High Resolution Detector for X-Ray Visualization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A compact two-dimensional high-resolution detector for X-ray imaging has been developed. The main elements of the detector are a 20-μm-thick LuAG:Ce scintillation crystal and a monochrome CMOS sensor with a resolution of 20 MP and a shooting rate of up to 20 frame/s. The detector efficiency has been estimated on an Excillium MetalJet D2 laboratory source with a GaIn liquid anode. The objects of study were a copper mesh with a 25.4 µm period and a test structure made of tantalum, 500 nm thick, with a radially decreasing pattern (Siemens star). Additionally, radiography of a biological object (centipede) was carried out. The spatial resolution of the detector was less than 3 μm.

Full Text

Restricted Access

About the authors

A. L. Astafyev

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

D. A. Zverev

Immanuel Kant Baltic Federal University

Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

M. A. Voevodina

Immanuel Kant Baltic Federal University

Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

A. A. Barannikov

Immanuel Kant Baltic Federal University

Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

I. B. Panormov

Immanuel Kant Baltic Federal University

Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

A. A. Snigirev

Immanuel Kant Baltic Federal University

Email: alastafev@kantiana.ru
Russian Federation, Kaliningrad

References

  1. Töpperwien M., Krenkel M., Vincenz D. // Sci Rep. 2017. V. 7. Р. 42847. http://doi/org/10.1038/srep42847
  2. Peng Z.Y., Gu Y.T., Xie Y.G. et al. // Radiat. Detect. Technol. Methods. 2018. V. 2. P. 26. http://doi/org/10.1007/s41605-018-0058-y
  3. Snigirev A., Koch A., Raven С., Spanne P. // J. Opt. Soc. Am. A. 1998. V. 15. P. 1940. http://doi/org/10.1364/JOSAA.15.001940
  4. Riva F. // Development of New Thin Film Scintillators for High-Resolution X-Ray Imaging. Physics. Université de Lyon, 2016. P. 149.
  5. Lecoq P., Gektin A., Korzhik M. Annenkov A., Pedrini C. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Switzerland: Springer Cham, 2006. http://doi/org/10.1007/3-540-27768-4
  6. Martin T., Koch A., Nikl M. // MRS Bull. 2017. V. 42. P. 451. doi: 10.1557/mrs.2017.11
  7. Martin T., Douissard P., Couchaud M, Cecilia A., Baumbach T., Dupré K., Rack A. // IEEE Trans. Nucl. Sci. 2009. V. 56. № 3. P. 1412. http://doi/org/10.1109/TNS.2009.2015878
  8. Lei L., Wang Y., Kuzmin A., Hua Y., Zhao J., Xu S., PrasadP. // eLight. 2022. V. 2. P. 17. http://doi/org/10.1186/s43593-022-00024-0
  9. Nikl M. // Meas. Sci. Technol. 2006. V. 17. № 4. P. R37. http://doi/org/10.1088/0957-0233/17/4/R01
  10. Zhu D., Nikl M., Chewpraditkul W., Li J. // J. Adv. Ceram. 2022. V. 11. P. 1825. http://doi/org/10.1007/s40145-022-0660-9
  11. Datta A., Fiala J., Motakef S. // Sci. Rep. 2021. V. 11. P. 22897. http://doi/org/10.1038/s41598-021-02378-w
  12. Grachev E., Trubitsyn A., Manoshkin A., Ivanov V. X-ray Camera Based on CMOS Sensor // 8th Mediterranean Conference on Embedded Computing (MECO). Budva, Montenegro, 2019. P. 1. http://doi/org/10.1109/MECO.2019.8760193
  13. Uesugi K., Hoshino M., Yagi N. // J. Synchrotron Radiat. 2011. V. 18. P. 217. http://doi/org/10.1107/S0909049510044523
  14. https://rigaku.com/.
  15. https://optiquepeter.com/.
  16. https://www.hamamatsu.com/.
  17. Barannikov A., Shevyrtalov S., Zverev D., Narikovich A. // Proc. SPIE. 2021. V. 11776. P. 117760D. https://doi.org/10.1117/12.2582687
  18. https://keytech.ntt-at.co.jp/en/xray/prd_0024.html.
  19. Fakhri S.A., Motayyeb S., Saadatseresht M., Zakeri H., Mousavi V. // ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023. V. 4. P. 143. http://doi/org/10.5194/isprs-annals-X-4-W1-2022-143-2023
  20. Seibert J.A., Boone J.M., Lindfors K.K. // Proc. SPIE. 1998. V. 3336. P. 348. http://doi/org/10.1117/12.317034

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Radiographic image (a) and cross-section (b) of a metal mesh with a period of 25.4 μm, mesh thickness of 8 μm, and exposure time of 2000 s.

Download (222KB)
3. Fig. 2. Radiographic image of the Siemens star test object.

Download (105KB)
4. Fig. 3. Radiographic image of millipede (a) and enlarged image of the head (b), exposure time 2000 s.

Download (176KB)

Copyright (c) 2025 Russian Academy of Sciences