Structure of Swirling Flow in the Channel Branching Area at Moderate Reynolds Numbers

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of experimental studies of steady-state swirling flow in the area of channel branching, that imitates the proximal end-to-side anastomosis of the human femoral artery, are given. The experiments were carried out at a Reynolds number of 1460. This corresponds to the range of physiological values when estimating by the maximum blood flow rate in the artery during the period of cardiac contractions. For both branches, an equal ratio of the flow rates was maintained. At the inlet to the branching area, the degree of flow swirl was equal to 0.125. Using the SIV (Smoke Image Velocimetry) technique, flow was visualized and the instantaneous vector flow velocity fields of each branch were measured. The main patterns of the influence of swirl on the vortex structure of flow in the main artery below the branching area and in the shunt have been revealed. The possibility of using flow swirl to create more favorable hemodynamic conditions in the anastomotic area is being considered. A particular attention is paid to the appearance of signs of local flow turbulization in the presence and absence of swirl.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Molochnikov

Kazan Scientific Center of the Russian Academy of Sciences; Tupolev Kazan National Research Technical University

Хат алмасуға жауапты Автор.
Email: vmolochnikov@mail.ru
Ресей, Kazan; Kazan

I. Nikiforov

Kazan Scientific Center of the Russian Academy of Sciences

Email: ilya.nkfrv1@gmail.com
Ресей, Kazan

N. Pashkova

Kazan Scientific Center of the Russian Academy of Sciences

Email: pashkova-2000@mail.ru
Ресей, Kazan

Әдебиет тізімі

  1. Бойко А.В., Грек Г.Р., Довгаль А.В., Козлов В.В. Возникновение турбулентности в пристенных течениях, Новосибирск: Наука. Сиб. Предприятие РАН. 1999. 328 с.
  2. Tiwari A., Cheng K.S., Salacinski H., Hamilton G., Seifalian A.M. Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch //European journal of vascular and endovascular surgery. — 2003. V. 25, № 4. P. 287–295. https://doi.org/10.1053/ejvs.2002.1810
  3. Henry F.S., Collins M.W., Hughes P.E., How T.V. Numerical investigation of steady flow in proximal and distal end-to-side anastomoses // J. Biomech. Eng. 1996. V.118. №3. P. 302– 310. https://doi.org/10.1115/1.2796011
  4. Liu X., Sun A., Fan Y., Deng X. Physiological significance of helical flow in the arterial system and its potential clinical applications // Annals of Biomed. Eng. 2015. V. 43. P. 3–15. https://10.1007/s10439-014-1097-2
  5. Molochnikov V.M., Dushin N.S., Pashkova N.D., Gataulin Ja. A., Smirnov E.M., Yukhnev A. D. Flow Structure and Transition to Local Turbulence Downstream of an Asymmetric Narrowing that Imitates Arterial Stenosis //Fluid Dynamics. 2023. V. 58. №2 P. 214–226. https://doi.org/10.1134/S0015462822602303
  6. Canver C.C. Conduit options in coronary artery bypass surgery //Chest. 1995. V. 108. № 4. P. 1150–1155. https://doi.org/10.1378/chest.108.4.1150
  7. Davies M.G., Hagen P.O. Pathobiology of intimal hyperplasia //British Journal of Surgery. 1994. V. 81. № 9. P. 1254–1269. https://doi.org/10.1002/bjs.1800810904
  8. Ghista D.N., Kabinejadian F. Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review // Biomedical engineering online. 2013. V. 12. P. 1–28. https://doi.org/10.1186/1475-925X-12-129
  9. Kuyanova J., Dubovoi A., Fomichev A., Khelimskii D., Parshin D. Hemodynamics of vascular shunts: trends, challenges, and prospects // Biophysical Reviews. 2023, V.15. №5. P. 1287–1301. https://doi.org/10.1007/s12551-023-01149-3
  10. Dellenback P.A., Metzger D.E., Neitzel G.P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion // AIAA journal. 1988. V. 26. № 6. P. 669–681. https://doi.org/10.2514/3.9952
  11. Mak H., Balabani S. Near field characteristics of swirling flow past a sudden expansion //Chemical engineering science. 2007. V. 62. № 23. P. 6726–6746. https://doi.org/10.1016/j.ces.2007.07.009
  12. Vanierschot M. Large scale flow instabilities in sudden expansion flows in the subcritical swirl regime //Proceedings of the 19th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics. LISBON Simposia, 2018. 10 pp.
  13. Hammad K.J., Ötügen M.V., Arik E.B. A PIV study of the laminar axisymmetric sudden expansion flow //Experiments in fluids. 1999. V. 26. № 3. P. 266–272. https://doi.org/10.1007/s003480050288
  14. Badekas D., Knight D.D. Eddy correlations for laminar axisymmetric sudden expansion flows // J. Fluids Eng. 1992. V. 114. № 1. P. 119–121. https://doi.org/10.1115/1.2909986
  15. Khe A.K. Vanina V.S., Cherevko A.A., Parshin D.V., Chebotnikov A.V., Boiko A.V., Tulupov A.A. Application of magnetic resonance imaging for studying the three-dimensional flow structure in blood vessel models // Journal of Applied Mechanics and Technical Physics. 2019. V. 60. P. 257–264. https://link.springer.com/article/10.1134/S002189441902007X
  16. Boiko A.V. Akulov A.E., Chupakhin A.P., Cherevko A.A., Denisenko N.S., Savelov A.A., Stankevich Yu. A., Khed A.K., Yanchenko A.A., Tulupov A.A. Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers //Journal of Applied Mechanics and Technical Physics. 2017. V. 58. P. 209–213. https://link.springer.com/article/10.1134/S0021894417020031
  17. Ha H., Choi W., Park H., Lee S.J. Advantageous swirling flow in 45° end-to-side anastomosis // Exp. Fluids. 2014. V. 55. P. 1–13. https://doi.org/10.1007/s00348-014-1861-y
  18. Ha H., Choi W., Lee S.J. Beneficial fluid-dynamic features of pulsatile swirling flow in 45° end-to-side anastomosis // Medical Engineering and Physics. 2015. V.37. P. 272–279. https://doi.org/10.1016/j.medengphy.2015.01.007
  19. Ha H., Hwang D., Choi W.-R., Baek J., Lee S.J. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow // PLOS ONE. 2014. V. 9. № 10. e111047. https://doi.org/10.1371/journal.pone.0111047
  20. Bernad S.I. Bosioc A., Bernad E.S., Craina M.L. Comparison between experimentally measured flow patterns for straigth and helical type graft //Bio-Medical Materials and Engineering. 2014. V. 24. № 1. P. 853–860.
  21. Bernad S.I., Bosioc A.I., Bernad E.S., Craina M.L. Helical type coronary bypass graft performance: Experimental investigations //Bio-Medical Materials and Engineering. 2015. V. 26. № s1. P. S477-S486
  22. Агафонов А.В., Талыгин Е.А., Бокерия Л.А., Городков А.Ю. Гидродинамические особенности закрученного потока крови в левых отделах сердца и аорте //Acta Naturae (русскоязычная версия). 2021. Т. 3. №. 4. С. 4–16.
  23. Kilner P.J., Yang G.Z., Mohiaddin R.H., Firmin D.N., Longmore D.B. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping //Circulation. 1993. V. 88. № 5. P. 2235–2247. https://doi.org/10.1161/01.CIR.88.5.2235
  24. Stonebridge P.A. Suttie S.A., Ross R., Dick J. Spiral laminar flow: a survey of a three-dimensional arterial flow pattern in a group of volunteers //European Journal of Vascular and Endovascular Surgery. 2016. V. 52. № 5. P. 674–680. https://doi.org/10.1016/j.ejvs.2016.07.018
  25. Багаев С.Н., Захаров В.Н., Орлов В.А. Основополагающие явления и законы в структурно-функциональной организации сердечно-сосудистой системы //Атеросклероз. — 2022. Т. 7. №. 2. С. 68–89.
  26. Молочников В.М., Хубулава Г.Г., Калинин Е.И., Пашкова Н.Д., Никифоров И.В. Экспериментальное и численное исследование структуры потока в модели дистального анастомоза бедренной артерии // Российский журнал биомеханики. 2023. №3. С. 36–52
  27. Kuyanova Y.O. Presnyakov S.S., Dubovoi A.V., Chupakhin A.P., Parshin, D.V. Numerical study of the tee hydrodynamics in the model problem of optimizing the low-flow vascular bypass angle //Journal of Applied Mechanics and Technical Physics. 2019. V. 60. P. 1038–1045. https://link.springer.com/article/10.1134/S0021894419060087
  28. Mikheev N.I., Dushin N.S. A Method for Measuring the Dynamics of Velocity Vector Fields in a Turbulent Flow Using Smoke Image-Visualization Videos // Instruments and Experimental Techniques. 2016. V. 59. № 6. Р. 882–889. https://doi.org/10.1134/S0020441216060063
  29. Mikheev N.I. Goltsman A.E., Saushin I.I., Dushina, O.A. Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry // Experiments in Fluids. 2017. V. 58. № 8. Р. 1–10. https://doi.org/10.1007/s00348-017-2379-x
  30. Helgadóttir Á., Lalot S., Beaubert F., Pálsson H. Mesh twisting technique for swirl induced laminar flow used to determine a desired blade shape //Applied Sciences. 2018. V. 8. № 10. 1865. 17 pp. https://doi.org/10.3390/app8101865
  31. Molochnikov V.M., Mazo A.B., Malyukov A.V., Kalinin E.I., Mikheev N.I., Dushina O.A., Paereliy A.A. Distinctive features of vortical structures generation in separated channel flow behind a rib under transition to turbulence // Thermophysics and Aeromechanics. 2014. V. 21. № 3. P. 309–317 https://doi.org/10.1134/S0869864314030056
  32. Davidson P.A. Turbulence: An Introduction For Scientists and Engineers, Oxford University Press: Oxford, MS, USA, 57. 2015. 629 с.
  33. Uruba V. Turbulence Handbook for Experimental Fluid Mechanics Professionals, Skovlunde: Dantec Dynamic. 23. 2012. 148 c.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the working area of the plant and coordinate system.

Жүктеу (18KB)
3. Fig. 2. Interior view of the vane swirler.

Жүктеу (25KB)
4. Fig. 3. Variation of the degree of swirl with increasing distance from the swirler.

Жүктеу (35KB)
5. Fig. 4. Profiles of the longitudinal component of the flow velocity (a) and its RMS pulsations (b) in a smooth channel downstream of the swirler.

Жүктеу (218KB)
6. Fig. 5. Profiles of the circumferential component of the flow velocity in the channel downstream of the swirler.

Жүктеу (172KB)
7. Fig. 6. Still images of flow visualisation in the region of channel branching (proximal anastomosis) at Re = 1460: a - without flow twist; b - with flow twist at Y = 0.125.

Жүктеу (181KB)
8. Fig. 7. Velocity profiles in branch Q1: a - without twisting; b - with flow twisting.

Жүктеу (224KB)
9. Fig. 8. Dependences of the distribution of the longitudinal component of the flow velocity along the length of the branch Q1 at different distances from the symmetry plane.

Жүктеу (99KB)
10. Fig. 9. Profiles of RMS velocity pulsations in branch Q1: a - without twisting; b - with flow twisting.

Жүктеу (237KB)
11. Fig. 10. Variation of maximum values of pulsation intensity of the longitudinal component of the flow velocity in the branch Q1: 1 - in the absence of twisting; 2 - at the upper and 3 - lower boundaries of the twisted flow braking region.

Жүктеу (64KB)
12. Fig. 11. Degree of flow twist in branch Q1.

Жүктеу (23KB)
13. Fig. 12. Distribution of the circumferential component of the flow velocity along the channel radius in branch Q1.

Жүктеу (141KB)
14. Fig. 13. Profiles of the longitudinal velocity component in branch Q2: a - with twist; b - without flow twist.

Жүктеу (223KB)
15. Fig. 14. Profiles of RMS pulsations of the longitudinal component of the flow velocity in branch Q2: a - with twist; b - without flow twist.

Жүктеу (319KB)
16. Fig. 15. Variation of maximum values of pulsation intensity of the longitudinal component of the flow velocity in branch Q2: 1 - in the absence of twisting; 2 - under conditions of flow twisting.

Жүктеу (35KB)
17. Fig. 16. Oscillograms of the longitudinal velocity component in the area of flow inhibition (velocity defect) of branch Q1 at x / d = 1.3: 1 - y / d = 0.46 (lower boundary of the braking zone); 2 - high-speed flow below the braking zone; 3 - y / d = 0.76 (upper boundary of the braking zone).

Жүктеу (132KB)
18. Fig. 17. Intermittent flow pattern in branch Q1 just beyond the braking zone at x / d = 2.8.

Жүктеу (47KB)
19. Fig. 18. Comparison of pulsation spectra of the longitudinal component of the flow velocity in branch Q1: 1 - x / d = 2.8; y / d = 0.76 (behind the braking zone); 2 - x / d = 1.3; y / d = 0.46 (mixing layer at the bottom of the braking zone).

Жүктеу (77KB)
20. Fig. 19. Flow velocity oscillograms in branch Q1 with no twist at x / d = 1.5: 1 - y / d = 0.16 (in the high-speed jet zone above the flow breakaway region); 2 - y / d = 0.52 (in the mixing layer at the boundary of the breakaway region).

Жүктеу (109KB)
21. Fig. 20. Comparison of pulsation spectra of the longitudinal component of the flow velocity in branch Q1: 1 - x / d = 1.5; y / d = 0.52 (mixing layer at the boundary of the flow breakaway region); 2 - x / d = 4.5; y / d = 0.47 (mixing layer at the boundary of the downstream flow breakaway region).

Жүктеу (97KB)
22. Fig. 21. Flow velocity oscillograms in the branch Q2 in the absence of twist: 1 - x / d = 1.0; y / d = 0.9 (in the high-speed jet zone above the flow breakaway region); 2 - x / d = 2.5; y / d = 0.85 (in the mixing layer at the boundary of the breakaway region).

Жүктеу (101KB)
23. Fig. 22. Comparison of pulsation spectra of the longitudinal component of the flow velocity in branch Q2: 1 - x / d = 2.5; y / d = 0.85 (mixing layer at the boundary of the flow breakaway area in the zone of the highest RMS velocity pulsations); 2 - x / d = 4.5; y / d = 0.8 (mixing layer at the boundary of the flow breakaway area downstream).

Жүктеу (74KB)
24. Fig. 23. Flow velocity oscillograms in branch Q2 in the presence of twist: 1 - x / d = 0.57; y / d = 0.76 (above the breakaway region at the beginning of its formation); 2 - x / d = 1.03; y / d = 0.65 (in the mixing layer in the region of the highest velocity pulsations).

Жүктеу (87KB)
25. Fig. 24. Spectra of flow velocity pulsations in branch Q2 in the presence of flow twist: 1 - x / d = 1.03; y / d = 0.65 (in the mixing layer in the region of highest velocity pulsations); 2 - x / d = 3.1; y / d = 0.69 (in the mixing layer downstream).

Жүктеу (66KB)

© Russian Academy of Sciences, 2024