The Impact of Thermal Treatment on the Properties of Polymer-Contained Composite Films of CsPbBr2I

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the current work, the impact of vacuuming and annealing temperatures on the properties of composite films based on CsPbBr2I perovskites with partial substitution of Pb2+ ions for Mn2+ and passivation of grain boundaries with polyethylene oxide and polyvinylidene fluoride were used. Dimethyl sulfoxide was used as a solvent. The spin-coating method was used to form films. The vacuuming and annealing temperatures varied in the ranges of 60–80°C and 60–90°C respectively. The spectral dependences of photoluminescence were compared in the investigation. Based on it, the conclusions about the influence of phase segregation and the applicability of the temperature regime were made. It was found that samples obtained using vacuuming and annealing temperatures of 70 °C exhibited photoluminescence peaks of 616 ± 14 nm and 638 ± 18 nm. The presence of two peaks indicates minor phase segregation, which manifests itself in a local change in the stoichiometric composition of the samples with the formation of regions enriched with bromine and iodine However, among the sample under study, taking into account the limitation of photoinduced phase segregation, the specified thermal regime is optimal: a decrease in temperature leads to a shift of the photoluminescence peak to the green region of the spectrum, while its increase leads to the formation of defective non-luminescent phases.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Toikka

Alferov Saint Petersburg University of the Russian Academy of Sciences; ITMO University

Хат алмасуға жауапты Автор.
Email: astoikka.nano@gmail.com
Ресей, Saint Petersburg; Saint Petersburg

R. Kenesbay

Alferov Saint Petersburg University of the Russian Academy of Sciences

Email: astoikka.nano@gmail.com
Ресей, Saint Petersburg

M. Baeva

Alferov Saint Petersburg University of the Russian Academy of Sciences

Email: astoikka.nano@gmail.com
Ресей, Saint Petersburg

D. Mitin

Alferov Saint Petersburg University of the Russian Academy of Sciences

Email: astoikka.nano@gmail.com
Ресей, Saint Petersburg

I. Mukhin

Alferov Saint Petersburg University of the Russian Academy of Sciences

Email: astoikka.nano@gmail.com
Ресей, Saint Petersburg

Әдебиет тізімі

  1. Yao Z., Zhao W., Chen S., Jin Z., Liu, S. F. // ACS Appl. Energy Mater. 2020. V. 3. № 6. P. 5190. https://www.doi.org/10.1021/acsaem.9b02468
  2. Wang Q., Gong Z., Wu S., Pan S., Pan J. // J. Crystal Growth. 2022. № 596. P. 126838. https://www.doi.org/org/10.1016/j.jcrysgro.2022. 126838
  3. Zhang X., Yang P. // Langmuir. 2023. V. 39. № 32. P. 11188. https://www.doi.org/10.1021/acs.langmuir.3c01848
  4. Moon J., Mehta Y., Gundogdu K., So F., Gu Q. // Adv. Mater. 2023. P. 2211284. https://www.doi.org/10.1002/adma.202211284
  5. Baeva M., Gets D., Polushkin A., Vorobyov A., Goltaev A., Neplokh V., Mozharov A., Krasnikov D.V., Nasibulin A.G., Mukhin I., Makarov S. // Opto-Electronic Adv. 2023. V. 6. P. 220154. https://www.doi.org/10.29026/oea.2023.220154
  6. Hänsch P., Loi M.A. // Appl. Phys. Lett. 2023. V. 123. P. 030501. https://www.doi.org/10.1063/5.0151942
  7. Li H., Lin H., Ouyang D., Yao C., Li C., Sun J., Song Y., Wang Y., Yan Y., Wang Y., Dong Q., Choy W.C.H. // Adv. Mater. 2021. V. 33. P. 2008820. https://www.doi.org/10.1002/adma.202008820
  8. Shen X., Zhang X., Wang Z., Gao X., Wang Y., Lu P., Bai X., Hu J., Shi Z., Yu W.W., Zhang Y. // Adv. Functional Mater. 2022. V. 32. P. 2110048. https://www.doi.org/10.1002/adfm.202110048
  9. Yang J.N., Song Y., Yao J.S., Wang K.H., Wang J.J., Zhu B.S., Yao M.M., Rahman S.U., Lan Y.F., Fan F.J., Yao H. // J. Am. Chem. Soc. 2020. V. 142. № 6. P. 2956. https://www.doi.org/10.1021/jacs.9b11719
  10. Aygüler M.F., Puscher B.M.D., Tong Y., Bein T., Urban A.S., Costa R.D., Docampo P. // J. Phys. D: Appl. Phys. 2018. V. 51. № 33. P. 1. https://www.doi.org/10.1088/1361-6463/aad203
  11. Wang C.M., Su Y.M., Shih T.A., Chen G.Y., Chen Y.Z., Lu C.W., Yu I.S., Yang Z.P., Su H.C. // J. Mater. Chem. C. 2018. V. 6. № 47. P. 12808. https://www.doi.org/10.1039/c8tc04451a
  12. Stockman A., Macleod D.I.A., Johnson N.E. // J. Opt. Soc. Am. A. 1993. V. 10. № 12. P. 2491. https://www.doi.org/10.1364/josaa.10.002491
  13. Li J., Yang L., Guo Q., Du P., Wang L., Zhao X., Liu N., Yang X., Luo J., Tang J. // Sci. Bull. 2022. V. 67. № 2. P. 178. https://www.doi.org/10.1016/j.scib.2021.09.003
  14. Liang J., Liu Z., Qiu L., Hawash Z., Meng L., Wu Z., Jiang Y., Ono L.K., Qi Y. // Adv. Energy Mater. 2018. V. 8. P. 1800504. https://www.doi.org/10.1002/aenm.201800504
  15. Zheng L., Hurst T., Li Z. // Georgia J. Sci. 2022. V. 80. № 2. P. 1.
  16. Gets D., Alahbakhshi M., Mishra A., Haroldson R., Papadimitratos A., Ishteev A., Saranin D., Anoshkin S., Pushkarev A., Danilovskiy E., Makarov S., Slinker J.D., Zakhidov A.A. // Adv. Opt. Mater. 2021. V. 9. P. 2001715. https://www.doi.org/10.1002/adom.202001715
  17. Mondal S., Paul T., Maiti S., Das B.K., Chattopadhyay K.K. // Nano Energy. 2020. V. 74. P. 104870. https://www.doi.org/10.1016/j.nanoen.2020.104870
  18. Liu C., Cheng Y.B., Ge Z. // Chem. Soc. Rev. 2020. V. 49. № 6. P. 1653. https://www.doi.org/10.1039/c9cs00711c
  19. Zhang X., Gao X., Meng X. // J. Alloys Compd. 2019. V. 810. P. 151943. https://www.doi.org/10.1016/j.jallcom.2019.151943
  20. Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2019. V. 4. № 1. P. 54. https://www.doi.org/10.1021/acsenergylett.8b02207
  21. OceanView (v. 1.6.7) (2020) Ocean Optics, США. https://www.oceanoptics.com/software/. Дата посещения 16.08.2024.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Photoluminescence of the studied samples: spectral dependences (a) and images obtained with an optical microscope (b). Spectral dependences of photoluminescence are given at Tvak = Totj = 60°C (1); Tvak = 60°C, Totj = 70°C (2); Tvak = 60°C, Totj = 80°C (3); Tvak = 70°C, Totj = 70°C (4); Tvak = 70°C, Totj = 80°C (5); Tvak = 80°C, Totj = 80°C (6); Tvak = 80°C, Totj = 90°C (7) and normalised to the maximum photoluminescence intensity of the films at Tvak = Totj = 60°C. Optical images were obtained at Tvak = Totj = 60°C (1); Tvak = 60°C, Totj = 70°C (2); Tvak = 60°C, Totj = 80°C (3); Tvak = 70°C, Totj = 70°C (4).

Жүктеу (472KB)

© Russian Academy of Sciences, 2025