Specific Features of the Flow in the Shock Layer near a Semicone on a Flat Plate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We present the results of experimental and numerical investigations of the structure of the supersonic M = 3 flow past an arrangement of a semicone on a flat plate, where the cone vertex coincides with the supersonic leading edge of the plate. Using a specially developed optical method for visualizing supersonic conical flows it is established that in the flow past the arrangement at zero or nonzero angle of attack the separation region arising on interaction of either the conical bow shock or the inner shock wave with the plate boundary layer is situated totally on the plate. The appearance of additional singular lines on the semicone surface and vortex structures of inviscid origin in the shock layer is due to the occurrence of contact discontinuities proceeding from the triple points of either the λ-configuration of shock waves accompanying the separation region on the plate or the bow shock wave arising in the flow past the arrangement with or without an angle of attack. Numerical codes for calculating the flow in the conical approximation are developed basing on the viscous and inviscid gas models. The comparison of the calculated results with experimental data shows their satisfactory agreement and possible usage domains of any of these approaches.

Texto integral

Acesso é fechado

Sobre autores

M. Zubin

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: zubinma@mail.ru
Rússia, Moscow

F. Maksimov

Lomonosov Moscow State University

Email: f_a_maximov@mail.ru
Rússia, Moscow

Bibliografia

  1. Зубин М.А., Остапенко Н.А., Чулков А.А. Конические течения газа с ударными волнами и отрывом турбулентного пограничного слоя // Изв. РАН. МЖГ. 2012. № 2. С. 140–160.
  2. Зубин М.А., Максимов Ф.А., Остапенко Н.А. Критерии существования невязких вихревых структур в ударных слоях конических течений газа // Докл. РАН. 2014. Т. 434. № 3. С. 282–288.
  3. Зубин М.А., Максимов Ф.А., Остапенко Н.А. Невязкие вихревые структуры в ударных слоях конических течений около V-образных крыльев // Изв. РАН. МЖГ. 2017. № 3. С. 97–113.
  4. Гунько Ю.П., Кудрявцев А.Н., Рахимов Р.Д. Сверхзвуковые невязкие течения с регулярным и нерегулярным взаимодействием скачков уплотнения в угловых конфигурациях // Изв. РАН. МЖГ. 2004. № 2. С. 152–169.
  5. Аэродинамические установки Института механики МГУ / под. ред. Г.Г. Черного, А.И. Зубкова, Ю.А. Панова. М.: Изд-во Московского университета. 1985. 43 с.
  6. Гонор А.Л., Зубин М.А., Остапенко Н.А. Применение лазеров в экспериментальной аэродинамике / В кн.: Приборостроение и автоматический контроль. М.: Машиностроение. 1985. №2. С. 5–43.
  7. Зубин М.А., Максимов Ф.А., Остапенко Н.А. О некоторых особенностях структуры течения в ударных слоях конических течений газа // Изв. РАН. МЖГ. 2014. № 6. С. 118–134.
  8. Maksimov F.A. Simulation of the Flows Near Wings with Supersonic Edges. Advances in the Theory and Practice of Computational Mechanics. Smart Innovation/ Systems and Technologies. 2022. Vol. 274. P. 87–103.
  9. Максимов Ф.А., Чураков Д.А., Шевелев Ю.Д. Разработка математических моделей и численных методов для решения задач аэродинамического проектирования на многопроцессорной вычислительной технике // ЖВММФ. 2011. Т. 51. №2. С. 303–328.
  10. Авдуевский В.С., Грецов В.К. Исследование трехмерного отрывного обтекания полуконусов, установленных на пластине // Изв. АН СССР. МЖГ. 1970. №6. С. 112-115.
  11. Settles G.S., Kimmel R.L. Similarity of quasiconical shock wave/turbulent boundary layer interactions // AIAA Journal. 1986. Vol. 24. No. 1. Р. 47–53.
  12. Zheltovodov A., Knight D. Ideal-Gas Shock Wave–Turbulent Boundary-Layer Interactions in Supersonic Flows and Their Modeling: Three-Dimensional Interactions / in a book Shock Wave-Boundary-Layer Interactions, edited H. Babinsky and J.K. Harvey (chapter 5, p. 202-258), New York: Cambridge University Press. 2011.
  13. Sabnis K., Babinsky H. A review of three-dimensional shock wave–boundary-layer interactions / Progress in Aerospace Sciences 143 (2023) 100953, p. 1–27.
  14. Зубин М.А., Остапенко Н.А. Структура течения в отрывной области при взаимодействии прямого скачка уплотнения с пограничным слоем в угле // Изв. АН СССР. МЖГ. 1979. № 3. С. 51–58.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental model and coordinate system.

Baixar (90KB)
3. Fig. 2. Mesh near V-shaped wing with a cone-shaped centre body.

Baixar (50KB)
4. Fig. 3. Shadow flow patterns (a, b) in the plane of the cone normal and comparison with calculation data (isobars and current lines) for ideal (c, d) and viscous gas (e, f) models at angle of attack α = 0° and ϑ = 25 (a, c, e) and 30° (b, d, f). Symbols I and II are the positions of the special flowing and flowing lines taken from the pictures of the limiting current lines.

Baixar (512KB)
5. Fig. 4. Picture of current lines on the model surface: angle of attack α = 0°, cone opening semi-angle ϑ = 25°.

Baixar (537KB)
6. Fig. 5. Pressure distribution over the model surface at α = 0° and ϑ = 30°: symbol I - experiment, curves I, II - non-viscous and viscous calculations; line segments 1-4 - position of special lines on the model surface.

Baixar (132KB)
7. Fig. 6. Contact rupture intensity ∆K (a) and Mach number Mn (b) of the velocity component normal to the beam passing through the triple point of the λ-configuration of shock waves.

Baixar (94KB)
8. Fig. 7. Flow diagrams when the plate is streamlined at the angle of attack α = 0°.

Baixar (143KB)
9. Fig. 8. Shadow flow patterns (a) in the plane of the cone normal moulding and comparison with calculation data (isobars and current lines) for ideal (b) and viscous gas models (c) at angles of attack α = 10° and ϑ = 25°. Symbols I and II are the positions of the special flow and flow lines taken from the pictures of the limiting current lines.

Baixar (542KB)
10. Fig. 9. Contact rupture intensity ∆K (a) and Mach number Mn (b) of the velocity component normal to the beam passing through the branching point on the head shock.

Baixar (187KB)
11. Fig. 10. Pressure distribution over the model surface at α = 10° and ϑ = 25°: symbol I - experiment, curves I, II - non-viscous and viscous calculations; line segments 1-4 - location of special lines on the model surface.

Baixar (131KB)
12. Fig. 11. Schemes of the flow when the plate is streamlined at the angle of attack α.

Baixar (83KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024