Organosilicon Polymeric Acetylene Derivatives: X-Ray Spectral Study and Quantum-Chemical Calculations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The atomic and electronic structure of two organosilicon polymers [–Ph2Si(C≡C)2]n (P1) and [–Ph2Si(C≡CC≡C)2]m (P2) (where Ph — is phenyl group) of acetylene and diacetylene types by methods of density functional theory and X-ray emission spectroscopy. The interpretation of X-ray emission SiKβ1-spectra of these polymers was carried out based on an analysis of the distribution of partial electronic states obtained from quantum chemical calculations. Quantitative characteristics of the parameters of the chemical interaction of atoms, such as populations, natural charges, and electronic configurations in the studied polymers, were obtained based on the analysis of hybrid natural bond orbitals. The obtained values of the natural bond orbitals polarization coefficients indicate that the electron density is localized predominantly on carbon atoms. The electronic configurations for carbon atoms in different fragments differ significantly. For C atoms of ethynyl (diethynyl) fragments, they are close to linear σ-bond with sp1.03 (P1) and sp0.95 (P2) configurations, while for C atoms of phenyl fragments it is sp2.42, intermediate between sp2 and sp3 configurations. The natural charges on Si in both polymers are almost the same: +1.58e, +1.59e, while the natural charges on the carbon atoms of the diethynyl group decrease in comparison with the charge on the carbon atom of the ethynyl group from –0.42e to –0.36e.

Sobre autores

M. Tatevosyan

Southern Federal University, Research Institute of Physics

Email: v_vlasenko@rambler.ru
Rússia, Rostov-on-Don, 344090

V. Vlasenko

Southern Federal University, Research Institute of Physics

Autor responsável pela correspondência
Email: v_vlasenko@rambler.ru
Rússia, Rostov-on-Don, 344090

A. Shirayeva

Southern Federal University, Research Institute of Physics

Email: v_vlasenko@rambler.ru
Rússia, Rostov-on-Don, 344090

T. Zhukova

Don State Technical University

Email: v_vlasenko@rambler.ru
Rússia, Rostov-on-Don, 344002

Bibliografia

  1. Silicon-based, polymer science. // Advances in Chemistry. V. 224. / Ed. Zeigler J.M., Fearon F.W.G. Washington: American Chemical Society, 1989. https://www.doi.org/10.1021/ba-1990-0224
  2. Yarosh O.G., Voronkov M.G., Brodskaya E.I. // Russ. Chem. Rev. 1995. V. 64. P. 839. https://www.doi.org/10.1070/RC1995v064n09 ABEH000180
  3. Budy S.M., Son D.Y. // J. Inorg. Org. Polymers Mater. 2018. V. 28. P. 1673. https://doi.org/10.1007/s10904-018-0854-3
  4. Yang Z., Song Y., Zhang C., He J., Li X., Wang X., Wang N., Huang C., Li Y. Single atom dispersion of silicon as advanced versatile electrode material. Preprint. 2020. https://www.doi.org/10.21203/rs.3.rs-36360/v1
  5. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr., T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., et al // Gaussian 03, Revision A.1. Gaussian Inc., Pittsburgh PA. USA. 2003.
  6. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  7. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
  8. McLean A.D., Chandler G.S. // J. Chem. Phys. 1980. V. 72. P. 5639. https://doi.org/10.1063/1.438980
  9. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. V. 72. P. 650. https://doi.org/10.1063/1.438955
  10. Даниленко Т.Н., Власенко В.Г., Татевосян М.М. // Изв. РАН.: Сер. физ. 2015. T. 79. C. 1576. https://doi.org/10.3103/S1062873815110064
  11. Татевосян М.М., Даниленко Т.Н., Власенко В.Г. // Журн. общ. хим. 2016. Т. 86. С. 1438. https://doi.org/10.1134/S107036321609005X
  12. Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Журн. общ. хим. 2018. Т. 88. С. 730. https://doi.org/10.1134/S1070363218080017
  13. Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Жур. структ. хим. 2020. Т. 61. С. 1063. https://doi.org/10.1134/S002247662007001X
  14. Allen F.H., Bellard S., Brice M.D., Cartwright B.A., Doubleday A, Higgs H., Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., Rodgers J.R., Watson D.G. // Acta Cryst. B. 1979. V. 35. P. 2331. https://doi.org/10.1107/S0567740879009249
  15. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 648. (2023). http://www.chemcraftprog.com
  16. Даниленко Т.Н., Власенко В.Г., Татевосян М.М. // ФТТ. 2013. Т. 55. С. 2455.
  17. Horstmann J., Niemann M., Berthold K., Mix A., Neumann B., Stammler H.-G., Mitzel N.W. // Dalton Trans. 2017. V. 46. P. 1898. https://www.doi.org/10.1039/c6dt04608h
  18. Bokii N.G., Struchkov Yu.T., Luneva L.K., Sladkov A.M. // Russ. Chem. Bull. 197. V. 24. P. 270. https://doi.org/10.1007/BF00925768
  19. Reed A.E., Weinhold F. // J. Chem. Phys. 1983. V. 78. P. 4066. https://doi.org/10.1063/1.445134
  20. Reed A.E., Weinhold F. // J. Chem. Phys., 1985. V. 83. P. 1736. https://doi.org/10.1063/1.449360
  21. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88, P. 899. https://doi.org/10.1021/cr00088a005
  22. Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Жур. общ. хим. 2019. Т. 89. № 11. C. 1706. https://doi.org/10.1134/S0044460X19110106

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024