Emerging Role of Sorting Nexin 17 in Human Health and Disease


Citar

Texto integral

Resumo

:The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.

Sobre autores

Juan Chen

Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University

Email: info@benthamscience.net

Yan-Hong Su

Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University

Autor responsável pela correspondência
Email: info@benthamscience.net

Meng Wang

Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University

Email: info@benthamscience.net

Yi-Chen Zhang

Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University

Email: info@benthamscience.net

Bibliografia

  1. Heo, A.J.; Ji, C.H.; Kwon, Y.T. The Cys/N-degron pathway in the ubiquitin–proteasome system and autophagy. Trends Cell Biol., 2023, 33(3), 247-259. doi: 10.1016/j.tcb.2022.07.005 PMID: 35945077
  2. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem., 2009, 78(1), 477-513. doi: 10.1146/annurev.biochem.78.081507.101607 PMID: 19489727
  3. Wang, Y.; Le, W.D. Autophagy and ubiquitin-proteasome system. Adv. Exp. Med. Biol., 2019, 1206, 527-550. doi: 10.1007/978-981-15-0602-4_25 PMID: 31777002
  4. Zhang, Y.; Chen, X.; Zhao, Y.; Ponnusamy, M.; Liu, Y. The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev. Neurosci., 2017, 28(8), 861-868. doi: 10.1515/revneuro-2017-0013 PMID: 28704199
  5. Jovic, M.; Sharma, M.; Rahajeng, J.; Caplan, S. The early endosome: A busy sorting station for proteins at the crossroads. Histol. Histopathol., 2010, 25(1), 99-112. PMID: 19924646
  6. Tanno, H.; Komada, M. The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem., 2013, 153(6), 497-504. doi: 10.1093/jb/mvt028 PMID: 23564907
  7. Jaillais, Y.; Fobis-Loisy, I.; Miège, C.; Gaude, T. Evidence for a sorting endosome in Arabidopsis root cells. Plant J., 2008, 53(2), 237-247. doi: 10.1111/j.1365-313X.2007.03338.x PMID: 17999644
  8. Cullen, P.J.; Steinberg, F. To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol., 2018, 19(11), 679-696. doi: 10.1038/s41580-018-0053-7 PMID: 30194414
  9. McNally, K.E.; Cullen, P.J. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol., 2018, 28(10), 807-822. doi: 10.1016/j.tcb.2018.06.005 PMID: 30072228
  10. Chen, K.E.; Healy, M.D.; Collins, B.M. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic, 2019, 20(7), 465-478. doi: 10.1111/tra.12649 PMID: 30993794
  11. Wang, J.; Fedoseienko, A.; Chen, B.; Burstein, E.; Jia, D.; Billadeau, D.D. Endosomal receptor trafficking: Retromer and beyond. Traffic, 2018, 19(8), 578-590. doi: 10.1111/tra.12574 PMID: 29667289
  12. McNally, K.E.; Faulkner, R.; Steinberg, F.; Gallon, M.; Ghai, R.; Pim, D.; Langton, P.; Pearson, N.; Danson, C.M.; Nägele, H.; Morris, L.L.; Singla, A.; Overlee, B.L.; Heesom, K.J.; Sessions, R.; Banks, L.; Collins, B.M.; Berger, I.; Billadeau, D.D.; Burstein, E.; Cullen, P.J. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol., 2017, 19(10), 1214-1225. doi: 10.1038/ncb3610 PMID: 28892079
  13. Mallam, A.L.; Marcotte, E.M. Systems-wide studies uncover commander, a multiprotein complex essential to human development. Cell Syst., 2017, 4(5), 483-494. doi: 10.1016/j.cels.2017.04.006 PMID: 28544880
  14. Schmid, S.L. A nostalgic look back 40 years after the discovery of receptor-mediated endocytosis. Mol. Biol. Cell, 2019, 30(1), 1-3. doi: 10.1091/mbc.E18-06-0409 PMID: 30598058
  15. Xu, S.; Zhang, L.; Brodin, L. Overexpression of SNX7 reduces Aβ production by enhancing lysosomal degradation of APP. Biochem. Biophys. Res. Commun., 2018, 495(1), 12-19. doi: 10.1016/j.bbrc.2017.10.127 PMID: 29080748
  16. Zhan, X.Y.; Zhang, Y.; Zhai, E.; Zhu, Q.Y.; He, Y. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer. PeerJ, 2018, 6, e4829. doi: 10.7717/peerj.4829 PMID: 29868263
  17. Tan, J.Z.A.; Gleeson, P.A. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 697-712. doi: 10.1016/j.bbamem.2018.11.013 PMID: 30639513
  18. Yang, S.; Tang, D.; Zhao, Y.C.; Liu, H.; Luo, S.; Stinchcombe, T.E.; Glass, C.; Su, L.; Shen, S.; Christiani, D.C.; Wang, Q.; Wei, Q. Novel genetic variants in KIF16B and NEDD4L in the endosome-related genes are associated with nonsmall cell lung cancer survival. Int. J. Cancer, 2020, 147(2), 392-403. doi: 10.1002/ijc.32739 PMID: 31618441
  19. Yang, B.; Jia, Y.; Meng, Y.; Xue, Y.; Liu, K.; Li, Y.; Liu, S.; Li, X.; Cui, K.; Shang, L.; Cheng, T.; Zhang, Z.; Hou, Y.; Yang, X.; Yan, H.; Duan, L.; Tong, Z.; Wu, C.; Liu, Z.; Gao, S.; Zhuo, S.; Huang, W.; Gao, G.F.; Qi, J.; Shang, G. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc. Natl. Acad. Sci. USA, 2022, 119(4), e2117576119. doi: 10.1073/pnas.2117576119 PMID: 35022217
  20. Sharmin, T.; Takuma, T.; Morshed, S.; Ushimaru, T. Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem. Biophys. Res. Commun., 2021, 552, 1-8. doi: 10.1016/j.bbrc.2021.03.033 PMID: 33740659
  21. Hanley, S.E.; Cooper, K.F. Sorting nexins in protein homeostasis. Cells, 2020, 10(1), 17. doi: 10.3390/cells10010017 PMID: 33374212
  22. Yong, X.; Zhao, L.; Hu, W.; Sun, Q.; Ham, H.; Liu, Z.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Q.; Mo, X.; Hu, J.; Billadeau, D.D.; Jia, D. SNX27-FERM-SNX1 complex structure rationalizes divergent trafficking pathways by SNX17 and SNX27. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2105510118. doi: 10.1073/pnas.2105510118 PMID: 34462354
  23. Ghai, R.; Mobli, M.; Norwood, S.J.; Bugarcic, A.; Teasdale, R.D.; King, G.F.; Collins, B.M. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7763-7768. doi: 10.1073/pnas.1017110108 PMID: 21512128
  24. Ghai, R.; Bugarcic, A.; Liu, H.; Norwood, S.J.; Skeldal, S.; Coulson, E.J.; Li, S.S.C.; Teasdale, R.D.; Collins, B.M. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(8), E643-E652. doi: 10.1073/pnas.1216229110 PMID: 23382219
  25. He, X.; Zhou, S.; Ji, Y.; Zhang, Y.; Lv, J.; Quan, S.; Zhang, J.; Zhao, X.; Cui, W.; Li, W.; Liu, P.; Zhang, L.; Shen, T.; Fang, H.; Yang, J.; Zhang, Y.; Cui, X.; Zhang, Q.; Gao, F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front. Immunol., 2022, 13, 916098. doi: 10.3389/fimmu.2022.916098 PMID: 36311763
  26. Zhang, Y.; Ni, L.; Lin, B.; Hu, L.; Lin, Z.; Yang, J.; Wang, J.; Ma, H.; Liu, Y.; Yang, J.; Lin, J.; Xu, L.; Wu, L.; Shi, D. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol. Res., 2021, 169, 105642. doi: 10.1016/j.phrs.2021.105642 PMID: 33933636
  27. Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; Xia, R. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant, 2023, 16(11), 1733-1742. doi: 10.1016/j.molp.2023.09.010 PMID: 37740491
  28. Cullen, P.J. Endosomal sorting and signalling: An emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol., 2008, 9(7), 574-582. doi: 10.1038/nrm2427 PMID: 18523436
  29. Teasdale, R.D.; Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: Structures, functions and roles in disease. Biochem. J., 2012, 441(1), 39-59. doi: 10.1042/BJ20111226 PMID: 22168438
  30. Shortill, S.P.; Frier, M.S.; Conibear, E. You can go your own way: SNX-BAR coat complexes direct traffic at late endosomes. Curr. Opin. Cell Biol., 2022, 76, 102087. doi: 10.1016/j.ceb.2022.102087 PMID: 35569261
  31. Lauffer, B.E.L.; Melero, C.; Temkin, P.; Lei, C.; Hong, W.; Kortemme, T.; von Zastrow, M. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol., 2010, 190(4), 565-574. doi: 10.1083/jcb.201004060 PMID: 20733053
  32. Amatya, B.; Lee, H.; Asico, L.D.; Konkalmatt, P.; Armando, I.; Felder, R.A.; Jose, P.A. SNX-PXA-RGS-PXC subfamily of SNXs in the regulation of receptor-mediated signaling and membrane trafficking. Int. J. Mol. Sci., 2021, 22(5), 2319. doi: 10.3390/ijms22052319 PMID: 33652569
  33. Rabouille, C. Retriever fetches integrins from endosomes. Nat. Cell Biol., 2017, 19(10), 1144-1146. doi: 10.1038/ncb3612 PMID: 28960203
  34. Gopaldass, N.; De Leo, M.G.; Courtellemont, T.; Mercier, V.; Bissig, C.; Roux, A.; Mayer, A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J., 2023, 42(2), e112287. doi: 10.15252/embj.2022112287 PMID: 36644906
  35. Seaman, M.N.J.; Michael McCaffery, J.; Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol., 1998, 142(3), 665-681. doi: 10.1083/jcb.142.3.665 PMID: 9700157
  36. Yong, X.; Mao, L.; Seaman, M.N.J.; Jia, D. An evolving understanding of sorting signals for endosomal retrieval. iScience, 2022, 25(5), 104254. doi: 10.1016/j.isci.2022.104254 PMID: 35434543
  37. McGough, I.J.; Steinberg, F.; Gallon, M.; Yatsu, A.; Ohbayashi, N.; Heesom, K.J.; Fukuda, M.; Cullen, P.J. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci., 2014, 127(Pt 22), jcs.156299. doi: 10.1242/jcs.156299 PMID: 25278552
  38. van Weering, J.R.T.; Verkade, P.; Cullen, P.J. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic, 2012, 13(1), 94-107. doi: 10.1111/j.1600-0854.2011.01297.x PMID: 21973056
  39. Simonetti, B.; Danson, C.M.; Heesom, K.J.; Cullen, P.J. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J. Cell Biol., 2017, 216(11), 3695-3712. doi: 10.1083/jcb.201703015 PMID: 28935633
  40. Simonetti, B.; Paul, B.; Chaudhari, K.; Weeratunga, S.; Steinberg, F.; Gorla, M.; Heesom, K.J.; Bashaw, G.J.; Collins, B.M.; Cullen, P.J. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat. Cell Biol., 2019, 21(10), 1219-1233. doi: 10.1038/s41556-019-0393-3 PMID: 31576058
  41. Yong, X.; Zhao, L.; Deng, W.; Sun, H.; Zhou, X.; Mao, L.; Hu, W.; Shen, X.; Sun, Q.; Billadeau, D.D.; Xue, Y.; Jia, D. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol., 2020, 18(3), e3000631. doi: 10.1371/journal.pbio.3000631 PMID: 32150533
  42. Lucas, M.; Gershlick, D.C.; Vidaurrazaga, A.; Rojas, A.L.; Bonifacino, J.S.; Hierro, A. Structural mechanism for cargo recognition by the retromer complex. Cell, 2016, 167(6), 1623-1635.e14. doi: 10.1016/j.cell.2016.10.056 PMID: 27889239
  43. Han, J.; Goldstein, L.A.; Hou, W.; Watkins, S.C.; Rabinowich, H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy, 2021, 17(6), 1393-1409. doi: 10.1080/15548627.2020.1761742 PMID: 32397873
  44. Steinberg, F.; Gallon, M.; Winfield, M.; Thomas, E.C.; Bell, A.J.; Heesom, K.J.; Tavaré, J.M.; Cullen, P.J. A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol., 2013, 15(5), 461-471. doi: 10.1038/ncb2721 PMID: 23563491
  45. McGarvey, J.C.; Xiao, K.; Bowman, S.L.; Mamonova, T.; Zhang, Q.; Bisello, A.; Sneddon, W.B.; Ardura, J.A.; Jean-Alphonse, F.; Vilardaga, J.P.; Puthenveedu, M.A.; Friedman, P.A. Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J. Biol. Chem., 2016, 291(21), 10986-11002. doi: 10.1074/jbc.M115.697045 PMID: 27008860
  46. Henkel, V.; Schürmanns, L.; Brunner, M.; Hamann, A.; Osiewacz, H.D. Role of sorting nexin PaATG24 in autophagy, aging and development of Podospora anserina. Mech. Ageing Dev., 2020, 186, 111211. doi: 10.1016/j.mad.2020.111211 PMID: 32007577
  47. Todkar, K.; Chikhi, L.; Desjardins, V.; El-Mortada, F.; Pépin, G.; Germain, M. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun., 2021, 12(1), 1971. doi: 10.1038/s41467-021-21984-w PMID: 33785738
  48. Saric, A.; Freeman, S.A.; Williamson, C.D.; Jarnik, M.; Guardia, C.M.; Fernandopulle, M.S.; Gershlick, D.C.; Bonifacino, J.S. SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. Nat. Commun., 2021, 12(1), 4552. doi: 10.1038/s41467-021-24709-1 PMID: 34315878
  49. Shi, W.; Jiang, L.; Ye, M.; Wang, B.; Chang, Y.; Shan, Z.; Wang, X.; Hu, Y.; Chen, H.; Li, C. A single amino acid residue R144 of SNX16 affects its ability to inhibit the replication of influenza A virus. Viruses, 2022, 14(4), 825. doi: 10.3390/v14040825 PMID: 35458555
  50. Koçmar, T.; Çağlayan, E.; Rayaman, E.; Nagata, K.; Turan, K. Human sorting nexin 2 protein interacts with Influenza A virus PA protein and has a negative regulatory effect on the virus replication. Mol. Biol. Rep., 2022, 49(1), 497-510. doi: 10.1007/s11033-021-06906-9 PMID: 34817777
  51. Zhao, Y.; Wang, Y.; Yang, J.; Wang, X.; Zhao, Y.; Zhang, X.; Zhang, Y. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol. Neurodegener., 2012, 7(1), 30. doi: 10.1186/1750-1326-7-30 PMID: 22709416
  52. Takada-Takatori, Y.; Nakagawa, S.; Kimata, R.; Nao, Y.; Mizukawa, Y.; Urushidani, T.; Izumi, Y.; Akaike, A.; Tsuchida, K.; Kume, T. Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci. Rep., 2019, 9(1), 11922. doi: 10.1038/s41598-019-47462-4 PMID: 31417133
  53. Da Graça, J.; Charles, J.; Djebar, M.; Alvarez-Valadez, K.; Botti, J.; Morel, E. A SNX1–SNX2–VAPB partnership regulates endosomal membrane rewiring in response to nutritional stress. Life Sci. Alliance, 2023, 6(3), e202201652. doi: 10.26508/lsa.202201652 PMID: 36585258
  54. Shen, Z.; Li, Y.; Fang, Y.; Lin, M.; Feng, X.; Li, Z.; Zhan, Y.; Liu, Y.; Mou, T.; Lan, X.; Wang, Y.; Li, G.; Wang, J.; Deng, H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol. Oncol., 2020, 14(2), 387-406. doi: 10.1002/1878-0261.12626 PMID: 31876369
  55. Gimple, R.C.; Zhang, G.; Wang, S.; Huang, T.; Lee, J.; Taori, S.; Lv, D.; Dixit, D.; Halbert, M.E.; Morton, A.R.; Kidwell, R.L.; Dong, Z.; Prager, B.C.; Kim, L.J.Y.; Qiu, Z.; Zhao, L.; Xie, Q.; Wu, Q.; Agnihotri, S.; Rich, J.N. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight, 2023, 8(6), e158077. doi: 10.1172/jci.insight.158077 PMID: 36795488
  56. Hu, Y.; He, W.; Huang, Y.; Xiang, H.; Guo, J.; Che, Y.; Cheng, X.; Hu, F.; Hu, M.; Ma, T.; Yu, J.; Tian, H.; Tian, S.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhang, X.J.; Huang, Z.; Yang, J.; Li, H. Fatty acid synthase–suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD. Hepatology, 2021, 74(5), 2508-2525. doi: 10.1002/hep.32045 PMID: 34231239
  57. Zhang, S.; Yang, Z.; Bao, W.; Liu, L.; You, Y.; Wang, X.; Shao, L.; Fu, W.; Kou, X.; Shen, W.; Yuan, C.; Hu, B.; Dang, W.; Nandakumar, K.S.; Jiang, H.; Zheng, M.; Shen, X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy, 2020, 16(4), 735-749. doi: 10.1080/15548627.2019.1632122 PMID: 31208298
  58. Böttcher, R.T.; Stremmel, C.; Meves, A.; Meyer, H.; Widmaier, M.; Tseng, H.Y.; Fässler, R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol., 2012, 14(6), 584-592. doi: 10.1038/ncb2501 PMID: 22561348
  59. Wang, Y.; Sun, N.; Zhang, Z.; Zhou, Y.; Liu, H.; Zhou, X.; Zhang, Y.; Zhao, Y. Overexpression pattern of miR-301b in osteosarcoma and its relevance with osteosarcoma cellular behaviors via modulating SNX10. Biochem. Genet., 2023, 61(1), 87-100. doi: 10.1007/s10528-022-10241-4 PMID: 35732962
  60. Feng, H.; Tan, J.; Wang, Q.; Zhou, T.; Li, L.; Sun, D.; Fan, M.; Cheng, H.; Shen, W. α-hederin regulates glucose metabolism in intestinal epithelial cells by increasing SNX10 expression. Phytomedicine, 2023, 111, 154677. doi: 10.1016/j.phymed.2023.154677 PMID: 36724620
  61. Shen, A.W.; Fu, L.L.; Lin, L.; Sun, B.; Song, D.X.; Wang, W.T.; Wang, Y.H.; Yin, P.R.; Yu, S.Q. SNX9 inhibits cell proliferation and cyst development in autosomal dominant polycystic kidney disease via activation of the Hippo-YAP signaling pathway. Front. Cell Dev. Biol., 2020, 8, 811. doi: 10.3389/fcell.2020.00811 PMID: 32974348
  62. Xu, L.; Yin, W.; Xia, J.; Peng, M.; Li, S.; Lin, S.; Pei, D.; Shu, X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology, 2012, 55(6), 1985-1993. doi: 10.1002/hep.25560 PMID: 22213104
  63. Shi, R.; Shi, X.; Qin, D.; Tang, S.; Vermeulen, M.; Zhang, X. SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell Biosci., 2021, 11(1), 146. doi: 10.1186/s13578-021-00659-5 PMID: 34315543
  64. Tanaka, T.; Okuda, H.; Isonishi, A.; Terada, Y.; Kitabatake, M.; Shinjo, T.; Nishimura, K.; Takemura, S.; Furue, H.; Ito, T.; Tatsumi, K.; Wanaka, A. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25–Nrf2 pathway. Nat. Immunol., 2023, 24(3), 439-451. doi: 10.1038/s41590-022-01418-5 PMID: 36703006
  65. Stangl, A.; Elliott, P.R.; Pinto-Fernandez, A.; Bonham, S.; Harrison, L.; Schaub, A.; Kutzner, K.; Keusekotten, K.; Pfluger, P.T.; El Oualid, F.; Kessler, B.M.; Komander, D.; Krappmann, D. Regulation of the endosomal SNX27-retromer by OTULIN. Nat. Commun., 2019, 10(1), 4320. doi: 10.1038/s41467-019-12309-z PMID: 31541095
  66. Bannert, K.; Berlin, P.; Reiner, J.; Lemcke, H.; David, R.; Engelmann, R.; Lamprecht, G. SNX27 regulates DRA activity and mediates its direct recycling by PDZ-interaction in early endosomes at the apical pole of Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(5), G854-G869. doi: 10.1152/ajpgi.00374.2019 PMID: 32116023
  67. Huo, Y.; Gao, Y.; Zheng, Q.; Zhao, D.; Guo, T.; Zhang, S.; Zeng, Y.; Cheng, Y.; Gu, H.; Zhang, L.; Zhu, B.; Luo, H.; Zhang, X.; Zhou, Y.; Zhang, Y.; Sun, H.; Xu, H.; Wang, X. Overexpression of human SNX27 enhances learning and memory through modulating synaptic plasticity in mice. Front. Cell Dev. Biol., 2020, 8, 595357. doi: 10.3389/fcell.2020.595357 PMID: 33330482
  68. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; Sanli, K.; von Feilitzen, K.; Oksvold, P.; Lundberg, E.; Hober, S.; Nilsson, P.; Mattsson, J.; Schwenk, J.M.; Brunnström, H.; Glimelius, B.; Sjöblom, T.; Edqvist, P.H.; Djureinovic, D.; Micke, P.; Lindskog, C.; Mardinoglu, A.; Ponten, F. A pathology atlas of the human cancer transcriptome. Science, 2017, 357(6352), eaan2507. doi: 10.1126/science.aan2507 PMID: 28818916
  69. Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514. doi: 10.1093/nar/gkaa407 PMID: 32442275
  70. Lowenstein, C.J.; Morrell, C.N.; Yamakuchi, M. Regulation of weibel-palade body exocytosis. Trends Cardiovasc. Med., 2005, 15(8), 302-308. doi: 10.1016/j.tcm.2005.09.005 PMID: 16297768
  71. Knauth, P.; Schlüter, T.; Czubayko, M.; Kirsch, C.; Florian, V.; Schreckenberger, S.; Hahn, H.; Bohnensack, R. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol., 2005, 347(4), 813-825. doi: 10.1016/j.jmb.2005.02.004 PMID: 15769472
  72. Florian, V.; Schlüter, T.; Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun., 2001, 281(4), 1045-1050. doi: 10.1006/bbrc.2001.4467 PMID: 11237770
  73. Williams, R.; Schlüter, T.; Roberts, M.S.; Knauth, P.; Bohnensack, R.; Cutler, D.F. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell, 2004, 15(7), 3095-3105. doi: 10.1091/mbc.e04-02-0143 PMID: 15121882
  74. Lee, J.; Retamal, C.; Cuitiño, L.; Caruano-Yzermans, A.; Shin, J.E.; van Kerkhof, P.; Marzolo, M.P.; Bu, G. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem., 2008, 283(17), 11501-11508. doi: 10.1074/jbc.M800642200 PMID: 18276590
  75. van Kerkhof, P.; Lee, J.; McCormick, L.; Tetrault, E.; Lu, W.; Schoenfish, M.; Oorschot, V.; Strous, G.J.; Klumperman, J.; Bu, G. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J., 2005, 24(16), 2851-2861. doi: 10.1038/sj.emboj.7600756 PMID: 16052210
  76. Healy, M.D.; Collins, B.M. The PDLIM family of actin-associated proteins and their emerging role in membrane trafficking. Biochem. Soc. Trans., 2023, 51(6), 2005-2016. doi: 10.1042/BST20220804 PMID: 38095060
  77. Healy, M.D.; Sacharz, J.; McNally, K.E.; McConville, C.; Tillu, V.A.; Hall, R.J.; Chilton, M.; Cullen, P.J.; Mobli, M.; Ghai, R.; Stroud, D.A.; Collins, B.M. Proteomic identification and structural basis for the interaction between sorting nexin SNX17 and PDLIM family proteins. Structure, 2022, 30(12), 1590-1602.e6. doi: 10.1016/j.str.2022.10.001 PMID: 36302387
  78. Rivero-Ríos, P.; Tsukahara, T.; Uygun, T.; Chen, A.; Chavis, G.D.; Giridharan, S.S.P.; Iwase, S.; Sutton, M.A.; Weisman, L.S. Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity. J. Cell Biol., 2023, 222(7), e202207025. doi: 10.1083/jcb.202207025 PMID: 37141105
  79. Hui, T.; Jing, H.; Zhou, T.; Chen, P.; Liu, Z.; Dong, X.; Yan, M.; Ren, D.; Zou, S.; Wang, S.; Fei, E.; Hong, D.; Lai, X. Increasing LRP4 diminishes neuromuscular deficits in a mouse model of Duchenne muscular dystrophy. Hum. Mol. Genet., 2021, 30(17), 1579-1590. doi: 10.1093/hmg/ddab135 PMID: 33987657
  80. Morishima-Kawashima, M.; Ihara, Y. Alzheimer’s disease: β-Amyloid protein and tau. J. Neurosci. Res., 2002, 70(3), 392-401. doi: 10.1002/jnr.10355 PMID: 12391602
  81. Takahashi, R.H.; Nam, E.E.; Edgar, M.; Gouras, G.K. Alzheimer β-amyloid peptides: Normal and abnormal localization. Histol. Histopathol., 2002, 17(1), 239-246. PMID: 11813874
  82. Nunan, J.; Williamson, N.A.; Hill, A.F.; Sernee, M.F.; Masters, C.L.; Small, D.H. Proteasome-mediated degradation of the C-terminus of the Alzheimer’s disease β-amyloid protein precursor: Effect of C-terminal truncation on production of β-amyloid protein. J. Neurosci. Res., 2003, 74(3), 378-385. doi: 10.1002/jnr.10646 PMID: 14598314
  83. Willnow, T.E.; Christ, A.; Hammes, A. Endocytic receptor-mediated control of morphogen signaling. Development, 2012, 139(23), 4311-4319. doi: 10.1242/dev.084467 PMID: 23132241
  84. Dian, Y-T.; Yang, Y.; Zhu, P.; Zhao, M-Y. Lipid droplets and perilipins in cardiovascular diseases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2022, 44(3), 463-471. PMID: 35791945
  85. Lillis, A.P.; Mikhailenko, I.; Strickland, D.K. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J. Thromb. Haemost., 2005, 3(8), 1884-1893. doi: 10.1111/j.1538-7836.2005.01371.x PMID: 16102056
  86. Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515. doi: 10.1073/pnas.1112209109 PMID: 22308347
  87. Davidson, G. LRPs in WNT signalling. Handb. Exp. Pharmacol., 2021, 269, 45-73. doi: 10.1007/164_2021_526 PMID: 34490514
  88. Farfán, P.; Lee, J.; Larios, J.; Sotelo, P.; Bu, G.; Marzolo, M.P. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic, 2013, 14(7), 823-838. doi: 10.1111/tra.12076 PMID: 23593972
  89. Hou, H.; Habib, A.; Zi, D.; Tian, K.; Tian, J.; Giunta, B.; Sawmiller, D.; Tan, J. Low-density lipoprotein receptor-related protein-1 (LRP1) C4408R mutant promotes amyloid precursor protein (APP) α-cleavage in vitro. Neuromolecular Med., 2017, 19(2-3), 300-308. doi: 10.1007/s12017-017-8446-x PMID: 28612181
  90. von Einem, B.; Schwanzar, D.; Rehn, F.; Beyer, A.S.; Weber, P.; Wagner, M.; Schneckenburger, H.; von Arnim, C.A.F. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp. Neurol., 2010, 225(1), 85-93. doi: 10.1016/j.expneurol.2010.05.017 PMID: 20685197
  91. Rodríguez-Nóvoa, S.; Rodríguez-Jiménez, C.; Alonso, C.; Rodriguez-Laguna, L.; Gordo, G.; Martinez-Glez, V.; García Polo, I. Familial hypercholesterolemia: A single-nucleotide variant (SNV) in mosaic at the low density lipoprotein receptor (LDLR). Atherosclerosis, 2020, 311, 37-43. doi: 10.1016/j.atherosclerosis.2020.08.002 PMID: 32937241
  92. Abifadel, M.; Rabès, J.P.; Jambart, S.; Halaby, G.; Gannagé- Yared, M.H.; Sarkis, A.; Beaino, G.; Varret, M.; Salem, N.; Corbani, S.; Aydénian, H.; Junien, C.; Munnich, A.; Boileau, C. The molecular basis of familial hypercholesterolemia in Lebanon: Spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum. Mutat., 2009, 30(7), E682-E691. doi: 10.1002/humu.21002 PMID: 19319977
  93. Burden, J.J.; Sun, X.M.; García, A.B.G.; Soutar, A.K. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J. Biol. Chem., 2004, 279(16), 16237-16245. doi: 10.1074/jbc.M313689200 PMID: 14739284
  94. Tong, H.; Tian, D.; Li, T.; Wang, B.; Jiang, G.; Sun, X. Inhibition of inflammatory injure by polysaccharides from Bupleurum chinense through antagonizing P-selectin. Carbohydr. Polym., 2014, 105, 20-25. doi: 10.1016/j.carbpol.2014.01.039 PMID: 24708947
  95. Burns, A.R.; Bowden, R.A.; Abe, Y.; Walker, D.C.; Simon, S.I.; Entman, M.L.; Smith, C.W. P-selectin mediates neutrophil adhesion to endothelial cell borders. J. Leukoc. Biol., 1999, 65(3), 299-306. doi: 10.1002/jlb.65.3.299 PMID: 10080531
  96. Zhao, D.; Li, X.; Liang, H.; Zheng, N.; Pan, Z.; Zhou, Y.; Liu, X.; Qian, M.; Xu, B.; Zhang, Y.; Feng, Y.; Qili, M.; Wu, Q.; Yang, B.; Shan, H. SNX17 produces anti-arrhythmic effects by preserving functional SERCA2a protein in myocardial infarction. Int. J. Cardiol., 2018, 272, 298-305. doi: 10.1016/j.ijcard.2018.07.025 PMID: 30025651
  97. Geng, L.; Wang, S.; Zhang, F.; Xiong, K.; Huang, J.; Zhao, T.; Shi, D.; Lv, F.; Li, L.; Liang, D.; Cui, Y.; Liu, Y.; Xie, D.; Chen, Y.H. SNX17 (Sorting Nexin 17) mediates atrial fibrillation onset through endocytic trafficking of the Kv1.5 (potassium voltage-gated channel subfamily a member 5) channel. Circ. Arrhythm. Electrophysiol., 2019, 12(4), e007097. doi: 10.1161/CIRCEP.118.007097 PMID: 30939909
  98. Conway, M.J.; Meyers, C. Replication and assembly of human papillomaviruses. J. Dent. Res., 2009, 88(4), 307-317. doi: 10.1177/0022034509333446 PMID: 19407149
  99. Spurgeon, M.; Lambert, P. Human papillomavirus and the stroma: Bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses, 2017, 9(8), 219. doi: 10.3390/v9080219 PMID: 28792475
  100. Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta- analysis update. Int. J. Cancer, 2007, 121(3), 621-632. doi: 10.1002/ijc.22527 PMID: 17405118
  101. Pereira, R.; Hitzeroth, I.I.; Rybicki, E.P. Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch. Virol., 2009, 154(2), 187-197. doi: 10.1007/s00705-009-0310-3 PMID: 19169853
  102. Wang, J.W.; Roden, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, 2013, 445(1-2), 175-186. doi: 10.1016/j.virol.2013.04.017 PMID: 23689062
  103. Holmgren, S.C.; Patterson, N.A.; Ozbun, M.A.; Lambert, P.F. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J. Virol., 2005, 79(7), 3938-3948. doi: 10.1128/JVI.79.7.3938-3948.2005 PMID: 15767396
  104. Bergant Marušič, M.; Ozbun, M.A.; Campos, S.K.; Myers, M.P.; Banks, L. Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic, 2012, 13(3), 455-467. doi: 10.1111/j.1600-0854.2011.01320.x PMID: 22151726
  105. Bergant, M.; Peternel, Š.; Pim, D.; Broniarczyk, J.; Banks, L. Characterizing the spatio-temporal role of sorting nexin 17 in human papillomavirus trafficking. J. Gen. Virol., 2017, 98(4), 715-725. doi: 10.1099/jgv.0.000734 PMID: 28475030

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024