adverse left ventricular remodeling following acute myocardial infarction. Cells, 2022, 11(9), 1399. doi: 10.3390/cells11091399 PMID: 35563704
  14. Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; López-Fernández, T.; Fradley, M.G.; Ganatra, S.; Curigliano, G.; Mitchell, J.D.; Minotti, G.; Lang, N.N.; Liu, J.E.; Neilan, T.G.; Nohria, A.; O’Quinn, R.; Pusic, I.; Porter, C.; Reynolds, K.L.; Ruddy, K.J.; Thavendiranathan, P.; Valent, P. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J., 2022, 43(4), 280-299. doi: 10.1093/eurheartj/ehab674 PMID: 34904661
  15. Dent, S.F.; Kikuchi, R.; Kondapalli, L.; Ismail-Khan, R.; Brezden-Masley, C.; Barac, A.; Fradley, M. Optimizing cardiovascular health in patients with cancer: A practical review of risk assessment, monitoring, and prevention of cancer treatment–related cardiovascular toxicity. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40(40), 501-515. doi: 10.1200/EDBK_286019 PMID: 32213102
  16. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  17. Berghe, T.V.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ., 2010, 17(6), 922-930. doi: 10.1038/cdd.2009.184 PMID: 20010783
  18. Lei, P.; Bai, T.; Sun, Y. Mechanisms of ferroptosis and relations with regulated cell death: A review. Front. Physiol., 2019, 10, 139. doi: 10.3389/fphys.2019.00139 PMID: 30863316
  19. Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197. doi: 10.1002/adma.201904197 PMID: 31595562
  20. Trujillo-Alonso, V.; Pratt, E.C.; Zong, H.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M.O.; Longo, V.; Becker, M.W.; Roboz, G.J.; Grimm, J.; Guzman, M.L. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol., 2019, 14(6), 616-622. doi: 10.1038/s41565-019-0406-1 PMID: 30911166
  21. Tang, M.; Chen, Z.; Wu, D.; Chen, L. Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases. J. Cell. Physiol., 2018, 233(12), 9179-9190. doi: 10.1002/jcp.26954 PMID: 30076709
  22. Mancias, J.D.; Wang, X.; Gygi, S.P.; Harper, J.W.; Kimmelman, A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 2014, 509(7498), 105-109. doi: 10.1038/nature13148 PMID: 24695223
  23. Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245. doi: 10.1016/j.chembiol.2008.02.010 PMID: 18355723
  24. Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285. doi: 10.1016/j.cell.2017.09.021 PMID: 28985560
  25. Doll, S.; Conrad, M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017, 69(6), 423-434. doi: 10.1002/iub.1616 PMID: 28276141
  26. Jennis, M.; Kung, C.P.; Basu, S.; Budina-Kolomets, A.; Leu, J.I.J.; Khaku, S.; Scott, J.P.; Cai, K.Q.; Campbell, M.R.; Porter, D.K.; Wang, X.; Bell, D.A.; Li, X.; Garlick, D.S.; Liu, Q.; Hollstein, M.; George, D.L.; Murphy, M.E. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev., 2016, 30(8), 918-930. doi: 10.1101/gad.275891.115 PMID: 27034505
  27. Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62. doi: 10.1038/nature14344 PMID: 25799988
  28. Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; Zhuang, L.; Chen, G.; Xiao, Z.D.; Hung, M.C.; Chen, J.; Huang, P.; Li, W.; Gan, B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol., 2018, 20(10), 1181-1192. doi: 10.1038/s41556-018-0178-0 PMID: 30202049
  29. Ou, Y.; Wang, S.J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci., 2016, 113(44), E6806-E6812. doi: 10.1073/pnas.1607152113 PMID: 27698118
  30. Shah, R.; Margison, K.; Pratt, D.A. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. ACS Chem. Biol., 2017, 12(10), 2538-2545. doi: 10.1021/acschembio.7b00730 PMID: 28837769
  31. D’Herde, K.; Krysko, D.V. Oxidized PEs trigger death. Nat. Chem. Biol., 2017, 13(1), 4-5. doi: 10.1038/nchembio.2261 PMID: 27842067
  32. Lin, L.S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; Niu, G.; Yang, H.H.; Chen, X. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed., 2018, 57(18), 4902-4906. doi: 10.1002/anie.201712027 PMID: 29488312
  33. Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci., 2016, 113(34), E4966-E4975. doi: 10.1073/pnas.1603244113 PMID: 27506793
  34. Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343. doi: 10.1016/j.bbrc.2016.08.124 PMID: 27565726
  35. Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425. doi: 10.1016/j.bbrc.2016.10.086 PMID: 28212725
  36. Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol., 2018, 16(5), e2006203. doi: 10.1371/journal.pbio.2006203 PMID: 29795546
  37. Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; St Croix, C.M.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Kenny, E.M.; Yang, Q.; Rosenbaum, J.C.; Sparvero, L.J.; Emlet, D.R.; Wen, X.; Minami, Y.; Qu, F.; Watkins, S.C.; Holman, T.R.; VanDemark, A.P.; Kellum, J.A.; Bahar, I.; Bayır, H.; Kagan, V.E. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 2017, 171(3), 628-641.e26. doi: 10.1016/j.cell.2017.09.044 PMID: 29053969
  38. Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152. doi: 10.1016/j.freeradbiomed.2018.09.014 PMID: 30219704
  39. Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443. doi: 10.1126/science.1083516 PMID: 12775843
  40. Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698. doi: 10.1038/s41586-019-1707-0
  41. Bersuker, K.; Hendricks, J.M; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
  42. Ma, W.; Wei, S.; Zhang, B.; Li, W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol., 2020, 8, 434. doi: 10.3389/fcell.2020.00434
  43. Narayan, V.; Ky, b.; Cerra, M.C.; Angelone, T. Common cardiovascular complications of cancer therapy: epidemiology, risk prediction, and prevention. Annu Rev Med., 2018, 69(15), 97-111.
  44. Rocca, C.; Pasqua, T.; Cerra, M.C.; Angelone, T. Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation. Antioxid. Redox Signal., 2020, 32(15), 1081-1097. doi: 10.1089/ars.2020.8016 PMID: 31928066
  45. Kitakata, H.; Endo, J.; Ikura, H.; Moriyama, H.; Shirakawa, K.; Katsumata, Y.; Sano, M. Therapeutic targets for dox-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int. J. Mol. Sci., 2022, 23(3), 1414. doi: 10.3390/ijms23031414 PMID: 35163335
  46. Vejpongsa, P.; Yeh, E.T.H. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol., 2014, 64(9), 938-945. doi: 10.1016/j.jacc.2014.06.1167 PMID: 25169180
  47. Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059. doi: 10.7150/thno.54113 PMID: 33537073
  48. Zhai, Z.; Zou, P.; Liu, F.; Xia, Z.; Li, J. Ferroptosis is a potential novel diagnostic and therapeutic target for patients with cardiomyopathy. Front. Cell Dev. Biol., 2021, 9, 649045. doi: 10.3389/fcell.2021.649045 PMID: 33869204
  49. Zhang, H.; Wang, Z.; Liu, Z.; Du, K.; Lu, X. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front. Cardiovasc. Med., 2021, 8, 685434. doi: 10.3389/fcvm.2021.685434 PMID: 34336950
  50. Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci., 2019, 116(7), 2672-2680. doi: 10.1073/pnas.1821022116 PMID: 30692261
  51. Finn, N.A.; Findley, H.W.; Kemp, M.L. A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLOS Comput. Biol., 2011, 7(9), e1002151. doi: 10.1371/journal.pcbi.1002151 PMID: 21935349
  52. Lewandowski, M.; Gwozdzinski, K. Nitroxides as antioxidants and anticancer drugs. Int. J. Mol. Sci., 2017, 18(11), 2490. doi: 10.3390/ijms18112490 PMID: 29165366
  53. Zhao, L.; Qi, Y.; Xu, L.; Tao, X.; Han, X.; Yin, L.; Peng, J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol., 2018, 15, 284-296. doi: 10.1016/j.redox.2017.12.013 PMID: 29304479
  54. Sunitha, M.C.; Dhanyakrishnan, R.; PrakashKumar, B.; Nevin, K.G. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed. Pharmacother., 2018, 102, 823-832. doi: 10.1016/j.biopha.2018.03.089 PMID: 29605770
  55. He, L.; Yang, Y.; Chen, J.; Zou, P.; Li, J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mol. Med. Rep., 2021, 24(3), 668. doi: 10.3892/mmr.2021.12307 PMID: 34296293
  56. Mordente, A.; Meucci, E.; Silvestrini, A.; Martorana, G.; Giardina, B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem., 2009, 16(13), 1656-1672. doi: 10.2174/092986709788186228 PMID: 19442138
  57. Stewart, D.J.; Grewaal, D.; Green, R.M.; Mikhael, N.; Goel, R.; Montpetit, V.A.; Redmond, M.D. Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res., 1993, 13(6A), 1945-1952. PMID: 8297100
  58. Xu, X.; Persson, H.L.; Richardson, D.R. Molecular pharmacology of the interaction of anthracyclines with iron. Mol. Pharmacol., 2005, 68(2), 261-271. doi: 10.1124/mol.105.013383 PMID: 15883202
  59. Zhou, Y.J.; Duan, D.Q.; Lu, L.Q.; Tang, L.J.; Zhang, X.J.; Luo, X.J.; Peng, J. The SPATA2/CYLD pathway contributes to doxorubicin-induced cardiomyocyte ferroptosis via enhancing ferritinophagy. Chem. Biol. Interact., 2022, 368, 110205. doi: 10.1016/j.cbi.2022.110205 PMID: 36195186
  60. Zhu, X.; Wang, X.; Zhu, B.; Ding, S.; Shi, H.; Yang, X. Disruption of histamine/H1R-STAT3-SLC7A11 axis exacerbates doxorubicin-induced cardiac ferroptosis. Free Radic. Biol. Med., 2022, 192, 98-114. doi: 10.1016/j.freeradbiomed.2022.09.012 PMID: 36165929
  61. Qian, J.; Wan, W.; Fan, M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen. Thorac. Cardiovasc. Surg., 2022, 71(5), 280-290. doi: 10.1007/s11748-022-01867-7
  62. Li, X.; Liang, J.; Qu, L.; Liu, S.; Qin, A.; Liu, H.; Wang, T.; Li, W.; Zou, W. Exploring the role of ferroptosis in the doxorubicin-induced chronic cardiotoxicity using a murine model. Chem. Biol. Interact., 2022, 363, 110008. doi: 10.1016/j.cbi.2022.110008 PMID: 35667395
  63. Wang, Y.; Yan, S.; Liu, X.; Deng, F.; Wang, P.; Yang, L.; Hu, L.; Huang, K.; He, J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ., 2022, 29(10), 1982-1995. doi: 10.1038/s41418-022-00990-5 PMID: 35383293
  64. Hou, K.; Shen, J.; Yan, J.; Zhai, C.; Zhang, J.; Pan, J.A.; Zhang, Y.; Jiang, Y.; Wang, Y.; Lin, R.Z.; Cong, H.; Gao, S.; Zong, W.X. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine, 2021, 69, 103456. doi: 10.1016/j.ebiom.2021.103456 PMID: 34233258
  65. Liu, Y.; Zeng, L.; Yang, Y.; Chen, C.; Wang, D.; Wang, H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis., 2020, 11(9), 756. doi: 10.1038/s41419-020-02948-2 PMID: 32934217
  66. Nemade, H.; Chaudhari, U.; Acharya, A.; Hescheler, J.; Hengstler, J.G.; Papadopoulos, S.; Sachinidis, A. Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol., 2018, 92(4), 1507-1524. doi: 10.1007/s00204-018-2170-7
  67. Li, Y.; Yan, J.; Zhao, Q.; Zhang, Y.; Zhang, Y. ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front. Pharmacol., 2022, 13, 904314. doi: 10.3389/fphar.2022.904314 PMID: 36210815
  68. Jiang, H.; Wang, C.; Zhang, A.; Li, Y.; Li, J.; Li, Z.; Yang, X.; Hou, Y. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomed. Pharmacother., 2022, 153, 113280. doi: 10.1016/j.biopha.2022.113280 PMID: 35724508
  69. Zhang, S.; Xu, X.; Li, Z.; Yi, T.; Ma, J.; Zhang, Y.; Li, Y. Analysis and validation of differentially expressed ferroptosis-related genes in regorafenib-induced cardiotoxicity. Oxid. Med. Cell Longev., 2022, 2022, 2513263. doi: 10.1155/2022/2513263
  70. Song, C.; Li, D.; Zhang, J.; Zhao, X. Role of ferroptosis in promoting cardiotoxicity induced by Imatinib Mesylate via down-regulating Nrf2 pathways in vitro and in vivo. Toxicol. Appl. Pharmacol., 2022, 435, 115852. doi: 10.1016/j.taap.2021.115852
  71. Sun, L.; Wang, H.; Xu, D.; Yu, S.; Zhang, L.; Li, X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered., 2022, 13(1), 48-60. doi: 10.1080/21655979.2021.2004980
  72. Sun, L.; Wang, H.; Yu, S.; Zhang, L.; Jiang, J.; Zhou, Q. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int. J. Mol. Med., 2022, 49(2), 17. doi: 10.3892/ijmm.2021.5072
  73. Wang, L.; Liu, S.; Gao, C.; Chen, H.; Li, J.; Lu, J.; Yuan, Y.; Zheng, X.; He, H.; Zhang, X.; Zhang, R.; Zhang, Y.; Wu, Y.; Lin, W.; Zheng, H. Arsenic trioxide-induced cardiotoxicity triggers ferroptosis in cardiomyoblast cells. Hum. Exp. Toxicol., 2022, 41, 9603271211064537. doi: 10.1177/09603271211064537
  74. Li, D.; Song, C.; Zhang, J.; Zhao, X. ROS and iron homeostasis dependent ferroptosis play a vital role in 5-Fluorouracil induced cardiotoxicity in vitro and in vivo. Toxicology., 2022, 468, 153113. doi: 10.1016/j.tox.2022.153113
  75. Liu, X.; Chen, C.; Han, D.; Zhou, W.; Cui, Y.; Tang, X.; Xiao, C.; Wang, Y.; Gao, Y. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid. Med. Cell Longev., 2022, 2022, 3192607. doi: 10.1155/2022/3192607
  76. Li, X.R.; Cheng, X.H.; Zhang, G.N.; Wang, X.X.; Huang, J.M. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer. J. Ovarian Res., 2022, 15(1), 96. doi: 10.1186/s13048-022-01029-6 PMID: 35971131
  77. Chen, Y.; Shi, S.; Dai, Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed. Pharmacother., 2022, 156, 113903. doi: 10.1016/j.biopha.2022.113903 PMID: 36279722
  78. Li, N.; Wang, W.; Zhou, H.; Wu, Q.; Duan, M.; Liu, C.; Wu, H.; Deng, W.; Shen, D.; Tang, Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic. Biol. Med., 2020, 160, 303-318. doi: 10.1016/j.freeradbiomed.2020.08.009
  79. Yang, K.T.; Chao, T.H.; Wang, I.C.; Luo, Y.P.; Ting, P.C.; Lin, J.H.; Chang, J.C. Berberine protects cardiac cells against ferroptosis. Tzu Chi. Med. J., 2022, 34(3), 310-317. doi: 10.4103/tcmj.tcmj_236_21
  80. Song, C.; Li, D.; Zhang, J.; Zhao, X. Berberine hydrochloride alleviates imatinib mesylate - induced cardiotoxicity through the inhibition of Nrf2-dependent ferroptosis. Food Funct., 2023, 14(2), 1087-1098. doi: 10.1039/D2FO03331C
  81. Wang, W.; Zhong, X.; Fang, Z.; Li, J.; Li, H.; Liu, X.; Yuan, X.; Huang, W.; Huang, Z. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem. Biol. Interact., 2023, 2023, 110469. doi: 10.1016/j.cbi.2023.110469
  82. Yu, Y.; Wu, T.; Lu, Y.; Zhao, W; Zhang, J.; Chen, Q.; Ge, G.; Hua, Y.; Chen, K.; Ullah, I.; Zhang, F. Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling. Free Radic. Biol. Med., 2022, 193(Pt 1), 108-121. doi: 10.1016/j.freeradbiomed.2022.10.268
  83. Warpechowski, P.; dos Santos, A.T.L.; Pereira, P.J.I.; de Lima, G.G. Effects of propofol on the cardiac conduction system. Rev. Bras. Anestesiol., 2010, 60(4), 438-444. doi: 10.1016/S0034-7094(10)70054-4 PMID: 20659617
  84. Barajas, M.B.; Wang, A.; Griffiths, K.K.; Sun, L.; Yang, G.; Levy, R.J. Modeling propofol-induced cardiotoxicity in the isolated-perfused newborn mouse heart. Physiol. Rep., 2022, 10(15), e15402. doi: 10.14814/phy2.15402 PMID: 35923108
  85. Lu, Z.; Liu, Z.; Fang, B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered., 2022, 13(4), 9145-9155. doi: 10.1080/21655979.2022.2036895
  86. Li, D.; Liu, X.; Pi, W.; Zhang, Y.; Yu, L.; Xu, C.; Sun, Z.; Jiang, J. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol., 2022, 12, 808480. doi: 10.3389/fphar.2021.808480
  87. Ma, T.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Fisetin, a plant flavonoid ameliorates doxorubicin-induced cardiotoxicity in experimental rats: the decisive role of caspase-3, COX-II, cTn-I, iNOs and TNF-α. Mol Biol Rep., 2019, 46(1), 105-118. doi: 10.1007/s11033-018-4450-y
  88. Zhang, H.; Shen, W.; Gao, C.; Deng, L.; Shen, D. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R D., 2012, 12(2), 101-106. doi: 10.2165/11632530-000000000-00000 PMID: 22770377
  89. Wang, X.L.; Wang, X.; Xiong, L.L.; Zhu, Y.; Chen, H.L.; Chen, J.X.; Wang, X.X.; Li, R.L.; Guo, Z.Y.; Li, P.; Jiang, W. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J. Cardiovasc. Pharmacol., 2013, 62(6), 512-523. doi: 10.1097/FJC.0000000000000009
  90. Yan, F.; Liu, R.; Zhuang, X.; Li, R.; Shi, H.; Gao, X. Salidroside attenuates doxorubicin-induced cardiac dysfunction partially through activation of QKI/FoxO1 pathway. J. Cardiovasc. Transl. Res., 2021, 14(2), 355-364. doi: 10.1007/s12265-020-10056-x
  91. Chen, H.; Zhu, J.; Le, Y.; Pan, J.; Liu, Y.; Wang, C.; Dou, X.; Lu, D. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine., 2022, 99, 153964. doi: 10.1016/j.phymed.2022.153964
  92. Zhang, Y.; Wang, Y.; Xu, J.; Tian, F.; Hu, S.; Chen, Y.; Fu, Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res., 2019, 66(2), e12542. doi: 10.1111/jpi.12542 PMID: 30516280
  93. Yu, L.M.; Dong, X.; Xue, X.D.; Xu, S.; Zhang, X.; Xu, Y.L.; Wang, Z.S.; Wang, Y.; Gao, H.; Liang, Y.X.; Yang, Y.; Wang, H.S. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J. Pineal Res., 2021, 70(1), e12698. doi: 10.1111/jpi.12698 PMID: 33016468
  94. Zhai, M.; Li, B.; Duan, W.; Jing, L.; Zhang, B.; Zhang, M.; Yu, L.; Liu, Z.; Yu, B.; Ren, K.; Gao, E.; Yang, Y.; Liang, H.; Jin, Z.; Yu, S. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J. Pineal Res., 2017, 63(2), e12419. doi: 10.1111/jpi.12419 PMID: 28500761
  95. Liu, D.; Ma, Z.; Di, S.; Yang, Y.; Yang, J.; Xu, L.; Reiter, R.J.; Qiao, S.; Yuan, J. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic. Biol. Med., 2022, 129, 59-72. doi: 10.1016/j.freeradbiomed.2018.08.032
  96. Sun, X.; Sun, P.; Zhen, D.; Xu, X.; Yang, J.; Yang, L.; Fu, D.; Wei, D.; Niu, X.; Tian, J.; Li, H. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol. Appl. Pharmacol., 2022, 437, 115902. doi: 10.1016/j.taap.2022.115902
  97. Hanna, M.; Seddiek, H.; Aboulhoda, B.E.; Morcos, G.N.B.; Akabawy, A.M.A.; Elbaset, M.A.; Ibrahim, A.A.; Khalifa, M.M.; Khalifah, I.M.; Fadel, M.S.; Shoukry, T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front. Physiol., 2022, 13, 1050598. doi: 10.3389/fphys.2022.1050598 PMID: 36531171
  98. Yao, Y.F.; Liu, X.; Li, W.J.; Shi, Z.W.; Yan, Y.X.; Wang, L.F.; Chen, M.; Xie, M.Y. (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci., 2017, 180, 151-159. doi: 10.1016/j.lfs.2016.12.004 PMID: 27956351
  99. Sun, T.L.; Liu, Z.; Qi, Z.J.; Huang, Y.P.; Gao, X.Q.; Zhang, Y.Y. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats. Food Chem. Toxicol., 2016, 93, 102-110. doi: 10.1016/j.fct.2016.05.004 PMID: 27170490
  100. Saeed, N.M.; El-Naga, R.N.; El-Bakly, W.M.; Abdel-Rahman, H.M.; Salah ElDin, R.A.; El-Demerdash, E. Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: A mechanistic study. Biochem. Pharmacol., 2015, 95(3), 145-155. doi: 10.1016/j.bcp.2015.02.006 PMID: 25701654
  101. Li, W.; Nie, S.; Xie, M.; Chen, Y.; Li, C.; Zhang, H. A major green tea component, (-)-epigallocatechin-3-gallate, ameliorates doxorubicin-mediated cardiotoxicity in cardiomyocytes of neonatal rats. J. Agric. Food Chem., 2010, 58(16), 8977-8982. doi: 10.1021/jf101277t PMID: 20666448
  102. He, H.; Wang, L.; Qiao, Y.; Yang, B.; Yin, D.; He, M. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol., 2021, 48, 102185. doi: 10.1016/j.redox.2021.102185
  103. Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; Botti, G.; Maurea, N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol., 2021, 20(1), 150. doi: 10.1186/s12933-021-01346-y
  104. Min, J.; Wu, L.; Liu, Y.; Song, G.; Deng, Q.; Jin, W.; Yu, W.; Abudureyimu, M.; Pei, Z.; Ren, J. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci., 2022, 312, 121207. doi: 10.1016/j.lfs.2022.121207
  105. Sabatino, J.; De Rosa, S.; Tammè, L.; Iaconetti, C.; Sorrentino, S.; Polimeni, A.; Mignogna, C.; Amorosi, A.; Spaccarotella, C.; Yasuda, M.; Indolfi, C. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc. Diabetol., 2020, 19(1), 66. doi: 10.1186/s12933-020-01040-5 PMID: 32414364
  106. Barış, V.Ö.; Dinçsoy, A.B.; Gedikli, E.; Zırh, S.; Müftüoğlu, S.; Erdem, A. Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc. Toxicol., 2021, 21(9), 747-758. doi: 10.1007/s12012-021-09665-y PMID: 34089496
  107. Eliaa, S.G.; Al-Karmalawy, A.A.; Saleh, R.M.; Elshal, M.F. Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mtor pathway and inhibition of calmodulin: In vitro and molecular docking studies. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1330-1338. doi: 10.1021/acsptsci.0c00144 PMID: 33344906
  108. Ren, C.; Sun, K.; Zhang, Y.; Hu, Y.; Hu, B.; Zhao, J.; He, Z.; Ding, R.; Wang, W.; Liang, C. Sodium-Glucose CoTransporter-2 Inhibitor Empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol., 2021, 12, 664181. doi: 10.3389/fphar.2021.664181
  109. Martín-Garcia, A.; López-Fernández, T.; Mitroi, C.; Chaparro-Muñoz, M.; Moliner, P.; Martin-Garcia, A.C.; Martinez-Monzonis, A.; Castro, A.; Lopez-Sendon, J.L.; Sanchez, P.L. Effectiveness of sacubitril-valsartan in cancer patients with heart failure. ESC Heart Fail., 2020, 7(2), 763-767. doi: 10.1002/ehf2.12627
  110. Miyoshi, T.; Nakamura, K.; Amioka, N.; Hatipoglu, O.F.; Yonezawa, T.; Saito, Y.; Yoshida, M.; Akagi, S.; Ito, H. LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats. Sci. Rep., 2022, 12(1), 4930. doi: 10.1038/s41598-022-09094-z PMID: 35322164
  111. Xia, Y.; Chen, Z.; Chen, A.; Fu, M.; Dong, Z.; Hu, K.; Yang, X.; Zou, Y.; Sun, A.; Qian, J.; Ge, J. LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J. Mol. Cell. Cardiol., 2017, 108, 138-148. doi: 10.1016/j.yjmcc.2017.06.003 PMID: 28623750
  112. Sobiborowicz-Sadowska, A.M.; Kamińska, K.; Cudnoch-Jędrzejewska, A. Neprilysin inhibition in the prevention of anthracycline-induced cardiotoxicity. Cancers (Basel), 2023, 15(1), 312. doi: 10.3390/cancers15010312 PMID: 36612307
  113. Dankowski, R.; Sacharczuk, W.; Łojko-Dankowska, A.; Nowicka, A.; Szałek-Goralewska, A.; Szyszka, A. Sacubitril/valsartan as first-line therapy in anthracycline-induced cardiotoxicity. Kardiol. Pol., 2021, 79(9), 1040-1041. doi: 10.33963/KP.a2021.0052 PMID: 34227674
  114. Sheppard, C.E.; Anwar, M. The use of sacubitril/valsartan in anthracycline-induced cardiomyopathy: A mini case series. J. Oncol. Pharm. Pract., 2019, 25(5), 1231-1234. doi: 10.1177/1078155218783238 PMID: 29945530
  115. Wu, Z.; Chen, H.; Lin, L.; Lu, J.; Zhao, Q.; Dong, Z.; Hai, X. Sacubitril/valsartan protects against arsenic trioxide induced cardiotoxicity in vivo and in vitro. Toxicol. Res., 2022, 11(3), 451-459. doi: 10.1093/toxres/tfac018 PMID: 35782642
  116. Liu, X.; Li, D.; Pi, W.; Wang, B.; Xu, S.; Yu, L.; Yao, L.; Sun, Z.; Jiang, J.; Mi, Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int. Immunopharmacol., 2022, 113(Pt A), 109379. doi: 10.1016/j.intimp.2022.109379
  117. Abe, K.; Ikeda, M.; Ide, T.; Tadokoro, T.; Miyamoto, H.D.; Furusawa, S.; Tsutsui, Y.; Miyake, R.; Ishimaru, K.; Watanabe, M.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci. Signal., 2022, 15(758), eabn8017. doi: 10.1126/scisignal.abn8017
  118. Pinelli, A.; Trivulzio, S.; Brenna, S.; Rossoni, G. Plasma cardiac necrosis markers C-troponin I and creatine kinase, associated with increased malondialdehyde levels, induced in rabbits by means of 5-aminolevulinic acid injection. Pharmacology., 2019, 84(5), 314-321. doi: 10.1159/000248216
  119. Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem., 2019, 26(19), 3542-3566. doi: 10.2174/0929867324666170518100606
  120. Zaffaroni, N.; Beretta, G.L. Resveratrol and prostate cancer: The power of phytochemicals. Curr. Med. Chem., 2021, 28(24), 4845-4862. doi: 10.2174/1875533XMTEyhNzIfw PMID: 33371831
  121. Zeng, Y.; Cao, G.; Lin, L.; Zhang, Y.; Luo, X.; Ma, X.; Aiyisake, A.; Cheng, Q. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J. Invest. Surg., 2023, 36(1), 2157521. doi: 10.1080/08941939.2022.2157521 PMID: 36576230
  122. Yu, W.; Chen, C.; Xu, C.; Xie, D.; Wang, Q.; Liu, W.; Zhao, H.; He, F.; Chen, B.; Xi, Y.; Yan, Y.; Yu, L.; Cheng, J. Activation of p62-NRF2 axis protects against doxorubicin-induced ferroptosis in cardiomyocytes: A novel role and molecular mechanism of resveratrol. Am. J. Chin. Med., 2022, 50(8), 2103-2123. doi: 10.1142/S0192415X22500902
  123. Li, D.; Song, C.; Zhang, J.; Zhao, X. Resveratrol alleviated 5-FU-induced cardiotoxicity by attenuating GPX4 dependent ferroptosis. J. Nutr. Biochem., 2023, 112, 109241. doi: 10.1016/j.jnutbio.2022.109241
  124. Tadokoro, T.; Ikeda, M.; Abe, K.; Ide, T.; Miyamoto, H.D.; Furusawa, S.; Ishimaru, K.; Watanabe, M.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J. Cardiovasc. Pharmacol., 2022, 80(5), 690-699. doi: 10.1097/FJC.0000000000001328
  125. Tang, X.G.; Lin, K.; Guo, S.W.; Rong, Y.; Chen, D.; Chen, Z.S.; Ping, F.F.; Wang, J.Q. The synergistic effect of ruthenium complex ∆-Ru1 and doxorubicin in a mouse breast cancer model. Recent Pat. Anticancer Drug Discov., 2022, 18(2), 174-186. doi: 10.2174/1574892817666220629105543

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024