The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders


Цитировать

Полный текст

Аннотация

:Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.

Об авторах

Francesca Fanfarillo

Department of Experimental Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Giampiero Ferraguti

Department of Experimental Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Marco Lucarelli

Department of Experimental Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Andrea Fuso

Department of Experimental Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Mauro Ceccanti

SITAC, Sapienza University of Rome

Email: info@benthamscience.net

Sergio Terracina

Department of Experimental Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Ginevra Micangeli

Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome

Email: info@benthamscience.net

Luigi Tarani

Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome

Email: info@benthamscience.net

Marco Fiore

Sapienza University, IBBC-CNR

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; Hasin, D.S. Epidemiology of DSM-5 alcohol use disorder. JAMA Psychiatry, 2015, 72(8), 757-766. doi: 10.1001/jamapsychiatry.2015.0584 PMID: 26039070
  2. Degenhardt, L.; Charlson, F.; Ferrari, A.; Santomauro, D.; Erskine, H.; Mantilla-Herrara, A.; Whiteford, H.; Leung, J.; Naghavi, M.; Griswold, M.; Rehm, J.; Hall, W.; Sartorius, B.; Scott, J.; Vollset, S.E.; Knudsen, A.K.; Haro, J.M.; Patton, G.; Kopec, J.; Carvalho Malta, D.; Topor-Madry, R.; McGrath, J.; Haagsma, J.; Allebeck, P.; Phillips, M.; Salomon, J.; Hay, S.; Foreman, K.; Lim, S.; Mokdad, A.; Smith, M.; Gakidou, E.; Murray, C.; Vos, T. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry, 2018, 5(12), 987-1012. doi: 10.1016/S2215-0366(18)30337-7 PMID: 30392731
  3. World Health Organisation. Global status report on alcohol and health , Available from: http://apps.who.int/iris/ bitstream/handle/10665/44499/9789241564151_eng.pdf;jsessionid=CAF1A0F5B0BA981C2CEDBAC6BD4EC 10C?sequence=1
  4. Fiore, M.; Minni, A.; Cavalcanti, L.; Raponi, G.; Puggioni, G.; Mattia, A.; Gariglio, S.; Colizza, A.; Meliante, P.G.; Zoccali, F.; Tarani, L.; Barbato, C.; Lucarelli, M.; Ceci, F.M.; Francati, S.; Ferraguti, G.; Ceccanti, M.; Petrella, C. The impact of alcohol consumption and oral microbiota on upper aerodigestive tract carcinomas: A pilot study. Antioxidants, 2023, 12(6), 1233. doi: 10.3390/antiox12061233 PMID: 37371963
  5. Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; Fiore, M.; Ferraguti, G. Alcohol drinking, apolipoprotein polymorphisms and the risk of cardiovascular diseases. Curr. Neurovasc. Res., 2021, 18(1), 150-161. doi: 10.2174/18755739MTE1eMjEg3 PMID: 33823779
  6. D’Angelo, A.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M.; Giovagnoli, R.; De Persis, S.; Fiore, M.; Ceccanti, M.; Messina, M.P. Acute alcohol intoxication: A clinical overview. Clin. Ter., 2022, 173(3), 280-291. doi: 10.7417/CT.2022.2432.35612344 PMID: 35612344
  7. Gorky, J.; Schwaber, J. The role of the gut–brain axis in alcohol use disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 234-241. doi: 10.1016/j.pnpbp.2015.06.013 PMID: 26188287
  8. Leclercq, S.; Schwarz, M.; Delzenne, N.M.; Stärkel, P.; de Timary, P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: A link with gut microbiota, peripheral inflammation and psychological symptoms. Transl. Psychiatry, 2021, 11(1), 503. doi: 10.1038/s41398-021-01610-5 PMID: 34599147
  9. Ceci, F.M.; Fiore, M.; Agostinelli, E.; Tahara, T.; Greco, A.; Ralli, M.; Polimeni, A.; Lucarelli, M.; Colletti, R.; Angeloni, A.; Tirassa, P.; Ceccanti, M.; Messina, M.P.; Vitali, M.; Petrella, C.; Ferraguti, G. Urinary ethyl glucuronide for the assessment of alcohol consumption during pregnancy: Comparison between biochemical data and screening questionnaires. Curr. Med. Chem., 2022, 29(17), 3125-3141. doi: 10.2174/0929867328666211125100329 PMID: 34823457
  10. Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56. doi: 10.1016/j.toxlet.2017.04.016 PMID: 28455000
  11. Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; Ceccanti, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3), e12724. doi: 10.1111/adb.12724 PMID: 30811093
  12. de la Monte, S.M.; Kril, J.J. Human alcohol-related neuropathology. Acta Neuropathol., 2014, 127(1), 71-90. doi: 10.1007/s00401-013-1233-3 PMID: 24370929
  13. Ramchandani, V.A.; Stangl, B.L.; Blaine, S.K.; Plawecki, M.H.; Schwandt, M.L.; Kwako, L.E.; Sinha, R.; Cyders, M.A.; O’Connor, S.; Zakhari, S. Stress vulnerability and alcohol use and consequences: From human laboratory studies to clinical outcomes. Alcohol, 2018, 72, 75-88. doi: 10.1016/j.alcohol.2018.06.001 PMID: 30322482
  14. Derme, M.; Piccioni, M.G.; Brunelli, R.; Crognale, A.; Denotti, M.; Ciolli, P.; Scomparin, D.; Tarani, L.; Paparella, R.; Terrin, G.; Di Chiara, M.; Mattia, A.; Nicotera, S.; Salomone, A.; Ceccanti, M.; Messina, M.P.; Maida, N.L.; Ferraguti, G.; Petrella, C.; Fiore, M. Oxidative stress in a mother consuming alcohol during pregnancy and in her newborn: A case report. Antioxidants, 2023, 12(6), 1216. doi: 10.3390/antiox12061216 PMID: 37371946
  15. Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80, 110783. doi: 10.1016/j.nut.2020.110783 PMID: 32569950
  16. Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69. doi: 10.1016/j.nut.2016.08.014 PMID: 27908553
  17. Shivani, R.; Goldsmith, R.J.; Anthenelli, R.M. Alcoholism and psychiatric disorders: Diagnostic challenges. Alcohol Res. Health, 2002, 26(2), 90-98.
  18. Rodd, Z.A.; Bertsch, B.A.; Strother, W.N.; Le-Niculescu, H.; Balaraman, Y.; Hayden, E.; Jerome, R.E.; Lumeng, L.; Nurnberger, J.I., Jr; Edenberg, H.J.; McBride, W.J.; Niculescu, A.B. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J., 2007, 7(4), 222-256. doi: 10.1038/sj.tpj.6500420 PMID: 17033615
  19. Köhnke, M.D. Approach to the genetics of alcoholism: A review based on pathophysiology. Biochem. Pharmacol., 2008, 75(1), 160-177. doi: 10.1016/j.bcp.2007.06.021 PMID: 17669369
  20. Goldman, D.; Oroszi, G.; Ducci, F. The genetics of addictions: Uncovering the genes. Nat. Rev. Genet., 2005, 6(7), 521-532. doi: 10.1038/nrg1635 PMID: 15995696
  21. Lesch, K.P. Alcohol dependence and gene x environment interaction in emotion regulation: Is serotonin the link? Eur. J. Pharmacol., 2005, 526(1-3), 113-124. doi: 10.1016/j.ejphar.2005.09.027 PMID: 16288736
  22. Hiroi, N.; Agatsuma, S. Genetic susceptibility to substance dependence. Mol. Psychiatry, 2005, 10(4), 336-344. doi: 10.1038/sj.mp.4001622 PMID: 15583701
  23. Oroszi, G.; Goldman, D. Alcoholism: Genes and mechanisms. Pharmacogenomics, 2004, 5(8), 1037-1048. doi: 10.1517/14622416.5.8.1037 PMID: 15584875
  24. Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: A molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684. doi: 10.2174/0929867321666141229103158 PMID: 25544474
  25. Matošić, A.; Marušić, S.; Vidrih, B.; Kovak-Mufić, A.; Cicin-Šain, L. Neurobiological bases of alcohol addiction. Acta Clin. Croat., 2016, 55(1), 134-150. doi: 10.20471/acc.2016.55.01.19 PMID: 27333729
  26. Cotton, N.S. The familial incidence of alcoholism: A review. J. Stud. Alcohol, 1979, 40(1), 89-116. doi: 10.15288/jsa.1979.40.89 PMID: 376949
  27. Cservenka, A. Neurobiological phenotypes associated with a family history of alcoholism. Drug Alcohol Depend., 2016, 158, 8-21. doi: 10.1016/j.drugalcdep.2015.10.021 PMID: 26559000
  28. Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330. doi: 10.1016/j.physbeh.2015.06.034 PMID: 26143187
  29. Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; Polimeni, A.; Ceccanti, M.; Caronti, B.; Di Certo, M.G.; Barbato, C.; Mattia, A.; Tarani, L.; Fiore, M. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants, 2022, 11(1), 145. doi: 10.3390/antiox11010145 PMID: 35052649
  30. Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136. doi: 10.1139/cjpp-2017-0013 PMID: 28763626
  31. Cloninger, C.R.; Bohman, M.; Sigvardsson, S. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch. Gen. Psychiatry, 1981, 38(8), 861-868. doi: 10.1001/archpsyc.1981.01780330019001 PMID: 7259422
  32. Iyer-Eimerbrink, P.A.; Nurnberger, J.I., Jr. Genetics of alcoholism. Curr. Psychiatry Rep., 2014, 16(12), 518. doi: 10.1007/s11920-014-0518-0 PMID: 25399692
  33. Fadda, F.; Rossetti, Z.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Prog. Neurobiol., 1998, 56(4), 385-431. doi: 10.1016/S0301-0082(98)00032-X PMID: 9775400
  34. Ross, S.; Peselow, E. The neurobiology of addictive disorders. Clin. Neuropharmacol., 2009, 32(5), 269-276. doi: 10.1097/WNF.0b013e3181a9163c PMID: 19834992
  35. Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773. doi: 10.1016/S2215-0366(16)00104-8 PMID: 27475769
  36. Wise, R.A.; Robble, M.A. Dopamine and addiction. Annu. Rev. Psychol., 2020, 71(1), 79-106. doi: 10.1146/annurev-psych-010418-103337 PMID: 31905114
  37. Heinz, A.; Beck, A.; Grüsser, S.M.; Grace, A.A.; Wrase, J. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict. Biol., 2009, 14(1), 108-118. doi: 10.1111/j.1369-1600.2008.00136.x PMID: 18855799
  38. Zorrilla, E.P.; Koob, G.F. Impulsivity derived from the dark side: Neurocircuits that contribute to negative urgency. Front. Behav. Neurosci., 2019, 13, 136. doi: 10.3389/fnbeh.2019.00136 PMID: 31293401
  39. Courtney, K.E.; Arellano, R.; Barkley-Levenson, E.; Gálvan, A.; Poldrack, R.A.; MacKillop, J.; David Jentsch, J.; Ray, L.A. The relationship between measures of impulsivity and alcohol misuse: An integrative structural equation modeling approach. Alcohol. Clin. Exp. Res., 2012, 36(6), 923-931. doi: 10.1111/j.1530-0277.2011.01635.x PMID: 22091877
  40. Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex, 2000, 10(3), 295-307. doi: 10.1093/cercor/10.3.295 PMID: 10731224
  41. Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238. doi: 10.1038/npp.2009.110 PMID: 19710631
  42. Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiatry Rep., 2011, 13(5), 398-405. doi: 10.1007/s11920-011-0224-0 PMID: 21792580
  43. Rehm, J.; Shield, K.D.; Gmel, G.; Rehm, M.X.; Frick, U. Modeling the impact of alcohol dependence on mortality burden and the effect of available treatment interventions in the European Union. Eur. Neuropsychopharmacol., 2013, 23(2), 89-97. doi: 10.1016/j.euroneuro.2012.08.001 PMID: 22920734
  44. Hasin, D.S.; Stinson, F.S.; Ogburn, E.; Grant, B.F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry, 2007, 64(7), 830-842. doi: 10.1001/archpsyc.64.7.830 PMID: 17606817
  45. Zindel, L.R.; Kranzler, H.R. Pharmacotherapy of alcohol use disorders: Seventy-five years of progress. Curr. Psychiatry Rep., 2014, 8(5), 383-388.
  46. Pettinati, H.M.; Rabinowitz, A.R. Choosing the right medication for the treatment of alcoholism. Curr. Psychiatry Rep., 2006, 8(5), 383-388. doi: 10.1007/s11920-006-0040-0 PMID: 16968619
  47. Petrakis, I.L. A rational approach to the pharmacotherapy of alcohol dependence. J. Clin. Psychopharmacol., 2006, 26(6), S3-S12. doi: 10.1097/01.jcp.0000248602.68607.81 PMID: 17114952
  48. Wallhed Finn, S.; Lundin, A.; Sjöqvist, H.; Danielsson, A.K. Pharmacotherapy for alcohol use disorders – Unequal provision across sociodemographic factors and co-morbid conditions. A cohort study of the total population in Sweden. Drug Alcohol Depend., 2021, 227, 108964. doi: 10.1016/j.drugalcdep.2021.108964 PMID: 34518028
  49. Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106. doi: 10.1708/2925.29410.29912210 PMID: 29912210
  50. Ray, L.A.; Bujarski, S.; Grodin, E.; Hartwell, E.; Green, R.; Venegas, A.; Lim, A.C.; Gillis, A.; Miotto, K. State-of-the-art behavioral and pharmacological treatments for alcohol use disorder. Am. J. Drug Alcohol Abuse, 2019, 45(2), 124-140. doi: 10.1080/00952990.2018.1528265 PMID: 30373394
  51. Mohapatra, S.; Rath, N.R. Disulfiram Induced Psychosis. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 68-69. doi: 10.9758/cpn.2017.15.1.68.28138114
  52. Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 1997, 389(6648), 251-260. doi: 10.1038/38444 PMID: 9305837
  53. Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447. doi: 10.1038/nrm3382 PMID: 22722606
  54. Woodcock, C.L.; Skoultchi, A.I.; Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res., 2006, 14(1), 17-25. doi: 10.1007/s10577-005-1024-3 PMID: 16506093
  55. Warnault, V.; Darcq, E.; Levine, A.; Barak, S.; Ron, D. Chromatin remodeling — a novel strategy to control excessive alcohol drinking. Transl. Psychiatry, 2013, 3(2), e231. doi: 10.1038/tp.2013.4 PMID: 23423140
  56. De Majo, F.; Calore, M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res., 2018, 3(1), 20-28. doi: 10.1016/j.ncrna.2018.02.003 PMID: 30159436
  57. Werner, R.J.; Kelly, A.D.; Issa, J.P.J. Epigenetics and precision oncology. Cancer J., 2017, 23(5), 262-269. doi: 10.1097/PPO.0000000000000281 PMID: 28926426
  58. Nicoglou, A.; Merlin, F. Epigenetics: A way to bridge the gap between biological fields. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Biol. Biomed. Sci., 2017, 66, 73-82. doi: 10.1016/j.shpsc.2017.10.002 PMID: 29033228
  59. Helm, M.; Motorin, Y. Detecting RNA modifications in the epitranscriptome: Predict and validate. Nat. Rev. Genet., 2017, 18(5), 275-291. doi: 10.1038/nrg.2016.169 PMID: 28216634
  60. Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; Amin, V.; Whitaker, J.W.; Schultz, M.D.; Ward, L.D.; Sarkar, A.; Quon, G.; Sandstrom, R.S.; Eaton, M.L.; Wu, Y.C.; Pfenning, A.R.; Wang, X.; Claussnitzer, M.; Liu, Y.; Coarfa, C.; Harris, R.A.; Shoresh, N.; Epstein, C.B.; Gjoneska, E.; Leung, D.; Xie, W.; Hawkins, R.D.; Lister, R.; Hong, C.; Gascard, P.; Mungall, A.J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T.K.; Hansen, R.S.; Kaul, R.; Sabo, P.J.; Bansal, M.S.; Carles, A.; Dixon, J.R.; Farh, K.H.; Feizi, S.; Karlic, R.; Kim, A.R.; Kulkarni, A.; Li, D.; Lowdon, R.; Elliott, G.; Mercer, T.R.; Neph, S.J.; Onuchic, V.; Polak, P.; Rajagopal, N.; Ray, P.; Sallari, R.C.; Siebenthall, K.T.; Sinnott-Armstrong, N.A.; Stevens, M.; Thurman, R.E.; Wu, J.; Zhang, B.; Zhou, X.; Beaudet, A.E.; Boyer, L.A.; De Jager, P.L.; Farnham, P.J.; Fisher, S.J.; Haussler, D.; Jones, S.J.M.; Li, W.; Marra, M.A.; McManus, M.T.; Sunyaev, S.; Thomson, J.A.; Tlsty, T.D.; Tsai, L.H.; Wang, W.; Waterland, R.A.; Zhang, M.Q.; Chadwick, L.H.; Bernstein, B.E.; Costello, J.F.; Ecker, J.R.; Hirst, M.; Meissner, A.; Milosavljevic, A.; Ren, B.; Stamatoyannopoulos, J.A.; Wang, T.; Kellis, M. Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518(7539), 317-330. doi: 10.1038/nature14248 PMID: 25693563
  61. Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
  62. Stefanska, B.; MacEwan, D.J. Epigenetics and pharmacology. Br. J. Pharmacol., 2015, 2701
  63. Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet., 2019, 20(2), 109-127. doi: 10.1038/s41576-018-0074-2 PMID: 30479381
  64. Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics. Oncol. Rep., 2017, 37(1), 3-9. doi: 10.3892/or.2016.5236 PMID: 27841002
  65. Terracina, S.; Ferraguti, G.; Tarani, L.; Messina, M.P.; Lucarelli, M.; Vitali, M.; De Persis, S.; Greco, A.; Minni, A.; Polimeni, A.; Ceccanti, M.; Petrella, C.; Fiore, M. Transgenerational abnormalities induced by paternal preconceptual alcohol drinking: Findings from humans and animal models. Curr. Neuropharmacol., 2022, 20(6), 1158-1173. doi: 10.2174/1570159X19666211101111430 PMID: 34720083
  66. Fiore, M.; Petrella, C.; Coriale, G.; Rosso, P.; Fico, E.; Ralli, M.; Greco, A.; De Vincentiis, M.; Minni, A.; Polimeni, A.; Vitali, M.; Messina, M.P.; Ferraguti, G.; Tarani, F.; de Persis, S.; Ceccanti, M.; Tarani, L. Markers of neuroinflammation in the serum of prepubertal children with fetal alcohol spectrum disorders. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 854-868. doi: 10.2174/1871527320666211201154839 PMID: 34852752
  67. Egervari, G.; Siciliano, C.A.; Whiteley, E.L.; Ron, D. Alcohol and the brain: From genes to circuits. Trends Neurosci., 2021, 44(12), 1004-1015. doi: 10.1016/j.tins.2021.09.006 PMID: 34702580
  68. Rodriguez, F.D.; Coveñas, R. Targeting opioid and neurokinin-1 receptors to treat alcoholism. Curr. Med. Chem., 2011, 18(28), 4321-4334. doi: 10.2174/092986711797200444 PMID: 21861818
  69. Rodriguez, F.D.; Coveñas, R. Targeting NPY, CRF/UCNs and NPS neuropeptide systems to treat alcohol use disorder (AUD). Curr. Med. Chem., 2017, 24(23), 2528-2558. doi: 10.2174/0929867324666170316120836.28302012 PMID: 28302012
  70. Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med., 2016, 374(4), 363-371. doi: 10.1056/NEJMra1511480 PMID: 26816013
  71. Palmisano, M.; Pandey, S.C. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol, 2017, 60, 7-18. doi: 10.1016/j.alcohol.2017.01.001 PMID: 28477725
  72. Spanagel, R.; Noori, H.R.; Heilig, M. Stress and alcohol interactions: Animal studies and clinical significance. Trends Neurosci., 2014, 37(4), 219-227. doi: 10.1016/j.tins.2014.02.006 PMID: 24636458
  73. Pandey, S.C.; Zhang, H.; Ugale, R.; Prakash, A.; Xu, T.; Misra, K. Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism. J. Neurosci., 2008, 28(10), 2589-2600. doi: 10.1523/JNEUROSCI.4752-07.2008 PMID: 18322102
  74. Sakharkar, A.J.; Zhang, H.; Tang, L.; Shi, G.; Pandey, S.C. Histone deacetylases (HDAC)-induced histone modifications in the amygdala: A role in rapid tolerance to the anxiolytic effects of ethanol. Alcohol. Clin. Exp. Res., 2012, 36(1), 61-71. doi: 10.1111/j.1530-0277.2011.01581.x PMID: 21790673
  75. Correa, F.; De Laurentiis, A.; Franchi, A.M. Ethanol downregulates N- acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms. Eur. J. Pharmacol., 2016, 786, 224-233. doi: 10.1016/j.ejphar.2016.06.004 PMID: 27266665
  76. Guo, W.; Crossey, E.L.; Zhang, L.; Zucca, S.; George, O.L.; Valenzuela, C.F.; Zhao, X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One, 2011, 6(5), e19351. doi: 10.1371/journal.pone.0019351 PMID: 21655322
  77. Kyzar, E.J.; Pandey, S.C. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci. Lett., 2015, 601, 11-19. doi: 10.1016/j.neulet.2015.01.051 PMID: 25623036
  78. Pandey, S.C.; Roy, A.; Zhang, H. The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. Alcohol. Clin. Exp. Res., 2003, 27(3), 396-409. doi: 10.1097/01.ALC.0000056616.81971.49 PMID: 12658105
  79. Teppen, T.L.; Krishnan, H.R.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. The potential role of amygdaloid MicroRNA-494 in alcohol-induced anxiolysis. Biol. Psychiatry, 2016, 80(9), 711-719. doi: 10.1016/j.biopsych.2015.10.028 PMID: 26786313
  80. Kyzar, E.J.; Zhang, H.; Pandey, S.C. Adolescent alcohol exposure epigenetically suppresses amygdala arc enhancer RNA expression to confer adult anxiety susceptibility. Biol. Psychiatry, 2019, 85(11), 904-914. doi: 10.1016/j.biopsych.2018.12.021 PMID: 30827484
  81. McCarthy, M.J.; Duchemin, A.M.; Neff, N.H.; Hadjiconstantinou, M. CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology, 2012, 221(1), 143-153. doi: 10.1007/s00213-011-2559-y PMID: 22086359
  82. D’Addario, C.; Caputi, F.F.; Ekström, T.J.; Di Benedetto, M.; Maccarrone, M.; Romualdi, P.; Candeletti, S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J. Mol. Neurosci., 2013, 49(2), 312-319. doi: 10.1007/s12031-012-9829-y PMID: 22684622
  83. Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317. doi: 10.2174/1570159X15666170825101308 PMID: 28847297
  84. Mews, P.; Egervari, G.; Nativio, R.; Sidoli, S.; Donahue, G.; Lombroso, S.I.; Alexander, D.C.; Riesche, S.L.; Heller, E.A.; Nestler, E.J.; Garcia, B.A.; Berger, S.L. Alcohol metabolism contributes to brain histone acetylation. Nature, 2019, 574(7780), 717-721. doi: 10.1038/s41586-019-1700-7 PMID: 31645761
  85. Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet, 2019, 394(10200), 781-792. doi: 10.1016/S0140-6736(19)31775-1 PMID: 31478502
  86. Ron, D.; Barak, S. Molecular mechanisms underlying alcohol-drinking behaviours. Nat. Rev. Neurosci., 2016, 17(9), 576-591. doi: 10.1038/nrn.2016.85 PMID: 27444358
  87. Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits. Neuron, 2017, 96(6), 1223-1238. doi: 10.1016/j.neuron.2017.10.032 PMID: 29268093
  88. Pandey, S.C.; Kyzar, E.J.; Zhang, H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology, 2017, 122, 74-84. doi: 10.1016/j.neuropharm.2017.02.002 PMID: 28174112
  89. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74. doi: 10.1038/nature11247 PMID: 22955616
  90. Luger, K.; Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol., 2005, 15(2), 188-196. doi: 10.1016/j.sbi.2005.03.006 PMID: 15837178
  91. Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295. doi: 10.1021/cr500350x PMID: 25424540
  92. Arnaudo, A.M.; Garcia, B.A. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin, 2013, 6(1), 24. doi: 10.1186/1756-8935-6-24 PMID: 23916056
  93. Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics, 2012, 7(10), 1098-1108. doi: 10.4161/epi.21975 PMID: 22948226
  94. Lee, J.S.; Smith, E.; Shilatifard, A. The language of histone crosstalk. Cell, 2010, 142(5), 682-685. doi: 10.1016/j.cell.2010.08.011 PMID: 20813257
  95. Shanmugam, M.K.; Arfuso, F.; Arumugam, S.; Chinnathambi, A.; Jinsong, B.; Warrier, S.; Wang, L.Z.; Kumar, A.P.; Ahn, K.S.; Sethi, G.; Lakshmanan, M. Role of novel histone modifications in cancer. Oncotarget, 2018, 9(13), 11414-11426. doi: 10.18632/oncotarget.23356 PMID: 29541423
  96. Tamburri, S.; Lavarone, E.; Fernández-Pérez, D.; Conway, E.; Zanotti, M.; Manganaro, D.; Pasini, D. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell, 2020, 77(4), 840-856.e5. doi: 10.1016/j.molcel.2019.11.021 PMID: 31883952
  97. Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028. doi: 10.1016/j.cell.2011.08.008 PMID: 21925322
  98. Young, N.L.; DiMaggio, P.A.; Garcia, B.A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell. Mol. Life Sci., 2010, 67(23), 3983-4000. doi: 10.1007/s00018-010-0475-7 PMID: 20683756
  99. Kalda, A.; Heidmets, L.T.; Shen, H.Y.; Zharkovsky, A.; Chen, J.F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res., 2007, 181(1), 76-84. doi: 10.1016/j.bbr.2007.03.027 PMID: 17477979
  100. Kumar, A.; Choi, K.H.; Renthal, W.; Tsankova, N.M.; Theobald, D.E.H.; Truong, H.T.; Russo, S.J.; LaPlant, Q.; Sasaki, T.S.; Whistler, K.N.; Neve, R.L.; Self, D.W.; Nestler, E.J. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 2005, 48(2), 303-314. doi: 10.1016/j.neuron.2005.09.023 PMID: 16242410
  101. Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668. doi: 10.1016/j.neubiorev.2020.08.018 PMID: 32976915
  102. Wapenaar, H.; Dekker, F.J. Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin. Epigenetics, 2016, 8(1), 59. doi: 10.1186/s13148-016-0225-2 PMID: 27231488
  103. Lombardi, P.M.; Cole, K.E.; Dowling, D.P.; Christianson, D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol., 2011, 21(6), 735-743. doi: 10.1016/j.sbi.2011.08.004 PMID: 21872466
  104. Cochran, A.G.; Conery, A.R.; Sims, R.J., III Bromodomains: A new target class for drug development. Nat. Rev. Drug Discov., 2019, 18(8), 609-628. doi: 10.1038/s41573-019-0030-7 PMID: 31273347
  105. de la Cruz, X.; Lois, S.; Sánchez-Molina, S.; Martínez-Balbás, M.A. Do protein motifs read the histone code? BioEssays, 2005, 27(2), 164-175. doi: 10.1002/bies.20176 PMID: 15666348
  106. Musselman, C.A.; Lalonde, M.E.; Côté, J.; Kutateladze, T.G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol., 2012, 19(12), 1218-1227. doi: 10.1038/nsmb.2436 PMID: 23211769
  107. Benton, C.B.; Fiskus, W.; Bhalla, K.N. Targeting histone acetylation. Cancer J., 2017, 23(5), 286-291. doi: 10.1097/PPO.0000000000000284 PMID: 28926429
  108. Taniguchi, Y. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins. Int. J. Mol. Sci., 2016, 17(11), 1849. doi: 10.3390/ijms17111849 PMID: 27827996
  109. Choudhury, M.; Park, P.H.; Jackson, D.; Shukla, S.D. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes. Alcohol, 2010, 44(6), 531-540. doi: 10.1016/j.alcohol.2010.06.003 PMID: 20705415
  110. Pascual, M.; Boix, J.; Felipo, V.; Guerri, C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J. Neurochem., 2009, 108(4), 920-931. doi: 10.1111/j.1471-4159.2008.05835.x PMID: 19077056
  111. Kim, J.S.; Shukla, S.D. Acute in vitro effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol., 2006, 41(2), 126-132. doi: 10.1093/alcalc/agh248 PMID: 16314425
  112. Bannister, A.J.; Schneider, R.; Kouzarides, T. Histone methylation. Cell, 2002, 109(7), 801-806. doi: 10.1016/S0092-8674(02)00798-5 PMID: 12110177
  113. Bannister, A.J.; Kouzarides, T. Reversing histone methylation. Nature, 2005, 436(7054), 1103-1106. doi: 10.1038/nature04048 PMID: 16121170
  114. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
  115. Chen, D.; Ma, H.; Hong, H.; Koh, S.S.; Huang, S.M.; Schurter, B.T.; Aswad, D.W.; Stallcup, M.R. Regulation of transcription by a protein methyltransferase. Science, 1999, 284(5423), 2174-2177. doi: 10.1126/science.284.5423.2174
  116. Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857. doi: 10.1126/science.1060781 PMID: 11387442
  117. Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol., 2005, 6(11), 838-849. doi: 10.1038/nrm1761 PMID: 16261189
  118. Klose, R.J.; Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 307-318. doi: 10.1038/nrm2143 PMID: 17342184
  119. Kaniskan, H.Ü.; Martini, M.L.; Jin, J. Inhibitors of protein methyltransferases and demethylases. Chem. Rev., 2018, 118(3), 989-1068. doi: 10.1021/acs.chemrev.6b00801 PMID: 28338320
  120. Kang, M.K.; Mehrazarin, S.; Park, N-H.; Wang, C-Y. Epigenetic gene regulation by histone demethylases: Emerging role in oncogenesis and inflammation. Oral Dis., 2017, 23(6), 709-720. doi: 10.1111/odi.12569 PMID: 27514027
  121. Arrowsmith, C.H.; Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol., 2019, 26(10), 863-869. doi: 10.1038/s41594-019-0290-2 PMID: 31582844
  122. Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356. doi: 10.1139/bcb-2018-0248 PMID: 30412425
  123. Finegersh, A.; Homanics, G.E. Acute ethanol alters multiple histone modifications at model gene promoters in the cerebral cortex. Alcohol. Clin. Exp. Res., 2014, 38(7), 1865-1873. doi: 10.1111/acer.12465 PMID: 24942484
  124. Qiang, M.; Denny, A.; Lieu, M.; Carreon, S.; Li, J. Histone H3K9 modifications are a local chromatin event involved in ethanol-induced neuroadaptation of the NR2B gene. Epigenetics, 2011, 6(9), 1095-1104. doi: 10.4161/epi.6.9.16924 PMID: 21814037
  125. Karpyak, V.M.; Winham, S.J.; Preuss, U.W.; Zill, P.; Cunningham, J.M.; Walker, D.L.; Lewis, K.A.; Geske, J.R.; Colby, C.L.; Abulseoud, O.A.; Hall-Flavin, D.K.; Loukianova, L.L.; Schneekloth, T.D.; Frye, M.A.; Bazov, I.; Heit, J.A.; Bakalkin, G.; Mrazek, D.A.; Biernacka, J.M. Association of the PDYN gene with alcohol dependence and the propensity to drink in negative emotional states. Int. J. Neuropsychopharmacol., 2013, 16(5), 975-985. doi: 10.1017/S1461145712001137 PMID: 23101464
  126. Xuei, X.; Dick, D.; Flury-Wetherill, L.; Tian, H-J.; Agrawal, A.; Bierut, L.; Goate, A.; Bucholz, K.; Schuckit, M.; Nurnberger, J., Jr; Tischfield, J.; Kuperman, S.; Porjesz, B.; Begleiter, H.; Foroud, T.; Edenberg, H.J. Association of the κ-opioid system with alcohol dependence. Mol. Psychiatry, 2006, 11(11), 1016-1024. doi: 10.1038/sj.mp.4001882 PMID: 16924269
  127. Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 2012, 32(5), 1884-1897. doi: 10.1523/JNEUROSCI.3136-11.2012 PMID: 22302827
  128. Urbano, A.; Smith, J.; Weeks, R.J.; Chatterjee, A. Gene-specific targeting of DNA methylation in the mammalian genome. Cancers, 2019, 11(10), 1515. doi: 10.3390/cancers11101515 PMID: 31600992
  129. Dean, W. Pathways of DNA Demethylation BT - DNA Methyltransferases - Role and Function; Jeltsch, A.; Jurkowska, R.Z., Eds.; Springer International Publishing: Cham, 2016, pp. 247-274. doi: 10.1007/978-3-319-43624-1_11
  130. Cui, D.; Xu, X. DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int. J. Mol. Sci., 2018, 19(5), 1315. doi: 10.3390/ijms19051315 PMID: 29710796
  131. Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534. doi: 10.1038/nrg.2017.33 PMID: 28555658
  132. Chen, Z.; Zhang, Y. Role of Mammalian DNA methyltransferases in development. Annu. Rev. Biochem., 2020, 89(1), 135-158. doi: 10.1146/annurev-biochem-103019-102815 PMID: 31815535
  133. Wu, S.C.; Zhang, Y. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 607-620. doi: 10.1038/nrm2950 PMID: 20683471
  134. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492. doi: 10.1038/nrg3230 PMID: 22641018
  135. Ginder, G.D.; Williams, D.C., Jr Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther., 2018, 184, 98-111. doi: 10.1016/j.pharmthera.2017.11.002 PMID: 29128342
  136. Rausch, C.; Hastert, F.D.; Cardoso, M.C. DNA modification readers and writers and their interplay. J. Mol. Biol., 2019. doi: 10.1016/j.jmb.2019.12.018.31866298 PMID: 31866298
  137. Bochtler, M.; Kolano, A.; Xu, G.L. DNA demethylation pathways: Additional players and regulators. BioEssays, 2017, 39(1), e201600178. doi: 10.1002/bies.201600178 PMID: 27859411
  138. Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L. Conversion of 5-Methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL Partner TET1. Science, 2009, 324(5929), 930-935. doi: 10.1126/science.1170116
  139. Nestler, E.J.; Peña, C.J.; Kundakovic, M.; Mitchell, A.; Akbarian, S. Epigenetic basis of mental illness. Neurosci. a Rev. J. bringing Neurobiol. Neurol. psychiatry, 2016, 22(5), 447-463.
  140. Starkman, B.G.; Sakharkar, A.J.; Pandey, S.C. Epigenetics-beyond the genome in alcoholism. Alcohol Res., 2012, 34(3), 293-305.
  141. Longley, M.J.; Lee, J.; Jung, J.; Lohoff, F.W. Epigenetics of alcohol use disorder—A review of recent advances in DNA methylation profiling. Addict. Biol., 2021, 26(6), e13006. doi: 10.1111/adb.13006 PMID: 33538087
  142. Jarczak, J.; Miszczak, M.; Radwanska, K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front. Behav. Neurosci., 2023, 17(January), 957203. doi: 10.3389/fnbeh.2023.957203 PMID: 36778133
  143. Bahji, A.; Bach, P.; Danilewitz, M.; Crockford, D.; Devoe, D.J.; el-Guebaly, N.; Saitz, R. Pharmacotherapies for adults with alcohol use disorders: A systematic review and network meta-analysis. J. Addict. Med., 2022, 16(6), 630-638. doi: 10.1097/ADM.0000000000000992 PMID: 35653782
  144. Philibert, R.A.; Gunter, T.D.; Beach, S.R.H.; Brody, G.H.; Madan, A. MAOA methylation is associated with nicotine and alcohol dependence in women. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(5), 565-570. doi: 10.1002/ajmg.b.30778 PMID: 18454435
  145. Liu, C.; Marioni, R.E.; Hedman, Å.K.; Pfeiffer, L.; Tsai, P-C.; Reynolds, L.M.; Just, A.C.; Duan, Q.; Boer, C.G.; Tanaka, T.; Elks, C.E.; Aslibekyan, S.; Brody, J.A.; Kühnel, B.; Herder, C.; Almli, L.M.; Zhi, D.; Wang, Y.; Huan, T.; Yao, C.; Mendelson, M.M.; Joehanes, R.; Liang, L.; Love, S-A.; Guan, W.; Shah, S.; McRae, A.F.; Kretschmer, A.; Prokisch, H.; Strauch, K.; Peters, A.; Visscher, P.M.; Wray, N.R.; Guo, X.; Wiggins, K.L.; Smith, A.K.; Binder, E.B.; Ressler, K.J.; Irvin, M.R.; Absher, D.M.; Hernandez, D.; Ferrucci, L.; Bandinelli, S.; Lohman, K.; Ding, J.; Trevisi, L.; Gustafsson, S.; Sandling, J.H.; Stolk, L.; Uitterlinden, A.G.; Yet, I.; Castillo-Fernandez, J.E.; Spector, T.D.; Schwartz, J.D.; Vokonas, P.; Lind, L.; Li, Y.; Fornage, M.; Arnett, D.K.; Wareham, N.J.; Sotoodehnia, N.; Ong, K.K.; van Meurs, J.B.J.; Conneely, K.N.; Baccarelli, A.A.; Deary, I.J.; Bell, J.T.; North, K.E.; Liu, Y.; Waldenberger, M.; London, S.J.; Ingelsson, E.; Levy, D. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry, 2018, 23(2), 422-433. doi: 10.1038/mp.2016.192 PMID: 27843151
  146. Brückmann, C.; Di Santo, A.; Karle, K.N.; Batra, A.; Nieratschker, V. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics, 2016, 11(6), 456-463. doi: 10.1080/15592294.2016.1179411 PMID: 27128683
  147. Ruggeri, B.; Macare, C.; Stopponi, S.; Jia, T.; Carvalho, F.M.; Robert, G.; Banaschewski, T.; Bokde, A.L.W.; Bromberg, U.; Büchel, C.; Cattrell, A.; Conrod, P.J.; Desrivières, S.; Flor, H.; Frouin, V.; Gallinat, J.; Garavan, H.; Gowland, P.; Heinz, A.; Ittermann, B.; Martinot, J.L.; Martinot, M.L.P.; Nees, F.; Papadopoulos-Orfanos, D.; Paus, T.; Poustka, L.; Smolka, M.N.; Vetter, N.C.; Walter, H.; Whelan, R.; Sommer, W.H.; Bakalkin, G.; Ciccocioppo, R.; Schumann, G. Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents. J. Child Psychol. Psychiatry, 2018, 59(6), 650-658. doi: 10.1111/jcpp.12843 PMID: 29197086
  148. Lucarelli, M.; Ferraguti. G.; Fuso, A. Active demethylation of non-CpG moieties in animals: a neglected research area. Int. J. Mol. Sci., 2019, 20(24), 6272.
  149. Fuso, A.; Ferraguti, G.; Scarpa, S.; Ferrer, I.; Lucarelli, M. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation. PLoS One, 2015, 10(2), e0118318. doi: 10.1371/journal.pone.0118318 PMID: 25692551
  150. Fuso, A.; Scarpa, S.; Grandoni, F.; Strom, R.; Lucarelli, M. A reassessment of semiquantitative analytical procedures for DNA methylation: Comparison of bisulfite- and HpaII polymerase-chain-reaction-based methods. Anal. Biochem., 2006, 350(1), 24-31. doi: 10.1016/j.ab.2005.12.008 PMID: 16445884
  151. Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet., 2013, 14(3), 204-220. doi: 10.1038/nrg3354 PMID: 23400093
  152. Patil, V.; Ward, R.L.; Hesson, L.B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics, 2014, 9(6), 823-828. doi: 10.4161/epi.28741 PMID: 24717538
  153. Ramasamy, D.; Deva, M.R.A.K.; Rajkumar, T.; Mani, S. Non-CpG methylation—a key epigenetic modification in cancer. Brief. Funct. Genomics, 2021, 20(5), 304-311. doi: 10.1093/bfgp/elab035 PMID: 34318313
  154. Ramsahoye, B.H.; Biniszkiewicz, D.; Lyko, F.; Clark, V.; Bird, A.P.; Jaenisch, R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci., 2000, 97(10), 5237-5242. doi: 10.1073/pnas.97.10.5237 PMID: 10805783
  155. Arand, J.; Spieler, D.; Karius, T.; Branco, M.R.; Meilinger, D.; Meissner, A.; Jenuwein, T.; Xu, G.; Leonhardt, H.; Wolf, V.; Walter, J. In vitro control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet., 2012, 8(6), e1002750. doi: 10.1371/journal.pgen.1002750 PMID: 22761581
  156. Ziller, M.J.; Müller, F.; Liao, J.; Zhang, Y.; Gu, H.; Bock, C.; Boyle, P.; Epstein, C.B.; Bernstein, B.E.; Lengauer, T.; Gnirke, A.; Meissner, A. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet., 2011, 7(12), e1002389. doi: 10.1371/journal.pgen.1002389 PMID: 22174693
  157. Guo, J.U.; Su, Y.; Shin, J.H.; Shin, J.; Li, H.; Xie, B.; Zhong, C.; Hu, S.; Le, T.; Fan, G.; Zhu, H.; Chang, Q.; Gao, Y.; Ming, G.; Song, H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci., 2014, 17(2), 215-222. doi: 10.1038/nn.3607 PMID: 24362762
  158. Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D. Global epigenomic reconfiguration during mammalian brain development. Science, 2013, 341(6146), 1237905. doi: 10.1126/science.1237905
  159. Jiang, S.; Cheng, S.J.; Ren, L.C.; Wang, Q.; Kang, Y.J.; Ding, Y.; Hou, M.; Yang, X.X.; Lin, Y.; Liang, N.; Gao, G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 2019, 47(15), 7842-7856. doi: 10.1093/nar/gkz621 PMID: 31350901
  160. Schuettengruber, B.; Bourbon, H.M.; Di Croce, L.; Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell, 2017, 171(1), 34-57. doi: 10.1016/j.cell.2017.08.002 PMID: 28938122
  161. Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci., 2009, 10(12), 842-849. doi: 10.1038/nrn2763 PMID: 19888283
  162. Barringhaus, K.G.; Zamore, P.D. MicroRNAs. Circulation, 2009, 119(16), 2217-2224. doi: 10.1161/CIRCULATIONAHA.107.715839 PMID: 19398677
  163. Banerjee, A.; Waters, D.; Camacho, O.M.; Minet, E. Quantification of plasma MicroRNAs in a group of healthy smokers, ex-smokers and non-smokers and correlation to biomarkers of tobacco exposure. Biomarkers Biochem. Indic. Expo., 2015, 20(2), 123-131.
  164. McCrae, J.C.; Sharkey, N.; Webb, D.J.; Vliegenthart, A.D.B.; Dear, J.W. Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clin. Toxicol., 2016, 54(1), 53-55. doi: 10.3109/15563650.2015.1112015 PMID: 26574140
  165. Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691. doi: 10.1038/srep35691 PMID: 27767084
  166. Vo, N.; Klein, M.E.; Varlamova, O.; Keller, D.M.; Yamamoto, T.; Goodman, R.H.; Impey, S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA, 2005, 102(45), 16426-16431. doi: 10.1073/pnas.0508448102 PMID: 16260724
  167. Hansen, K.F.; Sakamoto, K.; Wayman, G.A.; Impey, S.; Obrietan, K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One, 2010, 5(11), e15497. doi: 10.1371/journal.pone.0015497 PMID: 21124738
  168. Wang, J.; Cui, Q. Specific roles of MicroRNAs in their interactions with environmental factors. J. Nucleic Acids, 2012, 2012, 1-10. doi: 10.1155/2012/978384 PMID: 23209884
  169. Li, M.D.; van der Vaart, A.D. MicroRNAs in addiction: Adaptation’s middlemen? Mol. Psychiatry, 2011, 16(12), 1159-1168. doi: 10.1038/mp.2011.58 PMID: 21606928
  170. Kyzar, E.J.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood. Addict. Biol., 2017, 22(5), 1191-1204. doi: 10.1111/adb.12404 PMID: 27183824
  171. Zhang, H.; Kyzar, E.J.; Bohnsack, J.P.; Kokare, D.M.; Teppen, T.; Pandey, S.C. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci. Rep., 2018, 8(1), 10376. doi: 10.1038/s41598-018-28415-9 PMID: 29991681
  172. Li, E.; Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol., 2014, 6(5), a019133. doi: 10.1101/cshperspect.a019133 PMID: 24789823
  173. Garro, A.J.; McBeth, D.L.; Lima, V.; Lieber, C.S. Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome. Alcohol. Clin. Exp. Res., 1991, 15(3), 395-398. doi: 10.1111/j.1530-0277.1991.tb00536.x PMID: 1877725
  174. Sakharkar, A.J.; Tang, L.; Zhang, H.; Chen, Y.; Grayson, D.R.; Pandey, S.C. Effects of acute ethanol exposure on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. Int. J. Neuropsychopharmacol., 2014, 17(12), 2057-2067. doi: 10.1017/S1461145714001047 PMID: 24968059
  175. Guerri, C.; Pascual, M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol, 2010, 44(1), 15-26. doi: 10.1016/j.alcohol.2009.10.003 PMID: 20113871
  176. Most, D.; Ferguson, L.; Harris, R.A. Molecular basis of alcoholism. Handb. Clin. Neurol., 2014, 125, 89-111. doi: 10.1016/B978-0-444-62619-6.00006-9 PMID: 25307570
  177. Zhang, X.; Kusumo, H.; Sakharkar, A.J.; Pandey, S.C.; Guizzetti, M. Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J. Neurochem., 2014, 128(3), 344-349. doi: 10.1111/jnc.12465 PMID: 24117907
  178. Marutha Ravindran, C.R.; Ticku, M.K. Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Brain Res. Mol. Brain Res., 2004, 121(1-2), 19-27. doi: 10.1016/j.molbrainres.2003.10.025 PMID: 14969733
  179. Werner, C.T.; Altshuler, R.D.; Shaham, Y.; Li, X. Epigenetic mechanisms in drug relapse. Biol. Psychiatry, 2021, 89(4), 331-338. doi: 10.1016/j.biopsych.2020.08.005 PMID: 33066961
  180. Nieratschker, V.; Grosshans, M.; Frank, J.; Strohmaier, J.; von der Goltz, C.; El-Maarri, O.; Witt, S.H.; Cichon, S.; Nöthen, M.M.; Kiefer, F.; Rietschel, M. Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age. Addict. Biol., 2014, 19(2), 305-311. doi: 10.1111/j.1369-1600.2012.00459.x PMID: 22506971
  181. Hillemacher, T.; Weinland, C.; Heberlein, A.; Gröschl, M.; Schanze, A.; Frieling, H.; Wilhelm, J.; Kornhuber, J.; Bleich, S. Increased levels of adiponectin and resistin in alcohol dependence—possible link to craving. Drug Alcohol Depend., 2009, 99(1-3), 333-337. doi: 10.1016/j.drugalcdep.2008.07.019 PMID: 18818026
  182. Patwell, R. Involvement of DNA methylation in alcohol withdrawal-induced behavioral changes in rats. 2021. doi: 10.25417/uic.17025398.v1
  183. Bönsch, D.; Reulbach, U.; Bayerlein, K.; Hillemacher, T.; Kornhuber, J.; Bleich, S. Elevated alpha synuclein mRNA levels are associated with craving in patients with alcoholism. Biol. Psychiatry, 2004, 56(12), 984-986. doi: 10.1016/j.biopsych.2004.09.016 PMID: 15601610
  184. Bönsch, D.; Lenz, B.; Kornhuber, J.; Bleich, S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport, 2005, 16(2), 167-170. doi: 10.1097/00001756-200502080-00020 PMID: 15671870
  185. Foroud, T.; Wetherill, L.F.; Liang, T.; Dick, D.M.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.; Schuckit, M.; Carr, L.; Porjesz, B.; Xuei, X.; Edenberg, H.J. Association of alcohol craving with alpha-synuclein (SNCA). Alcohol. Clin. Exp. Res., 2007, 31(4), 537-545. doi: 10.1111/j.1530-0277.2007.00337.x PMID: 17374032
  186. Schaffner, S.L.; Lussier, A.A.; Baker, J.A.; Goldowitz, D. Neonatal alcohol exposure in mice induces select differentiation- and apoptosis-related chromatin changes both independent of and dependent on sex. Front Genet., 2020, 11, 35. doi: 10.3389/fgene.2020.00035
  187. Muschler, M.A.N.; Hillemacher, T.; Kraus, C.; Kornhuber, J.; Bleich, S.; Frieling, H. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J. Neural Transm., 2010, 117(4), 513-519. doi: 10.1007/s00702-010-0378-7 PMID: 20191296
  188. Zhao, R.; Zhang, R.; Li, W.; Liao, Y.; Tang, J.; Miao, Q.; Hao, W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia-Pac. Psychiatry, 2013, 5(1), 39-50. doi: 10.1111/appy.12010 PMID: 23857790
  189. Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res., 2009, 1293, 61-75. doi: 10.1016/j.brainres.2009.03.038 PMID: 19332030
  190. Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393(6683), 386-389. doi: 10.1038/30764 PMID: 9620804
  191. Pandey, S.C.; Ugale, R.; Zhang, H.; Tang, L.; Prakash, A. Brain chromatin remodeling: A novel mechanism of alcoholism. J. Neurosci., 2008, 28(14), 3729-3737. doi: 10.1523/JNEUROSCI.5731-07.2008 PMID: 18385331
  192. You, C.; Zhang, H.; Sakharkar, A.J.; Teppen, T.; Pandey, S.C. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int. J. Neuropsychopharmacol., 2014, 17(2), 313-322. doi: 10.1017/S1461145713001144 PMID: 24103311
  193. Pandey, S.C. Anxiety and alcohol abuse disorders: A common role for CREB and its target, the neuropeptide Y gene. Trends Pharmacol. Sci., 2003, 24(9), 456-460. doi: 10.1016/S0165-6147(03)00226-8 PMID: 12967770
  194. Attilia, F.; Perciballi, R.; Rotondo, C.; Capriglione, I.; Iannuzzi, S.; Attilia, M.L.; Coriale, G.; Vitali, M.; Cereatti, F.; Fiore, M.; Ceccanti, M. Alcohol withdrawal syndrome: Diagnostic and therapeutic methods. Riv. Psichiatr., 2018, 53(3), 118-122. doi: 10.1708/2925.29413.29912213 PMID: 29912213
  195. Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60. doi: 10.2174/18756190MTA2fMjAjz PMID: 32348226
  196. Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry, 2011, 16(10), 974-986. doi: 10.1038/mp.2011.46 PMID: 21519339
  197. Rani, C.S.S.; Qiang, M.; Ticku, M.K. Potential role of cAMP response element-binding protein in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene transcription in fetal mouse cortical cells. Mol. Pharmacol., 2005, 67(6), 2126-2136. doi: 10.1124/mol.104.007872 PMID: 15774772
  198. Biermann, T.; Reulbach, U.; Lenz, B.; Frieling, H.; Muschler, M.; Hillemacher, T.; Kornhuber, J.; Bleich, S. N-methyl-d-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J. Neural Transm., 2009, 116(5), 615-622. doi: 10.1007/s00702-009-0212-2 PMID: 19350219
  199. Wang, K.S.; Liu, X.; Zhang, Q.; Wu, L.Y.; Zeng, M. Genome-wide association study identifies 5q21 and 9p24.1 (KDM4C) loci associated with alcohol withdrawal symptoms. J. Neural Transm., 2012, 119(4), 425-433. doi: 10.1007/s00702-011-0729-z PMID: 22072270
  200. Walker, L.C.; Lawrence, A.J. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin. Investig. Drugs, 2018, 27(8), 677-690. doi: 10.1080/13543784.2018.1502269 PMID: 30019949
  201. Kaplan, G.; Xu, H.; Abreu, K.; Feng, J.; Cohen-woods, S.; Covault, J. DNA epigenetics in addiction susceptibility. Front. Genet., 2022, 13(January), 806685. doi: 10.3389/fgene.2022.806685 PMID: 35145550
  202. Agudelo, M.; Gandhi, N.; Saiyed, Z.; Pichili, V.; Thangavel, S.; Khatavkar, P.; Yndart-Arias, A.; Nair, M. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA). Alcohol. Clin. Exp. Res., 2011, 35(8), no. doi: 10.1111/j.1530-0277.2011.01492.x PMID: 21447001
  203. Montagud-Romero, S.; Cantacorps, L.; Valverde, O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J. Psychopharmacol., 2019, 33(12), 1573-1587. doi: 10.1177/0269881119857208 PMID: 31294671
  204. Sharma, R.; Sahota, P.; Thakkar, M.M. Chronic alcohol exposure reduces acetylated histones in the sleep-wake regulatory brain regions to cause insomnia during withdrawal. Neuropharmacology, 2020, 180, 108332. doi: 10.1016/j.neuropharm.2020.108332 PMID: 32961200
  205. Chen, W.-Y.; Zhang, H.; Gatta, E.; Glover, E. J.; Pandey, S. C.; Lasek, A. W. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol, 2019, 78, 79-87.
  206. Grayson, D.R.; Kundakovic, M.; Sharma, R.P. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol. Pharmacol., 2010, 77(2), 126-135. doi: 10.1124/mol.109.061333 PMID: 19917878
  207. Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72. doi: 10.1016/j.pnpbp.2016.09.002 PMID: 27614213
  208. Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868. doi: 10.1038/nrd2681 PMID: 18827828
  209. Guan, S.P.; Kumar, S.N.; Fann, D.Y.; Kennedy, B.K. A mechanistic perspective on the health promoting effects of alcohol – A focus on epigenetics modification. Alcohol, 2023, 107, 91-96. doi: 10.1016/j.alcohol.2022.07.009 PMID: 35987314
  210. Jeanblanc, J.; Lemoine, S.; Jeanblanc, V.; Alaux-Cantin, S.; Naassila, M. The class I-specific HDAC inhibitor MS-275 decreases motivation to consume alcohol and relapse in heavy drinking rats. Int. J. Neuropsychopharmacol., 2015, 18(9), pyv029. doi: 10.1093/ijnp/pyv029 PMID: 25762717
  211. Bourguet, E.; Ozdarska, K.; Moroy, G.; Jeanblanc, J.; Naassila, M. Class I HDAC inhibitors : Potential new epigenetic therapeutics for alcohol use disorder (AUD). J Med Chem, 2017, 61(5), 1745-1766. doi: 10.1021/acs.jmedchem.7b00115
  212. Rodriguez, F.D. Targeting epigenetic mechanisms to treat alcohol use disorders (AUD). Curr. Pharm. Des., 2021, 27(30), 3252-3272. doi: 10.2174/1381612827666210203142539 PMID: 33535943
  213. Yang, M.; Barrios, J.; Yan, J.; Zhao, W.; Yuan, S.; Dong, E.; Ai, X. Causal roles of stress kinase JNK2 in DNA methylation and binge alcohol withdrawal-evoked behavioral deficits. Pharmacol. Res., 2021, 164, 105375. doi: 10.1016/j.phrs.2020.105375 PMID: 33316384
  214. Qiao, X.; Yin, F.; Ji, Y.; Li, Y.; Yan, P.; Lai, J. 5-Aza-2′-deoxycytidine in the medial prefrontal cortex regulates alcohol-related behavior and Ntf3-TrkC expression in rats. PLoS One, 2017, 12(6), e0179469. doi: 10.1371/journal.pone.0179469 PMID: 28614398
  215. Schneeberger, Y.; Stenzig, J.; Hübner, F.; Schaefer, A.; Reichenspurner, H.; Eschenhagen, T. Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N -Phthalyl- L -Tryptophan (RG 108) in rats. Basic Clin. Pharmacol. Toxicol., 2016, 118(5), 327-332. doi: 10.1111/bcpt.12514 PMID: 26525153
  216. Barbier, E.; Tapocik, J.D.; Juergens, N.; Pitcairn, C.; Borich, A.; Schank, J.R.; Sun, H.; Schuebel, K.; Zhou, Z.; Yuan, Q.; Vendruscolo, L.F.; Goldman, D.; Heilig, M. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J. Neurosci., 2015, 35(15), 6153-6164. doi: 10.1523/JNEUROSCI.4571-14.2015 PMID: 25878287
  217. Berkel, T.D.M.; Pandey, S.C. Emerging role of epigenetic mechanisms in alcohol addiction. Alcohol. Clin. Exp. Res., 2017, 41(4), 666-680. doi: 10.1111/acer.13338 PMID: 28111764
  218. Avery, J. Naltrexone and alcohol use. Am. J. Psychiatry, 2022, 179(12), 886-887. doi: 10.1176/appi.ajp.20220821 PMID: 36453035
  219. Farris, S.P.; Pietrzykowski, A.Z.; Miles, M.F.; O’Brien, M.A.; Sanna, P.P.; Zakhari, S.; Mayfield, R.D.; Harris, R.A. Applying the new genomics to alcohol dependence. Alcohol, 2015, 49(8), 825-836. doi: 10.1016/j.alcohol.2015.03.001 PMID: 25896098
  220. Shen, Y.C.; Fan, J.H.; Edenberg, H.J.; Li, T.K.; Cui, Y.H.; Wang, Y.F.; Tian, C.H.; Zhou, C.F.; Zhou, R.L.; Wang, J.; Zhao, Z.L.; Xia, G.Y. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res., 1997, 21(7), 1272-1277. doi: 10.1111/j.1530-0277.1997.tb04448.x PMID: 9347089

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024