Evaluation of the length scale parameters of metals based on fatigue tests data for samples with surface defects

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method for identifying the scale parameter of the gradient theory of elasticity is proposed based on known experimental data on the effect of the size of surface corrosion defects on the fatigue resistance parameters of steels and aluminum alloys. The possibility of a natural description of a decrease in the stress concentration coefficient near small-sized corrosion defects, which in this work are modeled as semi-ellipsoidal surface cavities, is shown. The identified values of the scale parameters are in the range of 20–230 microns.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Y. Solyaev

Institute of Applied Mechanics of the Russian Academy of Sciences; Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: yos@iam.ras.ru
Ресей, Moscow; Moscow

S. Sherbakov

Belarusian State University

Email: sherbakovss@mail.ru
Белоруссия, Minsk

K. Golubkin

Moscow Aviation Institute (National Research University)

Email: golubkink@mail.ru
Ресей, Moscow

P. Polyakov

Moscow Aviation Institute (National Research University)

Email: p.o.polyakov@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Eubanks R.A. Stress Concentration Due to a Hemispherical Pit at a Free Surface // J. Appl. Mech. 1954. V. 21. № 1. P. 57–62.
  2. Fujita T., Tsuchida E., Nakahara I. Stress Concentration due to a hemi-prolate spheroidal pit at a free surface of a semi-infinite body under all-around tension // Bulletin of JSME. 1980. V. 23. № 181. P. 1048–1054.
  3. Cerit M., Genel K., Eksi S. Numerical investigation on stress concentration of corrosion pit // Eng. Failure Analysis. 2009. V. 16. № 7. P. 2467–2472.
  4. An L.S., Park Y.C., Kim H.K. A numerical study of the tensile stress concentration in a hemi-ellipsoidal corrosion pit on a plate // Int. J. Steel Struct. 2019. V. 19. P. 530–542.
  5. Capula-Colindres S. et al. Mechanical behavior of X60 pipelines containing pitting corrosion defects based on finite element method // Forces Mech. 2024. V. 16. P. 100278.
  6. Zerbst U. et al. Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches // Eng. Failure Analysis. 2019. V. 97. P. 759–776.
  7. Katona R.M., Karasz E.K., Schaller R.F. A review of the governing factors in pit-to-crack transitions of metallic structures // Corrosion. 2023. V. 79. № 1. P. 72–96.
  8. Dolley, Lee, Wei. The effect of pitting corrosion on fatigue life // Fat. Fract. Eng. Mat. Struct. 2000. V. 23. № 7. P. 555–560.
  9. Wang Q.Y., Pidaparti R.M., Palakal M.J. Comparative study of corrosion-fatigue in aircraft materials // AIAA J. 2001. V. 39. № 2. P. 325–330.
  10. Larrosa N.O., Akid R., Ainsworth R.A. Corrosion-fatigue: a review of damage tolerance models // Int. Mat. Rev. 2018. V. 63. № 5. P. 283–308.
  11. Becker K. et al. The effect of surface degradation on fatigue and fracture behaviour // Mat. Design. 1993. V. 14. № 3. P. 175–182.
  12. Beltran‐Zuñiga M.A. et al. Effect of microstructure and crystallographic texture on the toughness anisotropy of API 5L X46 steel // Fat. Frac. Eng. Mat. Structs. 2018. V. 41. № 4. P. 749–761.
  13. Evans C., Leiva-Garcia R., Akid R. Strain evolution around corrosion pits under fatigue loading // Theor. Appl. Fract. Mech. 2018. V. 95. P. 253–260.
  14. Rokhlin S.I. et al. Effect of pitting corrosion on fatigue crack initiation and fatigue life // Eng. Frac. Mech. 1999. V. 62. № 4–5. P. 425–444.
  15. Sankaran K.K., Perez R., Jata K.V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies // Mat. Sci. Eng.: A. 2001. V. 297. № 1–2. P. 223–229.
  16. Mindlin R.D. Micro-structure in linear elasticity // Arch. Ration. Mech. Anal. 1964. V. 16. № 1. P. 51–78.
  17. Askes H., Aifantis E.C. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results // Int. J. Solids Struct. 2011. V. 48. № 13. P. 1962–1990.
  18. Askes H., Susmel L. Understanding cracked materials: is linear elastic fracture mechanics obsolete? // Fat. Frac. Eng. Mat. Struct. 2015. V. 38. № 2. P. 154–160.
  19. Razavi N. et al. Length scale parameters to estimate fatigue lifetime of 3D-printed titanium alloy Ti6Al4V containing notches in the as-manufactured condition // Int. J. Fat. 2023. V. 167. P. 107348.
  20. Jadallah O. et al. Microstructural length scale parameters to model the high-cycle fatigue behaviour of notched plain concrete // Int. J. Fat. 2016. V. 82. P. 708–720.
  21. Vasiliev V., Lurie S., Solyaev Y. New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity // Eng. Fract. Mech. 2021. V. 258. P. 108080.
  22. Vasiliev V., Lurie S. On the failure analysis of cracked plates within the strain gradient elasticity in terms of the stress concentration // Proc. Struct. Integ. 2021. V. 32. P. 124–130.
  23. Vasiliev V.V., Lurie S.A., Salov V.A. Issledovaniye prochnosti plastin s treshchinami na osnove kriteriya maksimal’nykh napryazheniy v masshtabno-zavisimoy obobshchennoy teorii uprugosti // Fizicheskaya mezomekhanika. 2018. V. 21. № 4. P. 5–12.
  24. Vasiliev V.V., Lurie S.A. Novyy metod issledovaniya prochnosti khrupkikh tel s treshchinami // Deformatsiya i razrusheniye materialov. 2019. № 9. P. 12–19.
  25. Vasiliev V.V., Lurie S.A., Salov V.A. Opredeleniye nagruzki, vyzyvayushchey poyavleniye plasticheskoy deformatsii v rastyagivayemoy plastine s treshchinoy // Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2020. № 4. P. 43–49.
  26. Vasiliev V.V., Lurie S.A. Novoye resheniye ploskoy zadachi o ravnovesnoy treshchine // Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2016. № 5. P. 61–67.
  27. Solyaev Y. Self-consistent homogenization approach for polycrystals within second gradient elasticity // Mech. Res. Commun. 2023. V. 132. P. 104162.
  28. Solyaev Y. Self-consistent assessments for the effective properties of two-phase composites within strain gradient elasticity // Mech. Mater. 2022. V. 169. P. 104321.
  29. Gao X.L., Park S.K. Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem // Int. J. Solids Struct. 2007. V. 44. № 22–23. P. 7486–7499.
  30. Froiio F., Zervos A. Second-grade elasticity revisited // Math. Mech. Solids. 2019. V. 24. № 3. P. 748–777.
  31. Solyaev Y., Lurie S., Altenbach H., dell’Isola F. On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories // Int. J. Solids Struct. 2022. V. 239. P. 111433.
  32. Lurie S., Solyaev Y. Variant of strain gradient elasticity with simplified formulation of traction boundary value problems // ZAMM – J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik. 2023. V. 103. № 12. P. e202300329.
  33. Khakalo S., Niiranen J. Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields // Int. J. Solids Struct. 2017. V. 110. P. 351–366.
  34. Georgiadis H.G., Gourgiotis P.A., Anagnostou D.S. The Boussinesq problem in dipolar gradient elasticity // Arch. Appl. Mech. 2014. V. 84. P. 1373–1391.
  35. Gourgiotis P.A., Sifnaiou M.D., Georgiadis H.G. The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity // Int. J. Fract. 2010. V. 166. P. 179–201.
  36. Dell’Isola F. et al. Deformation of an elastic second gradient spherical body under equatorial line density of dead forces // Eur. J. Mech.-A/Solids. 2024. V. 103. P. 105153.
  37. Solyaev Y., Lurie S., Korolenko V. Three-phase model of particulate composites in second gradient elasticity // Eur. J. Mech.-A/Solids. 2019. V. 78. P. 103853.
  38. Andreaus U. et al. Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity // Int. J. Eng. Sci. 2016. V. 108. P. 34–50.
  39. Reiher J.C., Giorgio I., Bertram A. Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity // J. Eng. Mech. 2017. V. 143. № 2. P. 04016112.
  40. Solyaev Y. Complete General Solutions for Equilibrium Equations of Isotropic Strain Gradient Elasticity // J. Elast. 2024. V. 156. P. 107–124.
  41. Lurie S.A., Volkov-Bogorodskiy D.B., Belov P.A. On General Representations of Papkovich–Papkovich Solutions in Gradient Elasticity // Lobachevskii J. Math. 2023. V. 44. № 6.
  42. Fatoba O., Akid R. Uniaxial cyclic elasto-plastic deformation and fatigue failure of API-5L X65 steel under various loading conditions // Theoret. Appl. Fract. Mech. 2018. V. 94. P. 147–159.
  43. Vasiliev V.V., Lurie S.A., Salov V.A. Opredeleniye nagruzki, vyzyvayushchey poyavleniye plasticheskoy deformatsii v rastyagivayemoy plastine s treshchinoy // Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2020. № 4. P. 43–49.
  44. Capula-Colindres S. et al. Determination of fracture toughness and KIC-CVN correlations for BM, HAZ, and WB in API 5L X60 pipeline // Arab. J. Sci. Eng. 2021. V. 46. № 8. P. 7461–7469.
  45. Sivaranjani T. et al. Fatigue life estimation of aircraft structural component using FE approach and validation through analytical and experimental methods // Mater. Today: Proc. 2023.
  46. Sayah Badkhor M. et al. Behavior Analysis of Cold Expanded-Bolt Clamped AL2024-T3 Plate // Int. J. Adv. Des. Manufact. Technol. 2017. V. 10. № 2. P. 1–13.
  47. Korolenko V., Solyaev Y.O. Otsenka urovnya kontsentratsii napryazheniy vblizi mikro-razmernykh otverstiy na osnove uproshchennykh modeley gradiyentnoy teorii uprugosti // Trudy MAI. 2021. № 121. P. 4.
  48. Military Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, Mil-HDBK-5G, United States Department of Defense, 1994.
  49. Gusev A.A., Lurie S.A. Symmetry conditions in strain gradient elasticity // Math. Mech. Solids. 2017. V. 22. № 4. P. 683–691.
  50. Lurie S.A. et al. Dilatation gradient elasticity theory // Eur. J. Mech.-A/Solids. 2021. V. 88. P. 104258.
  51. Lurie S.A., Belov P.A., Solyaev Y.O. On possible reduction of gradient theories of elasticity // Sixty Shades of Generalized Continua: Dedicated to the 60th Birthday of Prof. V.A. Eremeyev. Cham: Springer International Publishing, 2023. P. 479–498.
  52. Lurie S., Belov P., Solyaev Y. On an extended family of quasi-equivalent models of the gradient elasticity theory // Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola. Cham: Springer International Publishing, 2022. P. 155–182.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. A model of a semi–ellipsoidal surface defect, a - geometry of the model and an example of a finite element grid. The purple color shows the surface of the cavity, b is an example of the calculation results for the concentration of maximum principal stresses tI /t under uniaxial tension conditions.

Жүктеу (167KB)
3. Fig. 2. Calculation examples, (a) – the change in stress concentration along the contour of a hemispheroidal cavity (a = b = 2h) for different h/l ratios, (b) – the dependence of the stress concentration coefficient on the h/l ratio for different geometry of the cavity (b/h = 2).

Жүктеу (156KB)
4. Fig. 3. Estimation of the accuracy of the boundary conditions by the absence of rib forces (si) on the sharp edge (edge) of the surface cavity.

Жүктеу (107KB)
5. Fig. 4. Distribution of the concentration of maximum main stresses (a) and equivalent stresses according to Mises (b) along the contour of cavities of different depths in steel X65 in the classical solution (markers without filling) and in the GTU solution with a scale parameter value of l = 0.24 mm (markers with filling). The horizontal dotted line shows the concentration level corresponding to the yield point.

Жүктеу (194KB)
6. Fig. 5. The dependence of the stress concentration coefficient on the depth of the defect h [microns] in steel samples X20Cr13. The points are the nominal values of Kt, corresponding to experimental data. The lines are the solution of the GTU (l = 20 microns – solid, l = 5 microns – dashed, l = 50 microns – dotted). The blue color is h/a = 0.62, the yellow color is h/a = 1.24.

Жүктеу (91KB)
7. 6. Estimation of the size of the plastic deformation zone in the classical elastic solution (a, equivalent stresses, MPa) and in the elastoplastic solution (b, plastic deformations, %) for Al 2024-T3 alloy samples with a surface cavity with dimensions a = b = 250 microns, h = 375 microns under tensile load 206 MPa.

Жүктеу (88KB)
8. 7. Dependence of the stress concentration on the depth of the surface cavity in a sample of Al 2024-T3 alloy for different diameter to depth ratios (a/h). The points are experimental data, the lines are the solution of the GTU with a scale parameter l = 100 microns, h [microns].

Жүктеу (84KB)
9. 8. Processing of experimental data for 7075-T6 alloy samples containing defects of various sizes (according to Table 4). (a) Dependence of stress concentration in the solution of the GTU on the scale parameter. (b) Fatigue curves. The points are experimental data (in hours) [15], the lines are an approximation based on the calculated stress concentration values in the solution of the GTU, l [microns], N is the number of cycles before failure.

Жүктеу (147KB)

© Russian Academy of Sciences, 2025