Emerging Role of Sorting Nexin 17 in Human Health and Disease
- Autores: Chen J.1, Su Y.1, Wang M.1, Zhang Y.1
-
Afiliações:
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University
- Edição: Volume 25, Nº 10 (2024)
- Páginas: 814-825
- Seção: Life Sciences
- URL: https://permmedjournal.ru/1389-2037/article/view/645433
- DOI: https://doi.org/10.2174/0113892037284582240522155112
- ID: 645433
Citar
Texto integral
Resumo
:The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.
Sobre autores
Juan Chen
Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University
Email: info@benthamscience.net
Yan-Hong Su
Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University
Autor responsável pela correspondência
Email: info@benthamscience.net
Meng Wang
Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University
Email: info@benthamscience.net
Yi-Chen Zhang
Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University
Email: info@benthamscience.net
Bibliografia
- Heo, A.J.; Ji, C.H.; Kwon, Y.T. The Cys/N-degron pathway in the ubiquitinproteasome system and autophagy. Trends Cell Biol., 2023, 33(3), 247-259. doi: 10.1016/j.tcb.2022.07.005 PMID: 35945077
- Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem., 2009, 78(1), 477-513. doi: 10.1146/annurev.biochem.78.081507.101607 PMID: 19489727
- Wang, Y.; Le, W.D. Autophagy and ubiquitin-proteasome system. Adv. Exp. Med. Biol., 2019, 1206, 527-550. doi: 10.1007/978-981-15-0602-4_25 PMID: 31777002
- Zhang, Y.; Chen, X.; Zhao, Y.; Ponnusamy, M.; Liu, Y. The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimers disease. Rev. Neurosci., 2017, 28(8), 861-868. doi: 10.1515/revneuro-2017-0013 PMID: 28704199
- Jovic, M.; Sharma, M.; Rahajeng, J.; Caplan, S. The early endosome: A busy sorting station for proteins at the crossroads. Histol. Histopathol., 2010, 25(1), 99-112. PMID: 19924646
- Tanno, H.; Komada, M. The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem., 2013, 153(6), 497-504. doi: 10.1093/jb/mvt028 PMID: 23564907
- Jaillais, Y.; Fobis-Loisy, I.; Miège, C.; Gaude, T. Evidence for a sorting endosome in Arabidopsis root cells. Plant J., 2008, 53(2), 237-247. doi: 10.1111/j.1365-313X.2007.03338.x PMID: 17999644
- Cullen, P.J.; Steinberg, F. To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol., 2018, 19(11), 679-696. doi: 10.1038/s41580-018-0053-7 PMID: 30194414
- McNally, K.E.; Cullen, P.J. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol., 2018, 28(10), 807-822. doi: 10.1016/j.tcb.2018.06.005 PMID: 30072228
- Chen, K.E.; Healy, M.D.; Collins, B.M. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic, 2019, 20(7), 465-478. doi: 10.1111/tra.12649 PMID: 30993794
- Wang, J.; Fedoseienko, A.; Chen, B.; Burstein, E.; Jia, D.; Billadeau, D.D. Endosomal receptor trafficking: Retromer and beyond. Traffic, 2018, 19(8), 578-590. doi: 10.1111/tra.12574 PMID: 29667289
- McNally, K.E.; Faulkner, R.; Steinberg, F.; Gallon, M.; Ghai, R.; Pim, D.; Langton, P.; Pearson, N.; Danson, C.M.; Nägele, H.; Morris, L.L.; Singla, A.; Overlee, B.L.; Heesom, K.J.; Sessions, R.; Banks, L.; Collins, B.M.; Berger, I.; Billadeau, D.D.; Burstein, E.; Cullen, P.J. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol., 2017, 19(10), 1214-1225. doi: 10.1038/ncb3610 PMID: 28892079
- Mallam, A.L.; Marcotte, E.M. Systems-wide studies uncover commander, a multiprotein complex essential to human development. Cell Syst., 2017, 4(5), 483-494. doi: 10.1016/j.cels.2017.04.006 PMID: 28544880
- Schmid, S.L. A nostalgic look back 40 years after the discovery of receptor-mediated endocytosis. Mol. Biol. Cell, 2019, 30(1), 1-3. doi: 10.1091/mbc.E18-06-0409 PMID: 30598058
- Xu, S.; Zhang, L.; Brodin, L. Overexpression of SNX7 reduces Aβ production by enhancing lysosomal degradation of APP. Biochem. Biophys. Res. Commun., 2018, 495(1), 12-19. doi: 10.1016/j.bbrc.2017.10.127 PMID: 29080748
- Zhan, X.Y.; Zhang, Y.; Zhai, E.; Zhu, Q.Y.; He, Y. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer. PeerJ, 2018, 6, e4829. doi: 10.7717/peerj.4829 PMID: 29868263
- Tan, J.Z.A.; Gleeson, P.A. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimers disease. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 697-712. doi: 10.1016/j.bbamem.2018.11.013 PMID: 30639513
- Yang, S.; Tang, D.; Zhao, Y.C.; Liu, H.; Luo, S.; Stinchcombe, T.E.; Glass, C.; Su, L.; Shen, S.; Christiani, D.C.; Wang, Q.; Wei, Q. Novel genetic variants in KIF16B and NEDD4L in the endosome-related genes are associated with nonsmall cell lung cancer survival. Int. J. Cancer, 2020, 147(2), 392-403. doi: 10.1002/ijc.32739 PMID: 31618441
- Yang, B.; Jia, Y.; Meng, Y.; Xue, Y.; Liu, K.; Li, Y.; Liu, S.; Li, X.; Cui, K.; Shang, L.; Cheng, T.; Zhang, Z.; Hou, Y.; Yang, X.; Yan, H.; Duan, L.; Tong, Z.; Wu, C.; Liu, Z.; Gao, S.; Zhuo, S.; Huang, W.; Gao, G.F.; Qi, J.; Shang, G. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc. Natl. Acad. Sci. USA, 2022, 119(4), e2117576119. doi: 10.1073/pnas.2117576119 PMID: 35022217
- Sharmin, T.; Takuma, T.; Morshed, S.; Ushimaru, T. Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem. Biophys. Res. Commun., 2021, 552, 1-8. doi: 10.1016/j.bbrc.2021.03.033 PMID: 33740659
- Hanley, S.E.; Cooper, K.F. Sorting nexins in protein homeostasis. Cells, 2020, 10(1), 17. doi: 10.3390/cells10010017 PMID: 33374212
- Yong, X.; Zhao, L.; Hu, W.; Sun, Q.; Ham, H.; Liu, Z.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Q.; Mo, X.; Hu, J.; Billadeau, D.D.; Jia, D. SNX27-FERM-SNX1 complex structure rationalizes divergent trafficking pathways by SNX17 and SNX27. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2105510118. doi: 10.1073/pnas.2105510118 PMID: 34462354
- Ghai, R.; Mobli, M.; Norwood, S.J.; Bugarcic, A.; Teasdale, R.D.; King, G.F.; Collins, B.M. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7763-7768. doi: 10.1073/pnas.1017110108 PMID: 21512128
- Ghai, R.; Bugarcic, A.; Liu, H.; Norwood, S.J.; Skeldal, S.; Coulson, E.J.; Li, S.S.C.; Teasdale, R.D.; Collins, B.M. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(8), E643-E652. doi: 10.1073/pnas.1216229110 PMID: 23382219
- He, X.; Zhou, S.; Ji, Y.; Zhang, Y.; Lv, J.; Quan, S.; Zhang, J.; Zhao, X.; Cui, W.; Li, W.; Liu, P.; Zhang, L.; Shen, T.; Fang, H.; Yang, J.; Zhang, Y.; Cui, X.; Zhang, Q.; Gao, F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front. Immunol., 2022, 13, 916098. doi: 10.3389/fimmu.2022.916098 PMID: 36311763
- Zhang, Y.; Ni, L.; Lin, B.; Hu, L.; Lin, Z.; Yang, J.; Wang, J.; Ma, H.; Liu, Y.; Yang, J.; Lin, J.; Xu, L.; Wu, L.; Shi, D. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol. Res., 2021, 169, 105642. doi: 10.1016/j.phrs.2021.105642 PMID: 33933636
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; Xia, R. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant, 2023, 16(11), 1733-1742. doi: 10.1016/j.molp.2023.09.010 PMID: 37740491
- Cullen, P.J. Endosomal sorting and signalling: An emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol., 2008, 9(7), 574-582. doi: 10.1038/nrm2427 PMID: 18523436
- Teasdale, R.D.; Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: Structures, functions and roles in disease. Biochem. J., 2012, 441(1), 39-59. doi: 10.1042/BJ20111226 PMID: 22168438
- Shortill, S.P.; Frier, M.S.; Conibear, E. You can go your own way: SNX-BAR coat complexes direct traffic at late endosomes. Curr. Opin. Cell Biol., 2022, 76, 102087. doi: 10.1016/j.ceb.2022.102087 PMID: 35569261
- Lauffer, B.E.L.; Melero, C.; Temkin, P.; Lei, C.; Hong, W.; Kortemme, T.; von Zastrow, M. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol., 2010, 190(4), 565-574. doi: 10.1083/jcb.201004060 PMID: 20733053
- Amatya, B.; Lee, H.; Asico, L.D.; Konkalmatt, P.; Armando, I.; Felder, R.A.; Jose, P.A. SNX-PXA-RGS-PXC subfamily of SNXs in the regulation of receptor-mediated signaling and membrane trafficking. Int. J. Mol. Sci., 2021, 22(5), 2319. doi: 10.3390/ijms22052319 PMID: 33652569
- Rabouille, C. Retriever fetches integrins from endosomes. Nat. Cell Biol., 2017, 19(10), 1144-1146. doi: 10.1038/ncb3612 PMID: 28960203
- Gopaldass, N.; De Leo, M.G.; Courtellemont, T.; Mercier, V.; Bissig, C.; Roux, A.; Mayer, A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J., 2023, 42(2), e112287. doi: 10.15252/embj.2022112287 PMID: 36644906
- Seaman, M.N.J.; Michael McCaffery, J.; Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol., 1998, 142(3), 665-681. doi: 10.1083/jcb.142.3.665 PMID: 9700157
- Yong, X.; Mao, L.; Seaman, M.N.J.; Jia, D. An evolving understanding of sorting signals for endosomal retrieval. iScience, 2022, 25(5), 104254. doi: 10.1016/j.isci.2022.104254 PMID: 35434543
- McGough, I.J.; Steinberg, F.; Gallon, M.; Yatsu, A.; Ohbayashi, N.; Heesom, K.J.; Fukuda, M.; Cullen, P.J. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci., 2014, 127(Pt 22), jcs.156299. doi: 10.1242/jcs.156299 PMID: 25278552
- van Weering, J.R.T.; Verkade, P.; Cullen, P.J. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic, 2012, 13(1), 94-107. doi: 10.1111/j.1600-0854.2011.01297.x PMID: 21973056
- Simonetti, B.; Danson, C.M.; Heesom, K.J.; Cullen, P.J. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J. Cell Biol., 2017, 216(11), 3695-3712. doi: 10.1083/jcb.201703015 PMID: 28935633
- Simonetti, B.; Paul, B.; Chaudhari, K.; Weeratunga, S.; Steinberg, F.; Gorla, M.; Heesom, K.J.; Bashaw, G.J.; Collins, B.M.; Cullen, P.J. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat. Cell Biol., 2019, 21(10), 1219-1233. doi: 10.1038/s41556-019-0393-3 PMID: 31576058
- Yong, X.; Zhao, L.; Deng, W.; Sun, H.; Zhou, X.; Mao, L.; Hu, W.; Shen, X.; Sun, Q.; Billadeau, D.D.; Xue, Y.; Jia, D. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol., 2020, 18(3), e3000631. doi: 10.1371/journal.pbio.3000631 PMID: 32150533
- Lucas, M.; Gershlick, D.C.; Vidaurrazaga, A.; Rojas, A.L.; Bonifacino, J.S.; Hierro, A. Structural mechanism for cargo recognition by the retromer complex. Cell, 2016, 167(6), 1623-1635.e14. doi: 10.1016/j.cell.2016.10.056 PMID: 27889239
- Han, J.; Goldstein, L.A.; Hou, W.; Watkins, S.C.; Rabinowich, H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy, 2021, 17(6), 1393-1409. doi: 10.1080/15548627.2020.1761742 PMID: 32397873
- Steinberg, F.; Gallon, M.; Winfield, M.; Thomas, E.C.; Bell, A.J.; Heesom, K.J.; Tavaré, J.M.; Cullen, P.J. A global analysis of SNX27retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol., 2013, 15(5), 461-471. doi: 10.1038/ncb2721 PMID: 23563491
- McGarvey, J.C.; Xiao, K.; Bowman, S.L.; Mamonova, T.; Zhang, Q.; Bisello, A.; Sneddon, W.B.; Ardura, J.A.; Jean-Alphonse, F.; Vilardaga, J.P.; Puthenveedu, M.A.; Friedman, P.A. Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J. Biol. Chem., 2016, 291(21), 10986-11002. doi: 10.1074/jbc.M115.697045 PMID: 27008860
- Henkel, V.; Schürmanns, L.; Brunner, M.; Hamann, A.; Osiewacz, H.D. Role of sorting nexin PaATG24 in autophagy, aging and development of Podospora anserina. Mech. Ageing Dev., 2020, 186, 111211. doi: 10.1016/j.mad.2020.111211 PMID: 32007577
- Todkar, K.; Chikhi, L.; Desjardins, V.; El-Mortada, F.; Pépin, G.; Germain, M. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun., 2021, 12(1), 1971. doi: 10.1038/s41467-021-21984-w PMID: 33785738
- Saric, A.; Freeman, S.A.; Williamson, C.D.; Jarnik, M.; Guardia, C.M.; Fernandopulle, M.S.; Gershlick, D.C.; Bonifacino, J.S. SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. Nat. Commun., 2021, 12(1), 4552. doi: 10.1038/s41467-021-24709-1 PMID: 34315878
- Shi, W.; Jiang, L.; Ye, M.; Wang, B.; Chang, Y.; Shan, Z.; Wang, X.; Hu, Y.; Chen, H.; Li, C. A single amino acid residue R144 of SNX16 affects its ability to inhibit the replication of influenza A virus. Viruses, 2022, 14(4), 825. doi: 10.3390/v14040825 PMID: 35458555
- Koçmar, T.; Çağlayan, E.; Rayaman, E.; Nagata, K.; Turan, K. Human sorting nexin 2 protein interacts with Influenza A virus PA protein and has a negative regulatory effect on the virus replication. Mol. Biol. Rep., 2022, 49(1), 497-510. doi: 10.1007/s11033-021-06906-9 PMID: 34817777
- Zhao, Y.; Wang, Y.; Yang, J.; Wang, X.; Zhao, Y.; Zhang, X.; Zhang, Y. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol. Neurodegener., 2012, 7(1), 30. doi: 10.1186/1750-1326-7-30 PMID: 22709416
- Takada-Takatori, Y.; Nakagawa, S.; Kimata, R.; Nao, Y.; Mizukawa, Y.; Urushidani, T.; Izumi, Y.; Akaike, A.; Tsuchida, K.; Kume, T. Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci. Rep., 2019, 9(1), 11922. doi: 10.1038/s41598-019-47462-4 PMID: 31417133
- Da Graça, J.; Charles, J.; Djebar, M.; Alvarez-Valadez, K.; Botti, J.; Morel, E. A SNX1SNX2VAPB partnership regulates endosomal membrane rewiring in response to nutritional stress. Life Sci. Alliance, 2023, 6(3), e202201652. doi: 10.26508/lsa.202201652 PMID: 36585258
- Shen, Z.; Li, Y.; Fang, Y.; Lin, M.; Feng, X.; Li, Z.; Zhan, Y.; Liu, Y.; Mou, T.; Lan, X.; Wang, Y.; Li, G.; Wang, J.; Deng, H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol. Oncol., 2020, 14(2), 387-406. doi: 10.1002/1878-0261.12626 PMID: 31876369
- Gimple, R.C.; Zhang, G.; Wang, S.; Huang, T.; Lee, J.; Taori, S.; Lv, D.; Dixit, D.; Halbert, M.E.; Morton, A.R.; Kidwell, R.L.; Dong, Z.; Prager, B.C.; Kim, L.J.Y.; Qiu, Z.; Zhao, L.; Xie, Q.; Wu, Q.; Agnihotri, S.; Rich, J.N. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight, 2023, 8(6), e158077. doi: 10.1172/jci.insight.158077 PMID: 36795488
- Hu, Y.; He, W.; Huang, Y.; Xiang, H.; Guo, J.; Che, Y.; Cheng, X.; Hu, F.; Hu, M.; Ma, T.; Yu, J.; Tian, H.; Tian, S.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhang, X.J.; Huang, Z.; Yang, J.; Li, H. Fatty acid synthasesuppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD. Hepatology, 2021, 74(5), 2508-2525. doi: 10.1002/hep.32045 PMID: 34231239
- Zhang, S.; Yang, Z.; Bao, W.; Liu, L.; You, Y.; Wang, X.; Shao, L.; Fu, W.; Kou, X.; Shen, W.; Yuan, C.; Hu, B.; Dang, W.; Nandakumar, K.S.; Jiang, H.; Zheng, M.; Shen, X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy, 2020, 16(4), 735-749. doi: 10.1080/15548627.2019.1632122 PMID: 31208298
- Böttcher, R.T.; Stremmel, C.; Meves, A.; Meyer, H.; Widmaier, M.; Tseng, H.Y.; Fässler, R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol., 2012, 14(6), 584-592. doi: 10.1038/ncb2501 PMID: 22561348
- Wang, Y.; Sun, N.; Zhang, Z.; Zhou, Y.; Liu, H.; Zhou, X.; Zhang, Y.; Zhao, Y. Overexpression pattern of miR-301b in osteosarcoma and its relevance with osteosarcoma cellular behaviors via modulating SNX10. Biochem. Genet., 2023, 61(1), 87-100. doi: 10.1007/s10528-022-10241-4 PMID: 35732962
- Feng, H.; Tan, J.; Wang, Q.; Zhou, T.; Li, L.; Sun, D.; Fan, M.; Cheng, H.; Shen, W. α-hederin regulates glucose metabolism in intestinal epithelial cells by increasing SNX10 expression. Phytomedicine, 2023, 111, 154677. doi: 10.1016/j.phymed.2023.154677 PMID: 36724620
- Shen, A.W.; Fu, L.L.; Lin, L.; Sun, B.; Song, D.X.; Wang, W.T.; Wang, Y.H.; Yin, P.R.; Yu, S.Q. SNX9 inhibits cell proliferation and cyst development in autosomal dominant polycystic kidney disease via activation of the Hippo-YAP signaling pathway. Front. Cell Dev. Biol., 2020, 8, 811. doi: 10.3389/fcell.2020.00811 PMID: 32974348
- Xu, L.; Yin, W.; Xia, J.; Peng, M.; Li, S.; Lin, S.; Pei, D.; Shu, X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology, 2012, 55(6), 1985-1993. doi: 10.1002/hep.25560 PMID: 22213104
- Shi, R.; Shi, X.; Qin, D.; Tang, S.; Vermeulen, M.; Zhang, X. SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell Biosci., 2021, 11(1), 146. doi: 10.1186/s13578-021-00659-5 PMID: 34315543
- Tanaka, T.; Okuda, H.; Isonishi, A.; Terada, Y.; Kitabatake, M.; Shinjo, T.; Nishimura, K.; Takemura, S.; Furue, H.; Ito, T.; Tatsumi, K.; Wanaka, A. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25Nrf2 pathway. Nat. Immunol., 2023, 24(3), 439-451. doi: 10.1038/s41590-022-01418-5 PMID: 36703006
- Stangl, A.; Elliott, P.R.; Pinto-Fernandez, A.; Bonham, S.; Harrison, L.; Schaub, A.; Kutzner, K.; Keusekotten, K.; Pfluger, P.T.; El Oualid, F.; Kessler, B.M.; Komander, D.; Krappmann, D. Regulation of the endosomal SNX27-retromer by OTULIN. Nat. Commun., 2019, 10(1), 4320. doi: 10.1038/s41467-019-12309-z PMID: 31541095
- Bannert, K.; Berlin, P.; Reiner, J.; Lemcke, H.; David, R.; Engelmann, R.; Lamprecht, G. SNX27 regulates DRA activity and mediates its direct recycling by PDZ-interaction in early endosomes at the apical pole of Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(5), G854-G869. doi: 10.1152/ajpgi.00374.2019 PMID: 32116023
- Huo, Y.; Gao, Y.; Zheng, Q.; Zhao, D.; Guo, T.; Zhang, S.; Zeng, Y.; Cheng, Y.; Gu, H.; Zhang, L.; Zhu, B.; Luo, H.; Zhang, X.; Zhou, Y.; Zhang, Y.; Sun, H.; Xu, H.; Wang, X. Overexpression of human SNX27 enhances learning and memory through modulating synaptic plasticity in mice. Front. Cell Dev. Biol., 2020, 8, 595357. doi: 10.3389/fcell.2020.595357 PMID: 33330482
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; Sanli, K.; von Feilitzen, K.; Oksvold, P.; Lundberg, E.; Hober, S.; Nilsson, P.; Mattsson, J.; Schwenk, J.M.; Brunnström, H.; Glimelius, B.; Sjöblom, T.; Edqvist, P.H.; Djureinovic, D.; Micke, P.; Lindskog, C.; Mardinoglu, A.; Ponten, F. A pathology atlas of the human cancer transcriptome. Science, 2017, 357(6352), eaan2507. doi: 10.1126/science.aan2507 PMID: 28818916
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514. doi: 10.1093/nar/gkaa407 PMID: 32442275
- Lowenstein, C.J.; Morrell, C.N.; Yamakuchi, M. Regulation of weibel-palade body exocytosis. Trends Cardiovasc. Med., 2005, 15(8), 302-308. doi: 10.1016/j.tcm.2005.09.005 PMID: 16297768
- Knauth, P.; Schlüter, T.; Czubayko, M.; Kirsch, C.; Florian, V.; Schreckenberger, S.; Hahn, H.; Bohnensack, R. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol., 2005, 347(4), 813-825. doi: 10.1016/j.jmb.2005.02.004 PMID: 15769472
- Florian, V.; Schlüter, T.; Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun., 2001, 281(4), 1045-1050. doi: 10.1006/bbrc.2001.4467 PMID: 11237770
- Williams, R.; Schlüter, T.; Roberts, M.S.; Knauth, P.; Bohnensack, R.; Cutler, D.F. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell, 2004, 15(7), 3095-3105. doi: 10.1091/mbc.e04-02-0143 PMID: 15121882
- Lee, J.; Retamal, C.; Cuitiño, L.; Caruano-Yzermans, A.; Shin, J.E.; van Kerkhof, P.; Marzolo, M.P.; Bu, G. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem., 2008, 283(17), 11501-11508. doi: 10.1074/jbc.M800642200 PMID: 18276590
- van Kerkhof, P.; Lee, J.; McCormick, L.; Tetrault, E.; Lu, W.; Schoenfish, M.; Oorschot, V.; Strous, G.J.; Klumperman, J.; Bu, G. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J., 2005, 24(16), 2851-2861. doi: 10.1038/sj.emboj.7600756 PMID: 16052210
- Healy, M.D.; Collins, B.M. The PDLIM family of actin-associated proteins and their emerging role in membrane trafficking. Biochem. Soc. Trans., 2023, 51(6), 2005-2016. doi: 10.1042/BST20220804 PMID: 38095060
- Healy, M.D.; Sacharz, J.; McNally, K.E.; McConville, C.; Tillu, V.A.; Hall, R.J.; Chilton, M.; Cullen, P.J.; Mobli, M.; Ghai, R.; Stroud, D.A.; Collins, B.M. Proteomic identification and structural basis for the interaction between sorting nexin SNX17 and PDLIM family proteins. Structure, 2022, 30(12), 1590-1602.e6. doi: 10.1016/j.str.2022.10.001 PMID: 36302387
- Rivero-Ríos, P.; Tsukahara, T.; Uygun, T.; Chen, A.; Chavis, G.D.; Giridharan, S.S.P.; Iwase, S.; Sutton, M.A.; Weisman, L.S. Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity. J. Cell Biol., 2023, 222(7), e202207025. doi: 10.1083/jcb.202207025 PMID: 37141105
- Hui, T.; Jing, H.; Zhou, T.; Chen, P.; Liu, Z.; Dong, X.; Yan, M.; Ren, D.; Zou, S.; Wang, S.; Fei, E.; Hong, D.; Lai, X. Increasing LRP4 diminishes neuromuscular deficits in a mouse model of Duchenne muscular dystrophy. Hum. Mol. Genet., 2021, 30(17), 1579-1590. doi: 10.1093/hmg/ddab135 PMID: 33987657
- Morishima-Kawashima, M.; Ihara, Y. Alzheimers disease: β-Amyloid protein and tau. J. Neurosci. Res., 2002, 70(3), 392-401. doi: 10.1002/jnr.10355 PMID: 12391602
- Takahashi, R.H.; Nam, E.E.; Edgar, M.; Gouras, G.K. Alzheimer β-amyloid peptides: Normal and abnormal localization. Histol. Histopathol., 2002, 17(1), 239-246. PMID: 11813874
- Nunan, J.; Williamson, N.A.; Hill, A.F.; Sernee, M.F.; Masters, C.L.; Small, D.H. Proteasome-mediated degradation of the C-terminus of the Alzheimers disease β-amyloid protein precursor: Effect of C-terminal truncation on production of β-amyloid protein. J. Neurosci. Res., 2003, 74(3), 378-385. doi: 10.1002/jnr.10646 PMID: 14598314
- Willnow, T.E.; Christ, A.; Hammes, A. Endocytic receptor-mediated control of morphogen signaling. Development, 2012, 139(23), 4311-4319. doi: 10.1242/dev.084467 PMID: 23132241
- Dian, Y-T.; Yang, Y.; Zhu, P.; Zhao, M-Y. Lipid droplets and perilipins in cardiovascular diseases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2022, 44(3), 463-471. PMID: 35791945
- Lillis, A.P.; Mikhailenko, I.; Strickland, D.K. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J. Thromb. Haemost., 2005, 3(8), 1884-1893. doi: 10.1111/j.1538-7836.2005.01371.x PMID: 16102056
- Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimers disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515. doi: 10.1073/pnas.1112209109 PMID: 22308347
- Davidson, G. LRPs in WNT signalling. Handb. Exp. Pharmacol., 2021, 269, 45-73. doi: 10.1007/164_2021_526 PMID: 34490514
- Farfán, P.; Lee, J.; Larios, J.; Sotelo, P.; Bu, G.; Marzolo, M.P. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic, 2013, 14(7), 823-838. doi: 10.1111/tra.12076 PMID: 23593972
- Hou, H.; Habib, A.; Zi, D.; Tian, K.; Tian, J.; Giunta, B.; Sawmiller, D.; Tan, J. Low-density lipoprotein receptor-related protein-1 (LRP1) C4408R mutant promotes amyloid precursor protein (APP) α-cleavage in vitro. Neuromolecular Med., 2017, 19(2-3), 300-308. doi: 10.1007/s12017-017-8446-x PMID: 28612181
- von Einem, B.; Schwanzar, D.; Rehn, F.; Beyer, A.S.; Weber, P.; Wagner, M.; Schneckenburger, H.; von Arnim, C.A.F. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp. Neurol., 2010, 225(1), 85-93. doi: 10.1016/j.expneurol.2010.05.017 PMID: 20685197
- Rodríguez-Nóvoa, S.; Rodríguez-Jiménez, C.; Alonso, C.; Rodriguez-Laguna, L.; Gordo, G.; Martinez-Glez, V.; García Polo, I. Familial hypercholesterolemia: A single-nucleotide variant (SNV) in mosaic at the low density lipoprotein receptor (LDLR). Atherosclerosis, 2020, 311, 37-43. doi: 10.1016/j.atherosclerosis.2020.08.002 PMID: 32937241
- Abifadel, M.; Rabès, J.P.; Jambart, S.; Halaby, G.; Gannagé- Yared, M.H.; Sarkis, A.; Beaino, G.; Varret, M.; Salem, N.; Corbani, S.; Aydénian, H.; Junien, C.; Munnich, A.; Boileau, C. The molecular basis of familial hypercholesterolemia in Lebanon: Spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum. Mutat., 2009, 30(7), E682-E691. doi: 10.1002/humu.21002 PMID: 19319977
- Burden, J.J.; Sun, X.M.; García, A.B.G.; Soutar, A.K. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J. Biol. Chem., 2004, 279(16), 16237-16245. doi: 10.1074/jbc.M313689200 PMID: 14739284
- Tong, H.; Tian, D.; Li, T.; Wang, B.; Jiang, G.; Sun, X. Inhibition of inflammatory injure by polysaccharides from Bupleurum chinense through antagonizing P-selectin. Carbohydr. Polym., 2014, 105, 20-25. doi: 10.1016/j.carbpol.2014.01.039 PMID: 24708947
- Burns, A.R.; Bowden, R.A.; Abe, Y.; Walker, D.C.; Simon, S.I.; Entman, M.L.; Smith, C.W. P-selectin mediates neutrophil adhesion to endothelial cell borders. J. Leukoc. Biol., 1999, 65(3), 299-306. doi: 10.1002/jlb.65.3.299 PMID: 10080531
- Zhao, D.; Li, X.; Liang, H.; Zheng, N.; Pan, Z.; Zhou, Y.; Liu, X.; Qian, M.; Xu, B.; Zhang, Y.; Feng, Y.; Qili, M.; Wu, Q.; Yang, B.; Shan, H. SNX17 produces anti-arrhythmic effects by preserving functional SERCA2a protein in myocardial infarction. Int. J. Cardiol., 2018, 272, 298-305. doi: 10.1016/j.ijcard.2018.07.025 PMID: 30025651
- Geng, L.; Wang, S.; Zhang, F.; Xiong, K.; Huang, J.; Zhao, T.; Shi, D.; Lv, F.; Li, L.; Liang, D.; Cui, Y.; Liu, Y.; Xie, D.; Chen, Y.H. SNX17 (Sorting Nexin 17) mediates atrial fibrillation onset through endocytic trafficking of the Kv1.5 (potassium voltage-gated channel subfamily a member 5) channel. Circ. Arrhythm. Electrophysiol., 2019, 12(4), e007097. doi: 10.1161/CIRCEP.118.007097 PMID: 30939909
- Conway, M.J.; Meyers, C. Replication and assembly of human papillomaviruses. J. Dent. Res., 2009, 88(4), 307-317. doi: 10.1177/0022034509333446 PMID: 19407149
- Spurgeon, M.; Lambert, P. Human papillomavirus and the stroma: Bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses, 2017, 9(8), 219. doi: 10.3390/v9080219 PMID: 28792475
- Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta- analysis update. Int. J. Cancer, 2007, 121(3), 621-632. doi: 10.1002/ijc.22527 PMID: 17405118
- Pereira, R.; Hitzeroth, I.I.; Rybicki, E.P. Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch. Virol., 2009, 154(2), 187-197. doi: 10.1007/s00705-009-0310-3 PMID: 19169853
- Wang, J.W.; Roden, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, 2013, 445(1-2), 175-186. doi: 10.1016/j.virol.2013.04.017 PMID: 23689062
- Holmgren, S.C.; Patterson, N.A.; Ozbun, M.A.; Lambert, P.F. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J. Virol., 2005, 79(7), 3938-3948. doi: 10.1128/JVI.79.7.3938-3948.2005 PMID: 15767396
- Bergant Maruič, M.; Ozbun, M.A.; Campos, S.K.; Myers, M.P.; Banks, L. Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic, 2012, 13(3), 455-467. doi: 10.1111/j.1600-0854.2011.01320.x PMID: 22151726
- Bergant, M.; Peternel, .; Pim, D.; Broniarczyk, J.; Banks, L. Characterizing the spatio-temporal role of sorting nexin 17 in human papillomavirus trafficking. J. Gen. Virol., 2017, 98(4), 715-725. doi: 10.1099/jgv.0.000734 PMID: 28475030
Arquivos suplementares
