Аналитическое решение задачи оптимального в смысле комбинированного критерия качества управления переориентацией твердого тела (космического аппарата) на основе кватернионов
- Авторы: Левский М.В.1
-
Учреждения:
- Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
- Выпуск: № 1 (2025)
- Страницы: 49-74
- Раздел: Статьи
- URL: https://permmedjournal.ru/1026-3519/article/view/680987
- DOI: https://doi.org/10.31857/S1026351925010035
- EDN: https://elibrary.ru/taosff
- ID: 680987
Цитировать
Аннотация
Решена задача оптимальной переориентации твердого тела (космического аппарата) из исходного положения в заданное конечное угловое положение на основе кватернионов. Использован комбинированный критерий качества, объединяющий в заданной пропорции вклад управляющих сил и время, затраченные на совершение маневра, а также интеграл энергии вращения. Синтез оптимального управления основан на дифференциальном уравнении, связывающем кватернион ориентации и кинетический момент космического аппарата. Аналитическое решение задачи оптимального управления получено, используя необходимые условия оптимальности в форме принципа максимума Л.С. Понтрягина. Подробно изучены свойства оптимального вращения. Для построения оптимальной программы вращения записаны формализованные уравнения и расчетные формулы. Приведены аналитические уравнения и соотношения для нахождения оптимального управления. Даны ключевые соотношения, определяющие оптимальные значения параметров алгоритма управления разворотом. Также приводится конструктивная схема решения краевой задачи принципа максимума для произвольных условий разворота (начального и конечного положений и моментов инерции твердого тела). Проведенные численные эксперименты подтверждают сделанные аналитические выводы. В случае динамически симметричного твердого тела задача пространственной переориентации с минимальным расходом энергетических затрат и времени полностью решена (в замкнутой форме). Даны пример и результаты математического моделирования, подтверждающие практическую реализуемость разработанного метода управления ориентацией.
Полный текст

Об авторах
М. В. Левский
Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
Автор, ответственный за переписку.
Email: levskii1966@mail.ru
Россия, г. Королев
Список литературы
- Sinitsin L.I., Kramlikh A.V. Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators // J. Phys. Conf. Ser. 2021. V. 1745. P. 012053. http://doi.org/10.1088/1742-6596/1745/1/012053
- Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.
- Junkins J.L., Turner J.D. Optimal Spacecraft Rotational Maneuvers. Elsevier. USA, 1986. 515 p.
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. C. 30–41. http://doi.org/10.31857/S000233880002843-6
- Scrivener S., Thompson R. Survey of time-optimal attitude maneuvers // J. Guidance, Control and Dynamics. 1994. V. 17. № 2. P. 225–233. https://doi.org/10.2514/3.21187
- Zhou H., Wang D., Wu B., EK Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Control. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1080/00207179.2012.688873
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Доклады Академии наук. 2018. Т. 480. № 6. С. 671–675. https://doi.org/10.7868/S0869565218180081
- Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157. https://doi.org/10.1134/S1064230708060117
- Shen H., Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls // AIAA J. Guidance, Control and Dynamics. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
- Молоденков A.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117
- Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.
- Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.
- Айпанов Ш.А., Жакыпов А.Т. Метод разделения переменных и его применение для задачи оптимального разворота космического аппарата // Космич. исслед. 2020. Т. 58. № 1. С. 73–84. https://doi.org/10.31857/S002342062001001X
- Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь. ПГУ. 1990. С. 115–133.
- Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.7868/S0002338814050114
- Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21. https://doi.org/10.3103/S002565441405001X
- Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24. https://doi.org/10.3103/S0025654409020022
- Levskii M.V. About method for solving the optimal control problems of spacecraft spatial orientation // Problems of Nonlinear Analysis in Engineering Systems. 2015. V. 21. № 2. P. 61–75.
- Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49. https://doi.org/10.3103/S0025654411040030
- Молоденков А.В., Сапунков Я.Г. Аналитическое решение задачи оптимального разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2016. № 6. С. 129–145. https://doi.org/10.7868/S0002338816060093
- Молоденков А.В., Сапунков Я.Г. Аналитическое квазиоптимальное решение задачи поворота осесимметричного твердого тела с комбинированным функционалом // Изв. РАН. ТиСУ. 2020. № 3. С. 39–49. https://doi.org/10.31857/S0002338820030105
- Сапунков Я.Г. Молоденков А.В. Аналитическое решение задачи оптимального в смысле комбинированного функционала разворота осесимметричного космического аппарата // Автоматика и телемеханика. 2021. № 7. С. 86–106. https://doi.org/10.31857/S0005231021070059
- Молоденков А.В., Сапунков Я.Г. Аналитическое приближенное решение задачи оптимального разворота космического аппарата при произвольных граничных условиях // Изв. РАН. ТиСУ. 2015. № 3. С. 131–141. https://doi.org/10.7868/S0002338815030142
- Левский М.В. Управление разворотом твердого тела (космического аппарата) с комбинированным критерием оптимальности на основе кватернионов // Изв. РАН. МТТ. 2023. № 5. С. 58–78. https://doi.org/10.31857/S0572329922600566
- Левский М.В. Оптимальное управление кинетическим моментом твердого тела (космического аппарата) при выполнении пространственного разворота // Изв. РАН. МТТ. 2023. № 1. С. 76–94. https://doi.org/10.31857/S0572329922060137
- Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Math. Eng. Sci. Aerosp. 2018. V. 9. № 1. P. 47–63.
- Levskii M.V. Special aspects in attitude control of a spacecraft, equipped with inertial actuators // Journal of Computer Science Applications and Information Technology. 2017. V. 2. № 4. P. 1–9. http://doi.org/10.15226/2474-9257/2/4/00121
- Горшков О.А., Муравьев В.А., Шагайда А.А. Холловские и ионные плазменные двигатели для космических аппаратов. М.: Машиностроение, 2008. 280 с.
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. M.: Наука, 1983. 392 с.
- Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
- Любушин А.А. О применении модификаций метода последовательных приближений для решения задач оптимального управления // ЖВМиМФ. 1982. Т. 22. № 1. С. 30–35. http://doi.org/10.1016/0041-5553(82)90160-4
- Левский М.В. Система управления пространственным разворотом космического аппарата. Патент на изобретение РФ № 2006431 // Бюллетень “Изобретения. Заявки и патенты”. 1994. № 2. Опубликован 20.01.1994. C. 49–50.
- Левский М.В. Способ управления разворотом космического аппарата и система для его реализации. Патент на изобретение РФ № 2114771 //Бюллетень “Изобретения. Заявки и патенты”. 1998. № 19. Опубликован 10.07.1998. С. 234–236.
- Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.
- Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. Опубликован 20.03.2000. C. 148.
- Кульков В.М., Обухов В.А., Егоров Ю.Г., Белик А.А., Крайнов А.М. Сравнительная оценка эффективности применения перспективных типов электроракетных двигателей в составе малых космических аппаратов // Вестн. Самарск. гос. аэрокосмического ун-та. 2012. № 3(34). С. 187–195.
Дополнительные файлы
