Optimization of neutron reflectometry experiment on thin films of hybrid perovskites for photovoltaics
- Autores: Avdeev M.V.1,2, Tropin Т.V.1, Sadilov V.V.1
-
Afiliações:
- Joint Institute for Nuclear Research
- Dubna University
- Edição: Nº 10 (2024)
- Páginas: 119-124
- Seção: Articles
- URL: https://permmedjournal.ru/1028-0960/article/view/664741
- DOI: https://doi.org/10.31857/S1028096024100152
- EDN: https://elibrary.ru/SGOYSA
- ID: 664741
Citar
Resumo
Organic-inorganic hybrid perovskite materials based on metal-organic structures are attracting much attention, as they are characterized by rather high photocurrent conversion together with comparative simple production procedure. A model analysis of the possibility to experimentally detect and characterize a lead halide layer formed at the internal interface during degradation of a hybrid perovskite photovoltaic film using in situ neutron reflectometry, is presented. From a comparison of the calculated specular reflection curves, the relationships between the parameters of the system components are identified, at which, despite the generally weak changes in the curves, still it is possible to trace the evolution of this layer.
Sobre autores
M. Avdeev
Joint Institute for Nuclear Research; Dubna University
Autor responsável pela correspondência
Email: avd@nf.jinr.ru
Frank Laboratory of Neutron Physics
Rússia, Dubna, Moscow Region; Dubna, Moscow RegionТ. Tropin
Joint Institute for Nuclear Research
Email: avd@nf.jinr.ru
Frank Laboratory of Neutron Physics
Rússia, Dubna, Moscow RegionV. Sadilov
Joint Institute for Nuclear Research
Email: avd@nf.jinr.ru
Frank Laboratory of Neutron Physics
Rússia, Dubna, Moscow RegionBibliografia
- Миличко В.А., Шалин А.С., Мухин И.С. и др. // УФН 2016. Т. 186. № 8. С. 801.
- Park N.-G. // Mater. Today 2015. V. 18. №. 2. P. 65.
- Park N.-G., Zhu K. // Nature Rev. 2020. V. 5. P. 333.
- Kim J.-Y., Lee J.-W., Jug H.-S., et. al. // Chem. Rev. 2020. V. 120. № 15. P. 7867.
- Liu S., Guan Y., Sheng Y., et. al. // Adv. Energy Mater. 2019. V. 10. № 13. 1902492.
- Salado M., Contreras-Bernal L., Calio L., et. al. // Mater. Chem. A 2017. V. 5. P. 10917.
- Salado M., Calio L., Contreras-Bernal L., et. al. // Materials 2018. V. 11. P. 1073.
- Yoo J.J., Seo G., Chua M.R., et. al. // Nature 2021. V. 590. P. 587.
- Akbulatov A.F., Ustinova M.I., Gutsev L., et. al. // Nano Energy 2021. V. 86. 106082.
- Akbulatov A.F., Ustinova M.I., Shilov G.V., et. al. // J. Phys. Chem. Lett. 2021. V. 12. P. 4362.
- Jeong M., Choi I.W., Go E.M., et. al. // Science 2020. V. 369. P. 1615.
- Li Y., Cui K., Xu X., Chen J., et. al. // J. Phys. Chem. C 2020. V. 124. № 28. P. 15107.
- Owejan J.E., Owejan J.P., De Caluwe S.C., Dura J.A. // Chem. Mater. 2012. V. 24. P. 2133.
- Avdeev M.V., Rulev A.A., Bodnarchuk V.I., et al. // Appl. Surf. Sci. 2017. V. 424. P. 378.
- Авдеев М.В., Гапон И.В., Меркель Д. и др. // Поверхность. Рентген. синхротр. нейтрон. исслед. 2022. № 8. C. 46.
- Матвеев В.А., Плешанов Н.К., Геращенко О.В., Байрамуков В.Ю. // Поверхность. Рентген. синхротр. нейтрон. исслед. 2014. № 10. С. 34.
- Петренко В.И., Косячкин Е.Н., Булавин Л.А., Авдеев М.В.// Поверхность. Рентген. синхротр. нейтрон. исслед. 2018. № 7. С. 20.
- Nelson A. // J. Appl. Cryst. 2006. V. 39. P. 273.
- Avdeev M.V., Rulev A.A., Ushakova E.E., et al. // Appl. Surf. Sci. 2019. V. 486. P. 287.
Arquivos suplementares
