Effect of Flow Swirling on the Subsonic Air Jet in the VGU-4 HF Plasmatron

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of taking into account stream swirl when calculating the flow of a subsonic air plasma jet past a cylindrical model of 50 mm in diameter when the jet flows out from the discharge channel into the test chamber of the VGU-4 IPMech RAS HF plasmatron is studied. A comparison has been made of calculations of axisymmetric flow past the model based on the full Navier-Stokes equations taking into account (new results) and without taking into account (old results) the tangential velocity component w under the experimental conditions at a pressure of 80 mbar in a wide range of anode supply power at various distances from the plasmatron channel outlet to the model. It is shown that when calculating the VGU-4 plasmatron for a low power with taking into account flow swirl, the pattern of flow past the frontal part of the model is modified, namely, a vortex region is formed in front of the model instead of a relatively thin boundary layer. For moderate and high plasmatron power, the effect of taking into account swirl on the isolines of the dimensionless stream function and on the isotherms is small in the jet core region in front of the model, but is significant in the outer flow region in the test chamber.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Vasilyevsky

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: koles@ipmnet.ru
Ресей, Moscow

A. Kolesnikov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: koles@ipmnet.ru
Ресей, Moscow

Әдебиет тізімі

  1. Васильевский С.А., Колесников А.Ф. Численное исследование течений и теплообмена в индукционной плазме высокочастотного плазмотрона. Энциклопедия низкотемпературной плазмы. Сер. Б. Том VII-1. Математическое моделирование в низкотемпературной плазме. Часть 2/ Под ред. Ю.П. Попова. М.: ЯНУС-К, 2008, С. 220–234.
  2. Васильевский С.А., Гордеев А.Н., Колесников А.Ф., Чаплыгин А.В. Тепловой эффект поверхностного катализа в дозвуковых струях диссоциированного воздуха: эксперимент на ВЧ-плазмотроне и численное моделирование // Изв. РАН. МЖГ. 2020. № 5. С. 137–150.
  3. Васильевский С.А., Колесников А.Ф., Якушин М.И. Определение эффективных вероятностей гетерогенной рекомбинации атомов в условиях влияния на тепловой поток газофазных реакций // ТВТ. 1991. Т. 29. № 3. С. 521
  4. Власов В.И., Залогин Г.Н., Землянский Б.А., Кнотько В.Б. Методика и результаты экспериментального определения каталитической активности материалов при высоких температурах // Изв. РАН. МЖГ. 2003. № 5. С. 178.
  5. Chazot O., Krassilchikoff H.V., Thomel J. TPS ground testing in plasma wind tunnel for catalytic properties determination // 46th AIAA Aerospace Meeting and Exhibit, AIAA Paper 2008-1252, Jan. 2008.
  6. Nguyen-Kuok S. Theory of low-temperature plasma physics. Springer International Publishing Switzerland, 2017. 495 c. doi: 10.1007/978-3-319-43721-7
  7. Сахаров В.И. Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмотрона // Изв. РАН. МЖГ. 2007. № 6. С. 157–168.
  8. Yu M., Takahashi Y., Kihara H., Abe K., Yamada K., Abe T. Numerical investigation of flow fields in inductively coupled plasma wind tunnels // Plasma Sci. Technol. 2014. V. 16. P. 930–940.
  9. Власов В.И., Залогин Г.Н., Ковалев Р.В. Численное моделирование течения различных плазмообразующих газов в тракте ВЧ плазмотрона // Физико-химическая кинетика в газовой динамике. 2018. Т. 19. №4. С. 2–23. doi: 10.33257/PhChGD.19.4.775
  10. Chazot O., Panerai F., Muylaert J. M., Thoemel J. Catalysis phenomena determination in plasmatron facility for flight experiment design // 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper. 2010. P. 1248.
  11. Patankar S.V., Spalding D.B. Heat and mass transfer in boundary layers. London: Intertext Books. 1970.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Radial profiles of longitudinal (a) and tangential (b) velocity components at the discharge channel slice for three values of Nap power: 1 - 3 - Nap = 30, 50 and 70 kW.

Жүктеу (165KB)
3. Fig. 2. Isolines of dimensionless current function in the jet core for the mode Nap = 20 kW, Zm = 60 mm: (a) - calculation taking into account twisting; (b) - calculation without taking into account twisting.

Жүктеу (180KB)
4. Fig. 3. Isotherms in the jet core for the mode Nap = 20 kW, Zm = 60 mm: (a) - calculation taking into account twisting; (b) - calculation without taking into account twisting.

Жүктеу (194KB)
5. Fig. 4. Isolines of the tangential velocity component w (z, r) [m/s] throughout the computational domain for the Nap = 30 kW, Zm = 60 mm mode.

Жүктеу (100KB)
6. Fig. 5. Isolines of the dimensionless current function in the whole calculation region for the mode Nap = 30 kW, Zm = 60 mm: (a) - calculation taking into account twisting; (b) - calculation without taking into account twisting.

Жүктеу (299KB)
7. Fig. 6. Distributions of enthalpy h (z) (a) and temperature T (z) (b) along the jet axis from the channel cut-off to the model for three power values Nap = 30, 50, 70 kW; dashed curves are calculations without considering twist.

Жүктеу (176KB)
8. Fig. 7. Distributions of dimensionless parameters - velocity u (z) / u (0) (a) and velocity gradient u1 (z) (b) along the jet axis for two power values Nap = 30 and 70 kW; dashed curves - calculations without taking into account twisting.

Жүктеу (173KB)

© Russian Academy of Sciences, 2024