Application of Methods of the Theory of Critical Distances to Estimate the Fracture of Quasi-Brittle Materials with Notches
- Авторлар: Suknev S.V.1
-
Мекемелер:
- Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences
- Шығарылым: № 1 (2023)
- Беттер: 129-141
- Бөлім: Articles
- URL: https://permmedjournal.ru/1026-3519/article/view/672882
- DOI: https://doi.org/10.31857/S0572329922100191
- EDN: https://elibrary.ru/KLQBAS
- ID: 672882
Дәйексөз келтіру
Аннотация
The application of various methods of the theory of critical distances for evaluating the cleavage failure of a quasi-brittle plate with a notch in the form of a circular hole that is subjected to uniaxial tension, uniaxial compression, and also to the combined action of tensile and compressive stresses is considered. Critical stress calculations have been performed based on the previously proposed approach, according to which the structural parameter of the nonlocal failure criterion is represented as the sum of two terms. The first of them characterizes the actual structure of the material and is a constant, while the second one reflects the formation of inelastic deformations and depends on the plastic properties of the material, sample geometry, and boundary conditions. The calculation results are compared with known experimental data.
Авторлар туралы
S. Suknev
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: suknyov@igds.ysn.ru
Yakutsk, 677980 Russia
Әдебиет тізімі
- Сукнев С.В. Критерий локальной прочности // Пробл. прочности. 2004. № 4. С. 108–124.
- Wieghardt K. Über das Spalten und Zerreisen elastischer Körper // Z. Math. Phys. 1907. V. 55. № 1–2. P. 60–103.
- Neuber H. Kerbspannungslehre, Grundlagen für eine genaue Spannungsrechnung. Berlin: Springer-Verlag, 1937. 160 p.
- Peterson R.E. Notch sensitivity // Metal fatigue. New York: McGraw Hill, 1959. P. 293–306.
- Новожилов В.В. О необходимом и достаточном критерии хрупкой прочности // ПММ. 1969. Т. 33. № 2. С. 212–222.
- Whitney J.M., Nuismer R.J. Stress fracture criteria for laminated composites containing stress concentrations // J. Compos. Mater. 1974. V. 8. № 4. P. 253–265.
- Kipp M.E., Sih G.C. The strain energy density failure criterion applied to notched elastic solids // Int. J. Solids Struct. 1975. V. 11. № 2. P. 153–173.
- Wu H.-C., Chang K.-J. Angled elliptic notch problem in compression and tension // Trans. ASME. J. Appl. Mech. 1978. V. 45. № 2. P. 258–262.
- Carter B.J., Lajtai E.Z., Yuan Y. Tensile fracture from circular cavities loaded in compression // Int. J. Fract. 1992. V. 57. № 3. P. 221–236.
- Radaj D., Zhang S. Process zone fracture criteria for crack tips // Eng. Fract. Mech. 1995. V. 50. № 1. P. 111–120.
- Seweryn A., Mroz Z. A non-local stress failure condition for structural elements under multiaxial loading // Eng. Fract. Mech. 1995. V. 51. № 6. P. 955–973.
- Mikhailov S.E. A functional approach to non-local strength condition and fracture criteria // Eng. Fract. Mech. 1995. V. 52. № 4. P. 731–754.
- Toribio J. A fracture criterion for high-strength steel notched bars // Eng. Fract. Mech. 1997. V. 57. № 4. P. 391–404.
- Yosibash Z., Bussiba A., Gilad I. Failure criteria for brittle elastic materials // Int. J. Fract. 2004. V. 125. № 3–4. P. 307–333. https://doi.org/10.1023/B:FRAC.0000022244.31825.3b
- Waddoups M.E., Eisenmann J.R., Kaminski B.E. Macroscopic fracture mechanics of advanced composite materials // J. Compos. Mater. 1971. V. 5. № 4. P. 446–454.
- Pugno N.M., Ruoff R.S. Quantized fracture mechanics // Philos. Mag. 2004. V. 84. № 27. P. 2829–2845. https://doi.org/10.1080/14786430412331280382
- Taylor D., Cornetti P., Pugno N. The fracture mechanics of finite crack extension // Eng. Fract. Mech. 2005. V. 72. № 7. P. 1021–1038. https://doi.org/10.1016/j.engfracmech.2004.07.001
- Hebel J., Dieringer R., Becker W. Modelling brittle crack formation at geometrical and material discontinuities using a finite fracture mechanics approach // Eng. Fract. Mech. 2010. V. 77. № 18. P. 3558–3572. https://doi.org/10.1016/j.engfracmech.2010.07.005
- Carpinteri A., Cornetti P., Sapora A. Brittle failures at rounded V-notches: a finite fracture mechanics approach // Int. J. Fract. 2011. V. 172. № 1. P. 1–8. https://doi.org/10.1007/s10704-011-9640-8
- Weißgraeber P., Leguillon D., Becker W. A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers // Arch. Appl. Mech. 2016. V. 86. № 1–2. P. 375–401. https://doi.org/10.1007/s00419-015-1091-7
- Strobl M., Dowgiałło P., Seelig T. Analysis of Hertzian indentation fracture in the framework of finite fracture mechanics // Int. J. Fract. 2017. V. 206. № 1. P. 67–79. https://doi.org/10.1007/s10704-017-0201-7
- Sapora A., Torabi A.R., Etesam S., Cornetti P. Finite Fracture Mechanics crack initiation from a circular hole // Fatigue Fract. Eng. Mater. Struct. 2018. V. 41. № 7. P. 1627–1636. https://doi.org/10.1111/ffe.12801
- Taylor D. The theory of critical distances: a new perspective in fracture mechanics. Oxford: Elsevier, 2007. 284 p.
- Li W., Susmel L., Askes H., Liao F., Zhou T. Assessing the integrity of steel structural components with stress raisers using the Theory of Critical Distances // Eng. Fail. Anal. 2016. V. 70. P. 73–89. https://doi.org/10.1016/j.engfailanal.2016.07.007
- Fuentes J.D., Cicero S., Procopio I. Some default values to estimate the critical distance and their effect on structural integrity assessments // Theor. Appl. Fract. Mech. 2017. V. 90. P. 204–212. https://doi.org/10.1016/j.tafmec.2017.04.015
- Taylor D. The Theory of Critical Distances: A link to micromechanisms // Theor. Appl. Fract. Mech. 2017. V. 90. P. 228–233. https://doi.org/10.1016/j.tafmec.2017.05.018
- Vedernikova A., Kostina A., Plekhov O., Bragov A. On the use of the critical distance concept to estimate tensile strength of notched components under dynamic loading and physical explanation theory // Theor. Appl. Fract. Mech. 2019. V. 103. P. 102280. https://doi.org/10.1016/j.tafmec.2019.102280
- Justo J., Castro J., Cicero S. Notch effect and fracture load predictions of rock beams at different temperatures using the Theory of Critical Distances // Int. J. Rock Mech. Min. Sci. 2020. V. 125. P. 104161. https://doi.org/10.1016/j.ijrmms.2019.104161
- Pipes R.B., Wetherhold R.C., Gillespie J.W. (Jr.) Notched strength of composite materials // J. Compos. Mater. 1979. V. 13. P. 148–160.
- Tan S.C. Laminated composites containing an elliptical opening. II. Experiment and model modification // J. Compos. Mater. 1987. V. 21. № 10. P. 949–968.
- Сукнев С.В. Нелокальные и градиентные критерии разрушения квазихрупких материалов при сжатии // Физ. мезомех. 2018. Т. 21. № 4. С. 22–32. https://doi.org/10.24411/1683-805X-2018-14003
- Сукнев С.В. Разрушение квазихрупкого геоматериала с круговым отверстием при неравномерно распределенном сжатии // ПМТФ. 2019. Т. 60. № 6. С. 162–172. https://doi.org/10.15372/PMTF20190617
- Suknev S.V. Extending the theory of critical distances to quasi-brittle fracture // Theor. Appl. Fract. Mech. 2021. V. 114. P. 102996. https://doi.org/10.1016/j.tafmec.2021.102996
- Сукнев С.В. Применение нелокальных и градиентных критериев для оценки разрушения геоматериалов в зонах концентрации растягивающих напряжений // Физ. мезомех. 2011. Т. 14. № 2. С. 67–75.
- Сукнев С.В. Применение подхода механики конечных трещин для оценки разрушения квазихрупкого материала с круговым отверстием // Изв. РАН. МТТ. 2021. № 3. С. 13–25. https://doi.org/10.31857/S0572329921020161
- Сукнев С.В. Разрушение хрупкого геоматериала с круговым отверстием при двухосном нагружении // ПМТФ. 2015. Т. 56. № 6. С. 166–172. https://doi.org/10.15372/PMTF20150618
- Сукнев С.В. Образование трещин отрыва в зонах концентрации растягивающих напряжений в гипсе // ФТПРПИ. 2008. № 1. С. 47–55.
Қосымша файлдар
