Experimental Investigation of the Transverse Size of a Viscous Jet Flowing Out of a Capillary Channel

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The radii of the orifice of a capillary channel and a jet flowing out of it are generally different. Fluid friction on the channel walls leads to the parabolic velocity distribution, while small shear stresses at the free jet boundary are responsible for the velocity profile equalization. Dissipation has an effect on both the length of the region, where the velocity profile is settled, and its radius-average value, as well as on the steady-state jet radius. Previously, the corresponding problem was theoretically solved in the axisymmetric approximation. However, the symmetry condition is not fulfilled in the case of small Reynolds numbers, owing to the occurrence of a bend flow region. Moreover, in the jets flowing out at a low velocity there occur the phenomena of global and boundary instability of the capillary flow. The totality of the nonlinear, mutually-agreed effects leads to velocity profile deformation, such that it becomes asymmetric with respect to the axis in the region, where its value is settled, and the non-uniqueness of the Reynolds-number dependence of the jet radius. The results of an experimental investigation of the dependence of the steady radius of highly viscous jets on the outflow velocity are for the first time presented for the case in which the bend flow region arises.

全文:

受限制的访问

作者简介

A. Safronov

Keldysh Research Center

编辑信件的主要联系方式.
Email: a.a.safr@yandex.ru
俄罗斯联邦, Moscow

A. Koroteev

Keldysh Research Center

Email: a.a.safr@yandex.ru
俄罗斯联邦, Moscow

A. Agafonov

Keldysh Research Center

Email: a.a.safr@yandex.ru
俄罗斯联邦, Moscow

A. Grigoryev

Keldysh Research Center

Email: a.a.safr@yandex.ru
俄罗斯联邦, Moscow

N. Filatov

Keldysh Research Center

Email: a.a.safr@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Middleman S., Gavis J. Expansion and contraction of capillary jets of Newtonian liquids // Physics of Fluid. 1961. N. 4. I. 355. P. 355–359.
  2. Simon L., Wronski G., Wronski S. The shape of low-speed capillary jets of Newtonian liquids // J. Fluid Mech. 1966. V. 35. P. 1. P. 185–198.
  3. Kruyt N.P., Cuvelier C., Segal A., Zanden J. A total linearization method for solving viscous free boundary flow problems by the finite element method // International journal for numerical methods in fluids. 1988. V. 8. I. 3. P. 351–363.
  4. Brasseur E., Fyrillas M.M., Georgiou G.C., Crochet M.J. The time-dependent extrudate-swell problem of an Oldroyd-B fluid with slip along the wall // J. Rheol. 1998. V. 42. P. 549–566.
  5. Mitsoulis E., Georgiou G., Kountouriotis Z. A study of various factors affecting Newtonian extrudate swell // Computers & Fluids. 2012. V. 57. P. 195–207.
  6. Georgiou G.C., Papanastasiou T.C., Wilkes J.O. Laminar Newtonian jets at high Reynolds number and high surface tension // AIChE Journal. 1988. V. 34. N. 9. P. 1559–1562.
  7. Chesnokov Y.G., Razumovskij N.A. Free surface of a high speed capillary jet // Applied Scientific Research. 1998. V. 59. P. 77–88.
  8. Сафронов А.А. Радиационное остывание немонодисперсного капельного потока в бескаркасных системах отвода низкопотенциального тепла в космосе // Инженерно-физический журнал. 2024. Т. 97. №1. С. 20–28.
  9. Коротеев А.А., Сафронов А.А., Филатов Н.И., Григорьев А.Л., Хлынов А.В. Исследование генераторов капель бескаркасных систем теплоотвода в космосе // Космическая техника и технологии. 2023. №1(40). С. 83–94.
  10. Сафронов А.А., Коротеев А.А., Филатов Н.И., Григорьев А.Л. Изгиб вязкой струи, истекающей из капиллярного отверстия // Инженерно — физический журнал. 2022. Т. 95. № 1. С. 72–79.
  11. Yakubenko P.A. Capillary instability of an ideal jet of large but finite length // European Journal of Mechanics. B, Fluids. 1997. V. 16. N. 1. P. 39–48.
  12. Yakubenko P.A. Global capillary instability of an inclined jet // Journal of Fluid Mechanics. 1997. V. 346. I. 10. P. 181–200.
  13. Umemura A., Osaka J., Shinjo J. Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration // Microgravity Sci. Technol. 2020. V.32. P. 369–397.
  14. Сафронов А.А., Коротеев А.А., Григорьев А.Л., Филатов Н.И. Моделирование самоиндуцированного капиллярного распада струи вязкой жидкости. Известия высших учебных заведений // Прикладная нелинейная динамика. 2023. Т. 31. № 6. С. 673–685.
  15. Vihinen I., Honohan A.M., Lin S.P. Image of absolute instability in a liquid jet // Physics of Fluids. 1997. 9(11). P. 3117–3119.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic of the bending flow of the jet.

下载 (37KB)
3. Fig. 2. Bending flow of a viscous jet at Re = 2.35, Oh = 3.2 (a) and the position of the jet boundary (radius unmeasured), x = 0 - channel slice (b); boundary extension at x < 0 is due to meniscus formation on the nozzle.

下载 (265KB)
4. Fig. 3. Spindle-shaped jet.

下载 (33KB)
5. Fig. 4. Results of experimental measurements of the rst / r0 dependence on Re for different values of Oh, presented at different scales.

下载 (258KB)
6. Fig. 5. A jet of small length.

下载 (37KB)

版权所有 © Russian Academy of Sciences, 2024