Dependence of Growth Parameters of Atomic Chains on Changes in the Substrate Temperature

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The growth and evolution of one-dimensional nanostructures on metal stepped surfaces were studied using the kinetic Monte Carlo method. The distribution of nanochain lengths was shown to change differently when the substrate was heated and cooled. Regularities are described that connect the nature of changes in the length distribution and the relative values of diffusion barriers for adatoms on the surface, which will make it possible to predict the length distribution of the resulting one-dimensional nanostructures.

全文:

受限制的访问

作者简介

A. Syromyatnikov

Lomonosov Moscow State University; Semenov Federal Research Center for Chemical Physics of the RAS

编辑信件的主要联系方式.
Email: ag.syromyatnikov@physics.msu.ru
俄罗斯联邦, Moscow; Moscow

S. Kudryashov

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
俄罗斯联邦, Moscow

A. Klavsyuk

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
俄罗斯联邦, Moscow

A. Saletsky

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. Клавсюк А.Л., Салецкий А.М. // Успехи физических наук. 2015. Т. 185. № 10. С. 1009. https://doi.org/10.3367/UFNr.0185.201510a.1009
  2. Сыромятников А.Г., Колесников С.В., Салецкий А.М., Клавсюк А.Л. // Успехи физических наук. 2021. Т. 191. № 07. С. 705. https://doi.org/10.3367/UFNr.2020.06.038789
  3. Loth S., Baumann S., Lutz C.P., Eigler D.M., Heinrich A.J. // Science. 2012. V. 335. № 6065. P. 196. https://doi.org/10.1126/science.1214131
  4. Fölsch S., Hyldgaard P., Koch R., Ploog K.H. // Phys. Rev. Lett. 2004. V. 92. № 5. P. 056803. https://doi.org/10.1103/PhysRevLett.92.056803
  5. Vu Q.H., Morgenstern K. // Phys. Rev. B. 2017. V. 95. № 12. Р. 125423. https://doi.org/10.1103/PhysRevB.95.125423
  6. Frenken J.W.M., Groot I.M.N. // MRS Bull. 2017. V. 42. № 11. P. 834. https://doi.org/10.1557/mrs.2017.239
  7. Ferstl P., Hammer L., Sobel C., Gubo M., Heinz K., Schneider M. A., Mittendorfer F., Redinger J. // Phys. Rev. Lett. 2016. V. 117. № 4. P. 046101. https://doi.org/10.1103/PhysRevLett.117.046101
  8. Zaki N., Potapenko D., Johnson P. D., Osgood R. M. // Phys. Rev. B. 2009. V. 80. № 15. P. 155419. https://doi.org/10.1103/PhysRevB.80.155419
  9. Gambardella P., Brune H., Kern K., Marchenko V. I. // Phys. Rev. B. 2006. V. 73. № 24. P. 245425. https://doi.org/10.1103/PhysRevB.73.245425
  10. Kuhnke K., Kern K. // J. Phys.: Condens. Matter. 2003. V. 15. № 47. P. S3311. https://doi.org/10.1088/0953-8984/15/47/007
  11. Tonhäuser J., Atiawotse E., Kürpick U., Matzdorf R. // Surf. Sci. 2022. V. 720. P. 122053. https://doi.org/10.1016/j.susc.2022.122053
  12. Kabanov N.S., Heimbuch R., Zandvliet H.J.W., Saletsky A.M., Klavsyuk A.L. // Appl. Surf. Sci. 2017. V. 404. P. 12. https://doi.org/10.1016/j.apsusc.2017.01.206
  13. Schiel C., Vogtland M., Bechstein R., Kühnle A., Maass P. // J. Phys. Chem. C. 2020. V. 124. № 39. P. 21583. https://doi.org/10.1021/acs.jpcc.0c06676
  14. Syromyatnikov A.G., Saletsky A.M., Klavsyuk A.L. // Phys. Rev. B. 2018. V. 97. № 23. P. 235444. https://doi.org/10.1103/PhysRevB.97.235444
  15. Сыромятников А.Г., Кудряшов С.А., Салецкий А.М., Клавсюк А.Л. // ЖЭТФ. 2021. Т. 160. Вып. 3. С. 410. https://doi.org/10.31857/S0044451021090078
  16. Mocking T.F., Bampoulis P., Oncel N., Poelsema B., Zandvliet H.J.W. // Nat. Commun. 2013. V. 4. P. 2387. https://doi.org/10.1038/ncomms3387
  17. Sánchez J.A., González D.L., Einstein T.L. // Phys. Rev. E. 2019. V. 100. № 5. P. 052805. https://doi.org/10.1103/PhysRevE.100.052805
  18. Syromyatnikov A.G., Guseynova M.R., Saletsky A.M., Klavsyuk A.L. // J. Stat. Mech. 2020. V. 2020. № 9. P. 093202. https://doi.org/10.1088/1742-5468/abacb1
  19. Yilmaz M.B., Zimmermann F.M. // Phys. Rev. E. 2005. V. 71. № 2. P. 026127. https://doi.org/10.1103/PhysRevE.71.026127
  20. Сыромятников А.Г., Салецкий А.М., Клавсюк А.Л. // Письма в ЖЭТФ. 2019. Т. 110. Вып. 5. С. 331. https://doi.org/10.1134/S0370274X19170089
  21. Tokar V.I., Dreyssé H. // Surf. Sci. 2015. V. 637–638. P. 116. https://doi.org/10.1016/j.susc.2015.03.029

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the main events in the calculation model and diffusion barriers for these events

下载 (199KB)
3. Fig. 2. Equilibrium distributions of chain lengths in the Ag/Pt(997) system at low temperature (dashed line) and high temperature (solid line)

下载 (115KB)
4. Fig. 3. Diagram of nanocircuit length distribution as a function of initial (T1) and final (T2) temperature: 1 - sample heating, average length increases; 2 - distribution does not change; 3 - sample cooling, average length of nanostructures decreases. TC - critical temperature

下载 (135KB)
5. Fig. 4. Diagram of the morphology of the growth of nanochains on a stepped surface depending on the ratio of diffusion barriers ΔE1 and ΔE2: 1 - chains of finite length are growing; 2 - monomers instead of chains are formed

下载 (134KB)

版权所有 © Russian Academy of Sciences, 2024