Investigation of Marangoni convection during contactless crystal growth in microgravity conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of melt meniscus length on the velocity caused by Marangoni convection during non-contact crystal growing has been studied by using Te-doped GaSb single crystal grown under microgravity conditions.

Texto integral

Acesso é fechado

Sobre autores

А. Voloshin

National Research Centre “Kurchatov Institute”; Mendeleev Russian University of Chemical Technology; National University of Science and Technology “MISIS”

Autor responsável pela correspondência
Email: voloshin@crys.ras.ru

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow; Moscow; Moscow

Е. Rudneva

National Research Centre “Kurchatov Institute”

Email: voloshin@crys.ras.ru

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

V. Manomenova

National Research Centre “Kurchatov Institute”

Email: voloshin@crys.ras.ru

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

А. Prostomolotov

Ishlinsky Institute for Problems in Mechanics of Russian Academy of Sciences

Email: voloshin@crys.ras.ru
Rússia, Moscow

N. Verezub

Ishlinsky Institute for Problems in Mechanics of Russian Academy of Sciences

Email: voloshin@crys.ras.ru
Rússia, Moscow

Bibliografia

  1. Стрелов В.И., Куранова И.П., Захаров Б.Г., Волошин А.Э. // Кристаллография. 2014. Т. 59. С. 861. https://doi.org/10.7868/S0023476114060289
  2. Jiang H., Liao W., Chen E. // Symmetry. 2024. V. 16. P. 844. https://doi.org/10.3390/sym16070844
  3. Onoda K., Nanzai B. // Processes. 2024. V. 12(3). P. 609. https://doi.org/10.3390/pr12030609
  4. Левич В.Г. // Физико-химическая гидродинамика. Москва: Издательство Академии наук СССР. 1952. 538 c.
  5. Nishinaga T., He J., Nakamura T., Ge P., Huo C. // J. Cryst. Growth. 1997. V. 174. P. 96. https://doi.org/10.1016/S0022-0248(96)01084-6
  6. Nakamura T., Nishinaga T., Ge P., Huo C. // J. Cryst. Growth. 2000. V. 211. P. 441. https://doi.org/10.1016/S0022-0248(99)00786-1
  7. Ge P., Nishinaga T., Huo C., Xu Z., He J., Masaki M., Washyama M., Xie X., Xi R. // Microgravity Q. 1993. V. 3. P. 161.
  8. Voloshin A.E., Lomov A.A., Nishinaga T., Ge P., Huo C. // J. of Crystal Growth. 2002. V. 236. P. 501. https://doi.org/10.1016/S0022-0248(01)02200-X
  9. Voloshin A.E., Nishinaga T., Ge P., Huo C. // J. Cryst. Growth. 2002. V. 234. P. 12. https://doi.org/10.1016/S0022-0248(01)01621-9
  10. Волошин А.Э., смольский И.Л. // Кристаллография. 1993. Т. 38. С. 12.
  11. Voloshin A.E., Smolsky I.L. // Phys. St. Sol. (b). 1995. V. 192. P. 73. https://doi.org/10.1002/pssb.2221920109
  12. Полтавцев Ю.Г. // Структура полупроводниковых расплавов. Москва: Металлургия, 1984. 232 c.
  13. Волошин А.Э. // Кристаллография. 2013. Т. 58. № 6. С. 942. https://doi.org/10.1134/S1063774513060254
  14. Burton J.A., Prim R.C., Slichter W.P. // J. Chem. Phys. 1953. V. 21. N 11. P. 1987.
  15. Ostrogorsky A.G., Muller G. // J. Cryst. Growth. 1993. V. 128. P. 207. https://doi.org/10.1016/0022-0248(93)90320-v
  16. Garandet J.P., Favier J.J., Camel D. // J. Cryst. Growth. 1993. V.130. P. 113. https://doi.org/10.1016/0022-0248(93)90843-L
  17. Garandet J.P., Corre S., Kaddeche S., Alboussiere T. // J. Cryst. Growth. 2000. V. 209. P. 970. https://doi.org/10.1016/S0022-0248(99)00630-2
  18. Prostomolotov A.I., Verezub N.A., Voloshin A.E. // J. Cryst. Growth. 2014. V.401. P. 111. https://doi.org/10.1016/j.jcrysgro.2014.02.029
  19. Voloshin A.E., Prostomolotov A.I., Verezub N.A. // J. Cryst. Growth. 2016. V. 45. P. 188. https://doi.org/10.1016/j.jcrysgro.2016.08.003
  20. Термодинамические Константы Веществ. База данных. Поиск по брутто-формуле. http://www.chem.msu.su./cgi-bin/tkv.pl.
  21. Duffar T., Dusserre P., Abadie J. // Adv. Space Res. 1995. V. 167. P. 199. https://doi.org/10.1016/0273-1177(95)00160-G
  22. Harter I., Duffar T., Dussere P. //Proc. 7th Eur. Symp. Mater. Fluid Sci. in Microgravity, 1989 / Oxford, UK, ESA SP-295. 1990. P. 69.
  23. Tegetmeier A., Croll A., Danilewsky A., Benz K.W. // J. Cryst. Growth. 1996. V. 166. P. 651-656. https://doi.org/10.1016/0022-0248(96)00134-0
  24. Harter I., Dussere P., Duffar T., Nabot J.P., Eusthatopoulos N. // J. Cryst. Growth. 1993. V. 131. P. 157. https://doi.org/10.1016/0022-0248(93)90409-P
  25. Дашевский М.Я., Кукуладзе Г.В., Лазарев В.Б., Миргаловская М.С. // Изв. АН СССР. Неорганические материалы. 1967. Т. 3. С. 1561.
  26. Cahn J.W., Hanneman R.E. // Surf. Sci. 1964. V. 1. N 4. P. 387. https://doi.org/10.1016/0039-6028(64)90006-8
  27. Болтакс Б.И., Гуторов Ю.А. // ФТТ. 1959. Т.1. В. 7. С.1015.
  28. Müller G. Convection and inhomogeneities in crystal growth from the melt. // Crystals, Properties, and Applications. 1988. V. 12. Berlin: Springer. P. 1–136.
  29. Raffy C., Duffar T. // Internal Report, CEA-Grenoble, France, SES No. 15/95, 1995.
  30. Saghira M.Z., Chacha M., Islamb M.R. // J. Cryst. Growth. 2002. V. 234. N 2. P. 285. https://doi.org/10.1016/S0022-0248(01)01699-2
  31. Магомедов Я.Б., Билалов А.Р. // ФТТ. 2000. Т. 35. Вып. 5. С. 521.
  32. Boiton P., Giacometti N., Santailler J.L., Duffar T., Nabot J.P. // J. Cryst. Growth. 1998. V. 194. N 1. P. 43. https://doi.org/10.1016/S0022-0248(98)00617-4
  33. Волошин А.Э. // Кристаллография. 2015. Т.60. С. 427. https://doi.org/10.7868/S0023476115030248
  34. Горелик С.С., Дашевский М.Я. // Материаловедение полупроводников и диэлектриков. Москва: Металлургия, 1988. 576 с.
  35. Aptea P.A., Zeng X. C. // Appl. Phys. Lett. 2008. V. 92. P. 221903-1. https://doi.org/10.1063/1.2937444
  36. Turnball D.J., Cech R.E. // J. Appl. Phys. 1950. V. 21. P. 804. https://doi.org/10.1063/1.1699763
  37. Rosenberger F., Muller G. // J. Cryst. Growth. 1983. V. 65. N 1. P. 91. https://doi.org/10.1016/0022-0248(83)90043-X
  38. Бармин И.В., Земсков В.С., Раухман М.Р., Сенченков А.С., Егоров А.В., Антипов А.И., Агапова Е.А. // Гидромеханика и тепломассообмен в невесомости. М.: Наука, 1982. С. 209.
  39. Земсков В.С., Раухман М.Р., Бармин И.В., Сенченков А.С., Шульпина И.Л., Сорокин Л.М. // Физика и химия обработки материалов. 1983. № 5. С. 56.
  40. Wilcox W.R., Regel L.L. // Microgravity Sci. Technol. 1995. V. VIII/1. P. 56.
  41. Duffar T., Paret-Harter I., Dusserre P. // J. Cryst. Growth. 1990. V. 100. P. 171. https://doi.org/10.1016/0022-0248(90)90620-Z
  42. Duffar T., Boiton P., Dussere P., Abadie J. // J. Cryst. Growth. 1997. V. 179. P. 397. https://doi.org/10.1016/S0022-0248(97)00178-4
  43. Полежаев В.И., Бунэ А.В., Верезуб Н.А., Глушко Г.С., Грязнов B.Л., Дубовик К.Г., Никитин C.А., Простомолотов А.И., Федосеев А.И., Черкасов С.Г. // Математическое моделирование конвективного тепломассообмена на основе уравнений Навье–Стокса. Москва: Наука, 1987. 272 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Crystallization regions of the rounded front (A) and face (B).

Baixar (15KB)
3. Fig. 2. Averaged parallel to the crystallization front, the distribution of Te in the region of the growth of the rounded front and the calculation using the BPS model. The upper part of the figure shows a graph of the change in the gap δl between the ampoule wall and the left side of the crystal with a shift of 0.5 mm (see the text for explanations).

Baixar (30KB)
4. Fig. 3. Geometry of interphase boundaries near the crystallization front in the absence of contact between the crystal and the container walls.

Baixar (35KB)
5. Fig. 4. Dependence on δl, calculated from the measured values ​​of CTe, and its approximation using formula (9).

Baixar (19KB)
6. Fig. 5. Schematic diagram illustrating the model for the numerical solution of a two-dimensional convective diffusion problem.

Baixar (15KB)
7. Fig. 6. Schematic diagram illustrating the model for numerical calculation of the Marangoni convection velocity.

Baixar (11KB)
8. Fig. 7. Results of 2D modeling of Marangoni convection: a – dependence of the maximum convective flow velocity V∞ on the gap δl between the lateral surface of the crystal and the container wall; b – distribution of the convective flow velocity; c – temperature distribution at δl = 0.05 cm.

Baixar (34KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024