Comparative Analysis of the Surface Morphology of Dense Membrane Filters Pd95Pb5 and Pd93.5In6.0Ru0.5

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Features of the dense palladium-based membrane filters surface morphology are studied in this work using atomic force microscopy and scanning electron microscopy methods. Element compositions of the filters are Pd95Pb5 and Pd93.5In6.0Ru0.5 (hereafter numerical coefficients determine the composition in wt.%). The thickness of dense membrane filters is 50 and 70 μм, respectively. Samples from metals of high purity were made by methods of electric arc fusion in a protective atmosphere and cold rolled with intermediate vacuum annealing. Morphology of the filter surface shows differences due to the element composition of the alloys. Manifestations of cavitation in the form of micron-sized funnels were found in palladium doping with lead and the absence of such funnels for palladium alloy with indium and ruthenium. Differences in the surface roughness of the samples are shown. In the mode of contrast of lateral forces, the atomic force microscopy method determined the presence of surface areas of different hardness. The obtained results are important for the choice of material for the manufacture of membrane filters with improved performance characteristics and for the development of the elemental composition of membrane filters in order to optimize their operation in high-tech modern technological processes.

About the authors

O. V. Akimova

Lomonosov Moscow State University

Author for correspondence.
Email: akimova@physics.msu.ru
Russian Federation, Moscow, 119991

T. P. Кaminskaya

Lomonosov Moscow State University

Email: ktp53@mail.ru
Russian Federation, Moscow, 119991

S. V. Gorbunov

A.A. Baykov Institute of Metallurgy and Materials Science, Russian Academy of Siences

Email: merciles@mail.ru
Russian Federation, Moscow 119334

References

  1. Burkhanov G.S., Gorina N.B., Kolchugina N.B., Roshan N.R. // Plat. Metals Rev. 2011. V. 55. P. 3.
  2. Al-Mufachi N.A., Rees N.V., Steinberger-Wilkens R. // Ren. Sustain. Energy Rev. 2015. V. 47. P. 540. https://doi.org/10.1016/j.rser.2015.03.026
  3. Бурханов Г.С., Кольчугина Н.Б., Рошан Н.Р., Словецкий Д.И. // Тяжелое машиностроение 2007. № 11. С. 17.
  4. Alqaheem Y., Alomair A.A. // Membranes. 2020. V. 10. P 33. https://doi.org/10.3390/membranes10020033
  5. Akimova O.V., Tereshina I.S., and Kaminskaya T.P. // Mater. Sci.Forum. 2021. V. 1037. P. 626. https://doi.org/10.4028/www.scientific.net/MSF.1037.626
  6. Creuzet F., Ryschenkow G., Arribart H. // J. Adhesion. 1992. V. 40. P. 15.
  7. Ломов А.А., Захаров Д.М., Тарасов М.А., Чекушкин А.М., Татаринцев А.А., Киселев Д.А., Ильина Т.С., Селезнев А.Е. // Журнал технической физики. 2023. Т. 93. Вып. 7. C. 897. https://doi.org/10.21883/JTF.2023.07.55743.83-23
  8. Суханова Т.Е.. Светличный В.М., Кузнецов Д.А., Вылегжанин М.Э., Ваганов Г.В., Лебедев Н.В. // Журнал технической физики. 2021. Т. 91. Вып. 10. C. 1491. https://doi.org/10.21883/JTF.2021.10.51361.88-21
  9. Sharma B., Kim J.S. // Int. J. Hydrogen Energy. 2017. V. 42. P. 25446. https://doi.org/10.1016/j.ijhydene.2017.08.142
  10. Gorbunov S.V., Kannykin S.V., Penkina T.N., Roshan N.R., Chustov E.M., Burkhanov G.S. // Russian Metallurgy (Metally). 2017. V. 1. P. 54. https://doi.org/10.1134/S0036029517010050
  11. Акимова О.В., Терешина И.С., Каминская Т.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 10. С. 64. https://doi.org/10.31857/S1028096021100022
  12. Акимова О.В., Каминская Т.П., Попов В.В., Горбунов С.В. Морфология поверхности плотных мембранных фильтров на основе палладия с различными легирующими элементами // Материалы международной конференции “Живучесть и конструкционное материаловедение”. Москва. 9–11 ноября 2022 г. C. 7. ISBN 978-5-904282-17-2
  13. Akimova O.V., Tereshina I.S., Kaminskaya T.P. // J. Phys. Conf. Ser. 2021. V. 2103. P. 012228. https://doi.org/10.1088/1742-6596/2103/1/012228
  14. Wang Y., Zhang X., Xu J., Sun X., Zhao X., Li H., Liu Y., Tian J., Hao X., Kong X., Wang Zh., Yang J., Su Y. // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.931169
  15. Borrajo-Pelaez R., Hedström P. // Solid State Mater. Sci. 2018. V. 43. Iss. 6. P. 455. https://doi.org/10.1080/10408436.2017.1370576
  16. Akimova O.V., Svetogorov R.D., Ovcharov A.V., Roshan N.R. // Membranes. 2022. V. 12. P. 1132. https://doi.org/10.3390/membranes12111132
  17. Szabó P.J., Field D.P., Jóni B., Horky J., Ungár T. // Metallurgical Mater. Trans. A. 2015. V. 46. P. 1948. https://doi.org/10.1007/s11661-015-2783-x
  18. Zha M., Zhang H.-M., Yu Zh.-Y., Zhang X.-H., Meng X.-T., Wang H.-Y., Jiang Q.-Ch. // J. Mater. Sci. Technol. 2018. V. 34. Iss. 2. P. 257. https://doi.org/10.1016/j.jmst.2017.11.018
  19. Wang Y., Chen M., Zhou F., Ma E. // Nature. 2002. V. 419. Is. 6910. P. 912. https://doi.org/10.1038/nature01133
  20. Mahesh B.V., Singh Raman R.K., Koch C.C. // J. Mater. Sci. 2012. V. 47. Iss. 22. P. 7735. https://doi.org/10.1007/s10853-012-6686-6
  21. An X.H., Han W.Z., Huang C.X., Zhang P., Yang G., Wu S.D., Zhang Z.F. // Appl. Phys. Lett. 2008. V. 92. P. 201915. https://doi.org/10.1063/1.2936306
  22. Agnolin S., Melendez J., Di Felice L., Gallucci F. // Int. J. Hydr. Energy. 2022. V. 47. P. 28505. https://doi.org/10.1016/j.ijhydene.2022.06.164
  23. Antler M. // Platinum Metals Rev. 1982. V. 26. P. 106. https://doi.org/10.1595/003214082X263106117
  24. Akimova O.V., Svetogorov R.D. // Materials Today: Proc. 2021. V. 38. P. 1416. https://doi.org/10.1016/j.matpr.2020.08.117

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences