Olfactory Bulbectomy in Mice Induces Increase of Hippocampal Pro-Nerve Growth Factor Protein Levels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Olfactory bulbectomy in rodents is a wide-used model of cholinergic dysfunction, yet, the state of nerve growth factor system, crucial for cholinergic neurons survival, is poorly understood in this model. In the present study the effect of olfactory bulbectomy on nerve growth factor (NGF) forms levels in mouse brain regions was assessed. Levels of proNGF and mature NGF protein were evaluated in medial septal complex and hippocampus samples using Western blot. Also, hippocampal choline acetyltransferase activity was measured to assess cholinergic transmission state. 30 days after bulbectomy, proNGF level was increased in hippocampus but not in medial septal complex. Mature NGF levels remained unchanged. Hippocampal choline acetyltransferase activity was significantly decreased. This decrease in choline acetyltransferase activity was probably associated with predominant activation of pro-NGF signaling cascades triggered by p75 receptor.

Full Text

Restricted Access

About the authors

O. A. Nedogreeva

Institute of Higher Nervous Activity and Neurophysiology, RAS

Author for correspondence.
Email: nedogreeva@ihna.ru
Russian Federation, Moscow

M. Yu. Stepanichev

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: nedogreeva@ihna.ru
Russian Federation, Moscow

References

  1. Hirsch J.D. // Life Sci. 1980. V. 26. P. 1551–1559.
  2. Zueger M., Urani A., Chourbaji S., Zacher C., Roche M., Harkin A., Gass P. // Neurosci. Lett. 2005. V. 374. P. 142–146.
  3. Jancsár S.M., Leonard B.E. // Prog. Neuropsychopharmacol. Biol. Psychiatry 1984. V. 8. P. 263–269.
  4. Slotkin T.A., Seidler F.J. // Brain Res. Bull. 2006. V. 68. P. 341–345.
  5. Leonard B.E., Tuite M. // Int. Rev. Neurobiol. 1981. V. 22. P. 51–86.
  6. Scholfield C.N., Moroni F., Corradetti R., Pepeu G. // J. Neurochem. 1983. V. 41. P. 135–138.
  7. Tasset I., Medina F.J., Peña J., Jimena I., Muñoz M., del Carmen Salcedo M., Ruiz C., Feijóo M., Montilla P., Túnez, I. // Physiol. Res. 2010. V. 59. P. 105–112.
  8. Almeida R.F. de, Ganzella M. Machado D.G., Loureiro S.O., Leffa D., Quincozes-Santos A., Pettenuzzo L.F., Duarte M.M.M.F., Duarte T., Souza D.O. // Prog. Neuropsychopharmacol. Biol. Psychiatry 2017. V. 76. P. 1–11.
  9. Jarosik J., Legutko B., Unsicker K., von Bohlen und Halbach O. // Exp. Neurol. 2007. V. 204. P. 20–28.
  10. Ozcan H., Aydın N. Aydın M.D., Oral E., Gündoğdu C., Şipal S., Halıcı Z. // Nord. J. Psychiatry. 2020. V. 74. P. 194–200.
  11. Machado D.G., Cunha M.P., Neis V.B., Balen G.O., Colla A., Grando J., Brocardo P.S., Bettio L.E.B. Capra J.C., Rodrigues A.L.S. // Pharmacol. Biochem. Behav. 2012. V. 103. P. 220–229.
  12. Гуляева Н.В., Бобкова Н.В., Колосова Н.Г., Самохин А.Н., Степаничев М.Ю., Стефанова Н.А. // Биохимия. Т. 82. В. 10. 2017. С. 1427–1443.
  13. Nesterova I.V., Bobkova N.V., Medvinskaya N.I., Samokhin A.N., Aleksandrova I.Yu. // Neurosci. Behav. Physiol. 2008. V. 38. P. 349–353.
  14. Avetisyan A., Balasanyants S., Simonyan R., Koroev D., Kamynina A., Zinovkin R., Bobkova N., Volpina O. // Neurochem. Int. 2020. V. 140. P. 104799.
  15. Mesulam M.M. // J. Histochem. Cytochem. 1976. V. 24. P. 1281–1285.
  16. Hozumi S., Nakagawasai O., Tan-No K. Niijima F., Yamadera F., Murata A., Arai Y., Yasuhara H., Tadano T. // Behav. Brain Res. 2003. V. P. 138. P. 9–15.
  17. Niewiadomska G., Komorowski S., Baksalerska-Pazera M. // Neurobiol. Aging. 2002. V. 23. P. 601–613.
  18. Yan R., Yalinca H., Paoletti F., Gobbo F., Marchetti L., Kuzmanic A., Lamba D., Gervasio F.L., Konarev P.V., Cattaneo A., Pastore A. // Structure. 2019. V. 27. P. 78–89.e3.
  19. Moyano P., Flores A., García J., García J.M., Anadon M.J., Frejo M.T., Sola E., Pelayo A., del Pino J. // Food and Chemical Toxicology. 2021. V. 157. P. 112614.
  20. Sofroniew M.V., Howe C.L., Mobley W.C. // Annu. Rev. Neurosci. 2001. V. 24. P. 1217–1281.
  21. Skeldal S., Sykes A.M., Glerup S., Matusica D., Palstra N., Autio H., Boskovic Z., Madsen P., Castrén E., Nykjaer A., Coulson E.J. // J. Biol. Chem. 2012. V. 287. P. 43798–43809.
  22. Crutcher K.A., Scott S.A., Liang S., Everson W.V., Weingartner J. // J. Neurosci. 1993. V. 13. P. 2540–2550.
  23. Peng S. Wuu J., Mufson E.J., Fahnestock M. // J. Neuropathol. Exp. Neurol. 2004. V. 63. P. 641–649.
  24. Mufson E.J., Lavine N., Jaffar S., Kordower J.H., Quirion R., Saragovi H. Uri. // Exp. Neurol. 1997. V. 146. P. 91–103.
  25. Yu J., Wiley R.G., Perez-Polo R.J. // J. Neurosci. Res. 1996. V. 43. P. 213–223.
  26. Naumann T., Straube A., Frotscher M. // Eur. J. Neurosci. 1997. V. 9. P. 1340–1349.
  27. Ciafrè S., Ferraguti G., Tirassa P., Iannitelli A., Ralli M., Greco A., Chaldakov G.N., Rosso P., Fico E., Messina M.P., Carito V., Tarani L., Ceccanti M., Fiore M. // Riv. Psichiatr. 2020. V. 55. P. 4–15.
  28. Hellweg R., Zueger M., Fink K., Hörtnagl H., Gass P. // Neurobiol. Dis. 2007. V. 25. P. 1–7.
  29. Antunes M.S, Jesse C.R, Ruff J.R., de Oliveira Espinosa D., Gomes N.S., Altvater E.E.T., Donato F., Giacomeli R., Boeira S.P. // Eur. J. Pharmacol. 2016. V. 789. P. 411–420.
  30. Hendriksen H., Meulendijks D., Douma T.N., Bink D.I., Breuer M.E., Westphal K.G.C., Olivier B., Oosting R. // Neuropharmacology. 2012. V. 62. P. 270–277.
  31. Takahashi K., Nakagawasai O., Nemoto W., Odaira T., Arai Y., Hisamitsu T., Tan-No K. // Eur. Neuropsychopharm. 2017. V. 27. P. 1000–1010.
  32. Song C., Xiang Y.Z., Manku M. // J. Neurosci. 2009. V. 29. P. 14–22.
  33. Nedogreeva O.A., Stepanichev M.Y., Gulyaeva N.V. // Zh. Vyssh. Nerv. Deyat. Im. I. P. Pavlova. 2020. V. 70. P. 104–114.
  34. Wren A., Van Riezen H., Rigter H. // Pharmakopsychiatr. Neuropsychopharmakol. 1977. V. 10. P. 96–100.
  35. Kang H.M., Jin J., Lee S., Ryu J., Park C. // Neuroreport. 2010. V. 21. P. 179–184.
  36. Lazo O.M., Mauna J.C., Pissani C.A., Inestrosa N.C., Bronfman F.C. // Mol. Neurodegener. 2010. V. 5. P. 5.
  37. Niewiadomska G., Mietelska-Porowska A., Mazurkiewicz M. // Behav. Brain Res. 2011. V. 221. P. 515–526.
  38. Hagg T., Manthorpe M., Vahlsing H.L., Varon S.H.L. // Exp. Neurol. 1988. V. 101. P. 303–312.
  39. . Roßner S., Wörtwein G., Gu Z., Yu J., Schliebs R., Bigl V., Perez-Polo J.R. // J. Neurochem. 1997. V. 69. P. 947–953.
  40. Mufson E.J., Kroin J.S., Sendera T.J., Sobreviela T. // Prog. Neurobiol. 1999. V. 57. P. 451–484.
  41. Nedogreeva O.A., Lazareva N.A., Stepanichev M.Y., Gulyaeva N.Y. // Zh. Vyssh. Nerv. Deyat. Im. I.P. Pavlova. 2020. V. 70. P. 794–806.
  42. Fahnestock M., Michalski B., Xu B., Coughlin M.D. // Mol. Cell. Neurosci. 2001. V. 18. P. 210–220.
  43. Bruno M.A., Claudio Cuello A. // PNAS. 2006. V. 103. P. 6735–6740.
  44. Stepanichev M., Nedogreeva O., Gulyaeva N. // Alzheimers Dement. Cogn. Neurol. 2017. V. 1. P. 1000110.
  45. Dobryakova Y.V., Spivak Y.S., Zaichenko M.I., Koryagina A.A., Markevich V.A., Stepanichev M.Yu., Bolshakov A.P. // Front. Neurosci. 2021. V. 15. P. 745050.
  46. DeKosky S.T., Harbaugh R.E., Schmitt F.A., Bakay R.A.E., Chui H.C. Knopman D.S., Reeder T.M., Shetter A.G., Senter H.J., Markesbery W.R. // Ann. Neurol. 1992. V. 32. P. 625–632.
  47. DeKosky S.T., Ikonomovic M.D., Styren S.D., Beckett L., Wisniewski S., Bennett D.A., Cochran E.J., Kordower J.H., Mufson E.J. // Ann. Neurol. 2002. V. 51. P. 145–155.
  48. Hefti F., Dravid A., Hartikka J. // Brain Res. 1984. V. 293. P. 305–311.
  49. Guo Q., Xie J., Du H. // Brain Res. 2000. V. 874. P. 221–232.
  50. Bruno M.A., Leon W.C., Fragoso G., Mushynski W.E., Almazan G., Cuello A.C. // J. Neuropathol. Exp. Neurol. 2009. V. 68. P. 857–869.
  51. Cuello A.C., Ferretti M.T., Iulita M.F. // Neurodegener. Dis. 2012. V. 10. P. 104–107.
  52. Nedogreeva O.A., Evtushenko N.A., Manolova A.O., Peregud D.I., Yakovlev A.A., Lazareva N.A., Gulyaeva N.V., Stepanichev M.Yu. // Curr. Alzheimer Res. 2021. V. 18. P. 1140–1151.
  53. Barrett G.L., Naim T., Trieu J., Huang M. // J. Neurosci. Res. 2016. V. 94. P. 389–400.
  54. Greferath U., Trieu J., Barrett G.L. // J. Neurosci. Res. 2012. V. 90. P. 278–87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Total content of pro-NGF and NGF in samples of the hippocampus and medial septal nucleus and nuclei of the horizontal and vertical branches of the diagonal band of Broca (MS+DBB). Data are presented as medians and interquartile ranges, significance is shown according to the Mann–Whitney test. (b) Photographs of developed membranes: highlighted numbers correspond to the OB group, the membrane with MS samples contains replicates; M – wells of molecular weight markers.

Download (331KB)
3. Fig. 2. ChAT activity in the hippocampus. Data are presented as medians, interquartile ranges, and individual values. Significance is shown according to the Mann-Whitney test.

Download (60KB)

Copyright (c) 2025 Russian Academy of Sciences