Supersonic Gas Flow in a Plane Channel with a Normal Glow Discharge in the Magnetic Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of numerical study of the interaction of supersonic molecular nitrogen flow with a normal glow discharge in a magnetic field at velocities M = 2 and 5 and a pressure of 0.6 Torr are given. It is shown that, depending on the polarization of the magnetic field induction vector, the magnetic field can both accelerate and slow down the motion of the discharge current column in gas flow. When there is no magnetic field, the normal glow discharge is not carried away by the flow, but moves at a noticeably lower velocity. This is a consequence of the influence of the gas boundary layers near the surfaces and a delay in the rate of ionization processes in the electric current column of gas-discharge plasma relative to the velocity of motion of the neutral gas that penetrates the discharge.

Texto integral

Acesso é fechado

Sobre autores

S. Surzhikov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: surg@ipmnet.ru
Rússia, Moscow

Bibliografia

  1. Гладуш Г.Г., Самохин А.А. Численное исследование шнурования тока на электродах в тлеющем разряде // ПМТФ. 1981. № 5. С.15–23.
  2. Райзер Ю.П., Суржиков С.Т. Двумерная структура нормального тлеющего разряда и роль диффузии в формировании катодного и анодного пятен // Теплофизика высоких температур. 1988. Т.25. № 3. С.428–435.
  3. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 591 с.
  4. Суржиков С.Т., Райзер Ю.П. Еще раз о природе эффекта нормальной плотности тока на катоде тлеющего разряда//Письма в ЖТФ. 1987. Т.13. №8. С.452-456
  5. Surzhikov S.T., Shang J.S. Two-component plasma model for two-dimensional glow discharge in magnetic field //Journal of Computational Physics. 2004. 199. pp.437-464.
  6. Surzhikov S.T., Shang J.S. Normal Glow Discharge in Axial Magnetic Field// Plasma Sources Sciences and Technology. 2014, Vol.23. 054017.
  7. Гуськов О.В., Копченов В.И., Липатов И.И., Острась В.Н., Старухин В.П. Процессы торможения сверхзвуковых течений в каналах. М.: Физматлит, 2008. 168 с.
  8. Surzhikov S.T. Theoretical and Computational Physics of Gas Discharge Phenomena. A Mathematical Introduction, 2nd ed. de Gruyter: Berlin, 2020, 537 p.
  9. Суржиков С.Т. Диффузионно-дрейфовая модель поверхностного тлеющего разряда в сверхзвуковом потоке газа//Изв. РАН. Механика жидкости и газа. 2024. №1. С.145–162.
  10. Тамм И.Е. Основы теории электричества. М.: Наука. Гл. ред. физ.-мат. лит. 1989. 504 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Calculation scheme of normal glow discharge in a flat channel with gas flow.

Baixar (66KB)
3. Fig. 2. Electrodynamic structure of a normal glow discharge in a quiescent gas: (a) volume concentration of electrons (ZE = ne / n0) and (b) ions (ZI = ni / n0), (c) electric potential (Fi = φ / ε), (d) modulus of electric field strength in V/cm (EfieldM = |E|), (e) volume rate of birth of electron-ion pairs in 1/(cm3s) (Rate_Ioniz = ω). The white box shows the region of the initial approximation of the quasi-neutral plasma configuration. Hereinafter n0 = 109 cm-3.

Baixar (368KB)
4. Fig. 3. Gas dynamics of a flat channel at M = 5: a) - Mach numbers, b) - temperature in K, c) - pressure in Torr, d) - density (Ro = ρ / ρin).

Baixar (317KB)
5. Fig. 4. Distribution of electron (a, b, c) and ion (d, e, f) concentrations at successive moments of time t = 25.2 ms (a, d), 76.8 ms (b, e) and 107 ms (c, f) of motion of a normal glow discharge in a magnetic field Bz = -0.01 Tesla without gas flow.

Baixar (454KB)
6. Fig. 5. Distribution of electric field strength (a, b, c) and ionisation rate (d, e, f) at successive time moments t = 25.2 ms (a, d), 76.8 ms (b, e) and 107 ms (c, f) of motion of a normal glow discharge in a magnetic field Bz = -0.01 Tesla without gas flow.

Baixar (464KB)
7. Fig. 6. Distribution of electron (a) and ion (b) concentrations in Δt = 26 ms after the start of the discharge motion in the M = 2 flow without magnetic field.

Baixar (172KB)
8. Fig. 7. Distribution of electron (a) and ion (b) concentrations in Δt = 24 ms after the start of the discharge motion in the M = 5 flow without magnetic field.

Baixar (184KB)
9. Fig. 8. Distribution of electron (a, b, c) and ion (d, e, f) concentrations at successive moments of time t = 2.4 ms (a, d), 8 ms (b, e) and 24.8 ms (c, f) after the start of the discharge motion in the flow M = 2 with magnetic field Bz = -0.01 Tesla.

Baixar (532KB)
10. Fig. 9. Distribution of electron (a, b, c) and ion (d, e, f) concentrations at successive time moments t = 2.5 ms (a, d), 8.4 ms (b, e), and 16.9 ms (c, f) after the start of the discharge motion in the flow M = 5 with magnetic field Bz = -0.01 Tesla.

Baixar (542KB)
11. Fig. 10. Distribution of electron (a, b) and ion (c, d) concentrations at successive moments of time t = 5.3 ms (a, c) and 34.1 ms (b, d) after the start of the discharge motion in the flow M = 2 with magnetic field Bz = +0.01 Tesla.

Baixar (265KB)
12. Fig. 11. Distribution of electron (a, b) and ion (c, d) concentrations at consecutive moments of time t = 2.8 ms (a, c) and 16.2 ms (b, d) after the beginning of the discharge motion in the flow M = 5 with magnetic field Bz = +0.01 Tesla.

Baixar (260KB)
13. Fig. 12. Distribution of electric field strength and ionisation rate at time t = 34.2 ms after the beginning of motion of a normal glow discharge in a magnetic field Bz = +0.01 Tesla and in a flux M = 2.

Baixar (142KB)
14. Fig. 13. Distribution of electric field strength and ionisation rate at time t = 16245 μs after the start of motion of a normal glow discharge in the magnetic field Bz = +0.01 Tesla and in the flux M = 5.

Baixar (143KB)
15. Fig. 14. Distribution of electric field strength and ionisation velocity at time t = 24.8 ms after the start of motion of a normal glow discharge in the magnetic field Bz = -0.01 Tesla and in the flux M = 2.

Baixar (158KB)
16. Fig. 15. Distribution of electric field strength and ionisation velocity at time t = 24.8 ms after the start of motion of a normal glow discharge in the magnetic field Bz = -0.01 Tesla and in the flux M = 5.

Baixar (173KB)
17. Fig. 16. Pressure coefficient distribution along the bottom surface at M = 2 and M = 5. Solid curves - Bz = -0.01 Tesla, dashed curves - Bz = +0.01 Tesla; solid curve - pressure coefficient distribution without discharge.

Baixar (77KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024