Образование градиентной структуры при кристаллизации деформированного аморфного сплава Al87Ni6Nd7

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом рентгенографии исследовано влияние пластической деформации на образование нанокристаллической структуры в аморфном сплаве Al87Ni6Nd7. Исследование показало, что предварительная деформация аморфного сплава способствует ускорению процесса кристаллизации аморфной фазы и может приводить к образованию нанокристаллов меньшего размера по сравнению с термической обработкой. Размер нанокристаллов и их количество зависят от условий обработки аморфной фазы: при использовании предварительной деформации размер нанокристаллов, образующихся при отжиге, меньше, чем в недеформированном образце, а доля нанокристаллов немного больше. В образцах, подвергнутых предварительной деформации прокаткой формируется градиентная структура: доля нанокристаллов уменьшается по мере удаления от поверхности в глубину образца. Размер нанокристаллов при изменении расстояния от поверхности меняется незначительно. Результаты показывают, что предварительная пластическая деформация может быть эффективным методом получения нанокристаллической структуры с различной долей и размером нанокристаллов в аморфной фазе, что важно для создания высоко функциональных материалов с выдающимися физико-химическими свойствами. Полученные результаты существенно расширяют имеющиеся представления о механизмах образования нанокристаллов в аморфной фазе при внешних воздействиях.

Об авторах

П. А. Ужакин

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Автор, ответственный за переписку.
Email: uzhakin@issp.ac.ru
Россия, Черноголовка

В. В. Чиркова

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: uzhakin@issp.ac.ru
Россия, Черноголовка

Н. А. Волков

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: uzhakin@issp.ac.ru
Россия, Черноголовка

Г. Е. Абросимова

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: gea@issp.ac.ru
Россия, Черноголовка

Список литературы

  1. Ashby M.F., Greer A. // Scr. Mater. 2004. V. 54. № 3. P. 321. https://doi.org/10.1016/j.scriptamat.2005.09.051
  2. Herzer G. // J. Magn. Magn. Mater. 2005. V. 294. № 2. P. 99. https://doi.org/10.1016/j.jmmm.2005.03.020
  3. Krasovskii M. // Mater. Lett. 2019. V. 239. P. 113. https://doi.org/10.1016/j.matlet.2018.12.090
  4. Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
  5. Aronin A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // J. Alloys Compd. 2017. V. 715. P. 176. https://doi.org/10.1016/j.jallcom.2017.04.305
  6. Cremashi V., Arcondo B., Sirkin H., Vazquez M., Asenjo F., Garcia J.M., Abrosimova G., Aronin A. // J. Mater. Res. 2000. V. 15. № 9. P. 1936. https://doi.org/10.1557/JMR.2000.0279
  7. Gutzow I., Toschev S., The Kinetics of Nucleation and the Formation of Glass Ceramics. // Advances in Nucleation and Crystallization of Glasses. / Ed. Hench L.L., Frieman S.W. American Ceramic Society, 1971. P. 10.
  8. Ohta M., Yoshizawa Y. // Appl. Phys. Lett. 2007. V. 91. № 6. P. 062517. https://doi.org/10.1063/1.2769956
  9. Suzuki K., Makino A., Kataoka N., Inoue A., Masumoto T. // Mater. Trans. JIM. 1991. V. 32. № 1. P. 93. https://doi.org/10.2320/matertrans1989.32.93
  10. Makino A., Inoue A., Masumoto T. // Nanostruct. Mater. 1995. V. 6. № 5. P. 985. https://doi.org/10.1016/0965-9773(95)00226-X
  11. Greer A.L. // Mater. Sci. Eng. A 2001. V. 304–306. P. 68. https://doi.org/10.1016/S0921-5093(00)01449-0
  12. Hall E.O. // Proc. Phys. Soc. London Sect. B. 1951. V. 64. P. 747. https://doi.org/10.1088/0370-1301/64/9/303
  13. Petch N.J. // J. Iron Steel Inst. 1953. V. 174. P. 25.
  14. Аронин А.С., Иванов С.А., Якшин А.Е. // ФТТ 1991. V. 33. № 9. P. 2527.
  15. Aronin A.S., Abrosimova G.E., Zver’kova I.I., Lang D., Luck R. // J. Non-Cryst. Solids 1996. V. 208. № 1–2. P. 139. https://doi.org/10.1016/S0022-3093(96)00505-4
  16. Aronin A.S. // Nanostr. Mater. 1997. V. 8. № 2. P. 171. https://doi.org/10.1016/S0965-9773(97)00008-1
  17. Ubyivovk E.V., Boltynjuk E.V., Gunderov D.V., Churakova A.A., Kilmametov A.R., Valiev R.Z. // Mater. Lett. 2017. V. 209. P. 327. https://doi.org/10.1016/j.matlet.2017.08.028
  18. Hebert R.J., Perepezko J.H., Rösner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1428. https://doi.org/10.3762/bjnano.7.134
  19. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater. 2005. V. 53. № 7. P. 823. https://doi.org/10.1016/j.scriptamat.2005.06.004
  20. Maaß R., Samwer K., Arnold W., Volkert C.A. // Appl. Phys. Lett. 2014. V. 105. № 17. P. 171902. https://doi.org/10.1063/1.4900791
  21. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. № 7. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  22. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert J. // Scr. Mater. 2020. V. 178. P. 57. https://doi.org/10.1016/j.scriptamat.2019.11.006
  23. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. № 25. P. 251904. https://doi.org/10.1063/1.3602315
  24. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://doi.org/10.1016/j.actamat.2017.08.032
  25. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
  26. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://doi.org/10.1016/j.actamat.2021.116785
  27. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R Rep. 2013. V. 74. № 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  28. Anghelus A., Avettand-Fenoel M.-N., Cordier C., Taillard R. // J. Alloys Compd. 2015. V. 651. P. 454. https://doi.org/10.1016/j.jallcom.2015.08.102
  29. Du S.Z., Li C.C., Pang S.Y., Leng J.F., Geng H.R. // Mater. Des. 2013. V. 47. P. 358. https://doi.org/10.1016/j.matdes.2012.12.002
  30. Rizzi P., Battezzati P. // J.Non-Cryst. Solids 2004. V. 344. № 1–2. P. 94. https://doi.org/10.1016/j.jnoncrysol.2004.07.022
  31. Бабичев А.П., Бабушкина Н.А., Братковский А.М., Бродов М.Е., Быстров М.В., Виноградов Б.В., Винокурова Л.И., Гельмак Э.Б., Геппе А.П., Григорьев И.С., Гуртовой К.Г., Егоров В.С., Елецкий А.В., Зарембо Л.К., Иванов В.Ю., Ивашинцева В.Л., Игнатьев В.В. и др. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.
  32. Бойчишин Д., Ковбуз М., Герцик О., Носенко В., Котур Б. // ФТТ 2013. V. 55. № 2. С. 209. https://journals.ioffe.ru/articles/viewPDF/914
  33. Ужакин П.А., Чиркова В.В., Волков Н.А., Абросимова Г.Е. // ФТТ 2024. Т. 66. № 1. С. 8. https://journals.ioffe.ru/articles/56928
  34. Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
  35. Abrosimova G., Gunderov D., Postnova E., Aronin A. // Materials 2023. V. 16. № 3. P. 1321. https://doi.org/10.3390/ma16031321
  36. Abrosimova G., Chirkova V., Volkov N., Straumal B., Aronin A. // Coatings 2024. V. 14. № 1. P. 116. https://doi.org/10.3390/ coatings14010116

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024