Application of Methods of the Theory of Critical Distances to Estimate the Fracture of Quasi-Brittle Materials with Notches

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The application of various methods of the theory of critical distances for evaluating the cleavage failure of a quasi-brittle plate with a notch in the form of a circular hole that is subjected to uniaxial tension, uniaxial compression, and also to the combined action of tensile and compressive stresses is considered. Critical stress calculations have been performed based on the previously proposed approach, according to which the structural parameter of the nonlocal failure criterion is represented as the sum of two terms. The first of them characterizes the actual structure of the material and is a constant, while the second one reflects the formation of inelastic deformations and depends on the plastic properties of the material, sample geometry, and boundary conditions. The calculation results are compared with known experimental data.

Авторлар туралы

S. Suknev

Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: suknyov@igds.ysn.ru
Yakutsk, 677980 Russia

Әдебиет тізімі

  1. Сукнев С.В. Критерий локальной прочности // Пробл. прочности. 2004. № 4. С. 108–124.
  2. Wieghardt K. Über das Spalten und Zerreisen elastischer Körper // Z. Math. Phys. 1907. V. 55. № 1–2. P. 60–103.
  3. Neuber H. Kerbspannungslehre, Grundlagen für eine genaue Spannungsrechnung. Berlin: Springer-Verlag, 1937. 160 p.
  4. Peterson R.E. Notch sensitivity // Metal fatigue. New York: McGraw Hill, 1959. P. 293–306.
  5. Новожилов В.В. О необходимом и достаточном критерии хрупкой прочности // ПММ. 1969. Т. 33. № 2. С. 212–222.
  6. Whitney J.M., Nuismer R.J. Stress fracture criteria for laminated composites containing stress concentrations // J. Compos. Mater. 1974. V. 8. № 4. P. 253–265.
  7. Kipp M.E., Sih G.C. The strain energy density failure criterion applied to notched elastic solids // Int. J. Solids Struct. 1975. V. 11. № 2. P. 153–173.
  8. Wu H.-C., Chang K.-J. Angled elliptic notch problem in compression and tension // Trans. ASME. J. Appl. Mech. 1978. V. 45. № 2. P. 258–262.
  9. Carter B.J., Lajtai E.Z., Yuan Y. Tensile fracture from circular cavities loaded in compression // Int. J. Fract. 1992. V. 57. № 3. P. 221–236.
  10. Radaj D., Zhang S. Process zone fracture criteria for crack tips // Eng. Fract. Mech. 1995. V. 50. № 1. P. 111–120.
  11. Seweryn A., Mroz Z. A non-local stress failure condition for structural elements under multiaxial loading // Eng. Fract. Mech. 1995. V. 51. № 6. P. 955–973.
  12. Mikhailov S.E. A functional approach to non-local strength condition and fracture criteria // Eng. Fract. Mech. 1995. V. 52. № 4. P. 731–754.
  13. Toribio J. A fracture criterion for high-strength steel notched bars // Eng. Fract. Mech. 1997. V. 57. № 4. P. 391–404.
  14. Yosibash Z., Bussiba A., Gilad I. Failure criteria for brittle elastic materials // Int. J. Fract. 2004. V. 125. № 3–4. P. 307–333. https://doi.org/10.1023/B:FRAC.0000022244.31825.3b
  15. Waddoups M.E., Eisenmann J.R., Kaminski B.E. Macroscopic fracture mechanics of advanced composite materials // J. Compos. Mater. 1971. V. 5. № 4. P. 446–454.
  16. Pugno N.M., Ruoff R.S. Quantized fracture mechanics // Philos. Mag. 2004. V. 84. № 27. P. 2829–2845. https://doi.org/10.1080/14786430412331280382
  17. Taylor D., Cornetti P., Pugno N. The fracture mechanics of finite crack extension // Eng. Fract. Mech. 2005. V. 72. № 7. P. 1021–1038. https://doi.org/10.1016/j.engfracmech.2004.07.001
  18. Hebel J., Dieringer R., Becker W. Modelling brittle crack formation at geometrical and material discontinuities using a finite fracture mechanics approach // Eng. Fract. Mech. 2010. V. 77. № 18. P. 3558–3572. https://doi.org/10.1016/j.engfracmech.2010.07.005
  19. Carpinteri A., Cornetti P., Sapora A. Brittle failures at rounded V-notches: a finite fracture mechanics approach // Int. J. Fract. 2011. V. 172. № 1. P. 1–8. https://doi.org/10.1007/s10704-011-9640-8
  20. Weißgraeber P., Leguillon D., Becker W. A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers // Arch. Appl. Mech. 2016. V. 86. № 1–2. P. 375–401. https://doi.org/10.1007/s00419-015-1091-7
  21. Strobl M., Dowgiałło P., Seelig T. Analysis of Hertzian indentation fracture in the framework of finite fracture mechanics // Int. J. Fract. 2017. V. 206. № 1. P. 67–79. https://doi.org/10.1007/s10704-017-0201-7
  22. Sapora A., Torabi A.R., Etesam S., Cornetti P. Finite Fracture Mechanics crack initiation from a circular hole // Fatigue Fract. Eng. Mater. Struct. 2018. V. 41. № 7. P. 1627–1636. https://doi.org/10.1111/ffe.12801
  23. Taylor D. The theory of critical distances: a new perspective in fracture mechanics. Oxford: Elsevier, 2007. 284 p.
  24. Li W., Susmel L., Askes H., Liao F., Zhou T. Assessing the integrity of steel structural components with stress raisers using the Theory of Critical Distances // Eng. Fail. Anal. 2016. V. 70. P. 73–89. https://doi.org/10.1016/j.engfailanal.2016.07.007
  25. Fuentes J.D., Cicero S., Procopio I. Some default values to estimate the critical distance and their effect on structural integrity assessments // Theor. Appl. Fract. Mech. 2017. V. 90. P. 204–212. https://doi.org/10.1016/j.tafmec.2017.04.015
  26. Taylor D. The Theory of Critical Distances: A link to micromechanisms // Theor. Appl. Fract. Mech. 2017. V. 90. P. 228–233. https://doi.org/10.1016/j.tafmec.2017.05.018
  27. Vedernikova A., Kostina A., Plekhov O., Bragov A. On the use of the critical distance concept to estimate tensile strength of notched components under dynamic loading and physical explanation theory // Theor. Appl. Fract. Mech. 2019. V. 103. P. 102280. https://doi.org/10.1016/j.tafmec.2019.102280
  28. Justo J., Castro J., Cicero S. Notch effect and fracture load predictions of rock beams at different temperatures using the Theory of Critical Distances // Int. J. Rock Mech. Min. Sci. 2020. V. 125. P. 104161. https://doi.org/10.1016/j.ijrmms.2019.104161
  29. Pipes R.B., Wetherhold R.C., Gillespie J.W. (Jr.) Notched strength of composite materials // J. Compos. Mater. 1979. V. 13. P. 148–160.
  30. Tan S.C. Laminated composites containing an elliptical opening. II. Experiment and model modification // J. Compos. Mater. 1987. V. 21. № 10. P. 949–968.
  31. Сукнев С.В. Нелокальные и градиентные критерии разрушения квазихрупких материалов при сжатии // Физ. мезомех. 2018. Т. 21. № 4. С. 22–32. https://doi.org/10.24411/1683-805X-2018-14003
  32. Сукнев С.В. Разрушение квазихрупкого геоматериала с круговым отверстием при неравномерно распределенном сжатии // ПМТФ. 2019. Т. 60. № 6. С. 162–172. https://doi.org/10.15372/PMTF20190617
  33. Suknev S.V. Extending the theory of critical distances to quasi-brittle fracture // Theor. Appl. Fract. Mech. 2021. V. 114. P. 102996. https://doi.org/10.1016/j.tafmec.2021.102996
  34. Сукнев С.В. Применение нелокальных и градиентных критериев для оценки разрушения геоматериалов в зонах концентрации растягивающих напряжений // Физ. мезомех. 2011. Т. 14. № 2. С. 67–75.
  35. Сукнев С.В. Применение подхода механики конечных трещин для оценки разрушения квазихрупкого материала с круговым отверстием // Изв. РАН. МТТ. 2021. № 3. С. 13–25. https://doi.org/10.31857/S0572329921020161
  36. Сукнев С.В. Разрушение хрупкого геоматериала с круговым отверстием при двухосном нагружении // ПМТФ. 2015. Т. 56. № 6. С. 166–172. https://doi.org/10.15372/PMTF20150618
  37. Сукнев С.В. Образование трещин отрыва в зонах концентрации растягивающих напряжений в гипсе // ФТПРПИ. 2008. № 1. С. 47–55.

Қосымша файлдар


© С.В. Сукнев, 2023