Motion of an Elastic Drop through an Orifice in a Thin Plate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Impingement of drops of water and polymer solutions on a thin plate with a solitary round orifice is studied. The drop diameter before the impingement di coincides with that of the orifice dt and is equal to 3 mm. The drops fell from heights of 5, 10, and 20 mm, their velocities before the impingement amounting to 0.31, 0.44, and 0.63 m/s. The drops flew through the orifice touching slightly its edges. High-speed photography was used to fix different stages of the collision between a drop and the obstacle. It is found that a considerable deceleration of the jet by the orifice can be observable for the impingement parameters considered, down to the complete stopping of the drop flight. The mechanisms of the observable phenomena and the effect of different factors are discussed.

Full Text

Restricted Access

About the authors

A. O. Rudenko

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: arudenko@ipmnet.ru
Russian Federation, Moscow

A. N. Rozhkov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: rozhkov@ipmnet.ru
Russian Federation, Moscow

References

  1. Dbouk T., Drikakis D. On coughing and airborne droplet transmission to humans // Phys. Fluids. 2020. V. 32. P. 053310.
  2. Bourouiba L. Fluid Dynamics of Respiratory Infectious Diseases // Annu. Rev. Biomedical Engineering. 2021. V. 23. P. 547–577.
  3. Nielsen N.J. History of ThinkJet printhead development // Hewlett-Packard Journal. 1985. May. P. 4–10.
  4. Базилевский А.В., Мейер Д.Д., Рожков А.Н. Динамика и разрушение импульсных микроструй полимерных жидкостей. // Изв. РАН. МЖГ. 2005. № 3. С. 45–63.
  5. Lorenceau E., Quere D. Drops impacting a sieve // Journal of Colloid and Interface Science. 2003. V. 263. P. 244–249.
  6. Федюшкин А.И., Рожков А.Н., Руденко А.О., Гневушев А.А., Пунтус А.А. Режимы течения капли через отверстие // Материалы XIV Международной конференции по прикладной математике и механике в аэрокосмической отрасли (AMMAI’2022). Материалы конференции. Москва, 2022. С. 101–103.
  7. Базилевский А.В., Ентов В.М., Рожков А.Н. Распад жидкого мостика — метод реологического тестирования биологических жидкостей // Изв. РАН. Механика жидкости и газа. 2011. № 4. С. 119–129
  8. Рожков А.Н. Упругость и релаксационные свойства ротовой жидкости // Российский журнал биомеханики. 2021. Т. 25. № 4. С. 393–405.
  9. Руденко А.О., Рожков А.Н. Движение упругой капли через отверстие в пластине // Материалы XXIII Международной конференции по вычислительной механике и современным прикладным программным системам (ВМСППС’2023). Материалы конференции. Москва, 2023. С. 417–419.
  10. Lorenceau E., Clanet C., Quere D. Capturing drops with a thin fiber // Journal of Colloid and Interface Science. 2004. V. 279. P. 192–197.
  11. Kim S., Kim W. Drop impact on a fiber // Phys. Fluids. 2016. V. 28. P. 042001.
  12. Fedyushkin A.I., Rozhkov A.N., Rudenko A.O. Collision of water drops with a thin cylinder // Journal of Physics: Conference Series. 2021. V. 2057. P. 012034.
  13. Базилевский А.В., Рожков А.Н. Эффекты коалесценции при столкновении капель воды с тонким цилиндром // Девятая международная научная конференция — Школа молодых ученых. Физическое и математическое моделирование процессов в геосредах. Москва, ИПМех РАН , 18–20 октября 2023. C. 118–121.
  14. Федюшкин А.И., Гневушев А.А., Захаров А.С., Рожков А.Н. Влияние силы тяжести при обтекании жидкой каплей тонкой нити // Девятая международная научная конференция — Школа молодых ученых. Физическое и математическое моделиро-вание процессов в геосредах. Москва, ИПМех РАН, 18–20 октября 2023. C. 109–112.
  15. Базилевский А.В., Рожков А.Н. Удар микроструи воды по микроволокну // Изв. РАН. Механика жидкости и газа. 2023. № 5. С. 110–118.
  16. Руденко А.О., Рожков А.Н. Удар упругой капли по тонкому цилиндру // Высокомолекулярные соединения. Серия А. 2024. Т. 66. № 3. С. 236–247.
  17. Rozhkov, A., Prunet-Foch, B., Vignes-Adler, M. Star-like breakup of polymeric drops in electrical field // Journal of Non-Newtonian Fluid Mechanics. 2015. V. 226. P. 46–59.
  18. Базилевский А.В., Рожков А.Н. Всплеск упругой жидкости — реологический тест полимерных растворов // Высокомолекулярные соединения. Серия А. 2018. Т. 60. № 3. С. 235–248.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experiment.

Download (167KB)
3. Fig. 2. Video recordings of the motion of water droplets, PAA-100 and PAA-1k (a-c) through the hole in the plate when a drop falls from a height of 5 mm. The division value of the ruler on the frame is 1 mm. B = πdiGθ2/(4m0) is a quantitative parameter describing the assumed transition to drop collapse [4].

Download (432KB)
4. Fig. 3. Video recordings of the motion of water droplets, PAA-100 and PAA-1k (a-c) through the hole when falling from a height of h0 = 10 mm. The value of ruler divisions on the frame is 1 mm.

Download (504KB)
5. Fig. 4. Video recordings of the movement of water droplets, PAA-100 and PAA-1k (a-c) through the hole when falling from a height of h0 = 20 mm. The value of ruler divisions on the frame is 1 mm.

Download (450KB)
6. Fig. 5. Dependence of jet displacement z on time for different liquids when droplets fall from heights h0 = 5, 10 and 20 mm. 1 - water h0 = 5 mm, 2 - water h0 = 10 mm, 3 - water h0 = 20 mm, 4 - PAA100 h0 = 5 mm, 5 - PAA100 h0 = 10 mm, 6 - PAA100 h0 = 20 mm, 7 - PAA1k h0 = 5 mm, 8 - PAA1k h0 = 10 mm, 9 - PAA1k h0 = 20 mm; The dotted line shows the theoretical ‘unobstructed’ droplet trajectories z = (2gh0)1/2t + gt2/2 for heights h0 = 5, 10 and 20 mm. The horizontal dashed line separates the region of droplet detachment from the plate z > 3 mm and the region of droplet capture by the hole in the plate z < 3 mm.

Download (236KB)
7. Fig. 6. Flow regimes as functions of determining parameters. Numbers denote variants: 1 - G = 0, γ = 0, g = 9.81 m/s2, 2 - G = 0, γ = 0.072 N/m, g = 0, 3 - G = 100 Pa, θ = 0.1 s, γ = 0.072 N/m, g = 9.81 m/s2, 4 - G = 100 Pa, θ = 0.1 s, γ = 0, g = 0. Calculations were carried out using the MatLab application package for the case vi = 0.49 m/s, a0 = 3 mm.

Download (75KB)
8. Fig. 7. Numerical solutions of equation (3.2) (solid curves) in comparison with experimental data for droplets of different liquids falling from the height h0 = 5 mm, vi = 0.2011 m/s (Fig. 2). 1 - water, G = 0, 2 - PAA100, G = 51 Pa, θ = 0.061s, 3 - PAA1k, G = 146 Pa, θ = 0.031s. The zeros correspond to droplet entrapment by the orifice. The rheological parameters G and q were estimated by selecting the best approximation using the least squares method.

Download (114KB)
9. Fig. 8. Numerical solutions of equation (3.2) in comparison with experimental data for droplets of different liquids falling from the height h0 = 10 mm, vi = 0.2736 m/s (Fig. 3). 1 - water, G = 0, 2 - PAA100, G = 71 Pa, θ = 0.021 s, 3 - PAA1k, G = 151 Pa, θ = 0.021 s. Crosses correspond to droplet detachment from the orifice, zeros to droplet entrapment by the orifice. The rheological parameters G and q were estimated by selecting the best approximation using the least squares method.

Download (105KB)
10. Fig. 9. Numerical solutions of equation (3.2) versus experimental data for droplets falling from a height of h0 = 20 mm, vi = 0.4931 m/s (Fig. 4). 1 - water, G = 0, 2 - PAA100, G = 91 Pa, θ = 0.011 s, 3 - PAA1k, G = 151 Pa, θ = 0.021 s. The crosses correspond to droplet detachment from the hole.

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences