Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions
- Authors: Coskuner-Weber O.1, Uversky V.2
-
Affiliations:
- Molecular Biotechnology, Türkisch-Deutsche Universität
- Department of Molecular Medicine and USF Health Byrd Alzheimers Research Institute, Morsani College of Medicine, University of South Florida,
- Issue: Vol 25, No 2 (2024)
- Pages: 163-171
- Section: Life Sciences
- URL: https://permmedjournal.ru/1389-2037/article/view/645541
- DOI: https://doi.org/10.2174/0113892037281184231123111223
- ID: 645541
Cite item
Full Text
Abstract
:The structural ensembles of intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) cannot be easily characterized using conventional experimental techniques. Computational techniques complement experiments and provide useful insights into the structural ensembles of IDPs and proteins with IDRs. Herein, we discuss computational techniques such as homology modeling, molecular dynamics simulations, machine learning with molecular dynamics, and quantum computing that can be applied to the studies of IDPs and hybrid proteins with IDRs. We also provide useful future perspectives for computational techniques that can be applied to IDPs and hybrid proteins containing ordered domains and IDRs.
About the authors
Orkid Coskuner-Weber
Molecular Biotechnology, Türkisch-Deutsche Universität
Author for correspondence.
Email: info@benthamscience.net
Vladimir Uversky
Department of Molecular Medicine and USF Health Byrd Alzheimers Research Institute, Morsani College of Medicine, University of South Florida,
Email: info@benthamscience.net
References
- Coskuner, O.; Uversky, V.N. Tyrosine regulates β-sheet structure formation in amyloid-β 42 : A new clustering algorithm for disordered proteins. J. Chem. Inf. Model., 2017, 57(6), 1342-1358. doi: 10.1021/acs.jcim.6b00761 PMID: 28474890
- Coskuner, O.; Uversky, V.N. Intrinsically disordered proteins in various hypotheses on the pathogenesis of alzheimers and parkinsons diseases. In: Progress in Molecular Biology and Translational Science; Elsevier, 2019; Vol. 166, pp. 145-223.
- Coskuner, O.; Wise-Scira, O. Arginine and disordered amyloid-β peptide structures: Molecular level insights into the toxicity in Alzheimers disease. ACS Chem. Neurosci., 2013, 4(12), 1549-1558. doi: 10.1021/cn4001389 PMID: 24041422
- Coskuner-Weber, O.; Mirzanli, O.; Uversky, V.N. Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys. Rev., 2022, 14(3), 679-707. doi: 10.1007/s12551-022-00968-0 PMID: 35791387
- Burger, V.; Gurry, T.; Stultz, C. Intrinsically disordered proteins: Where computation meets experiment. Polymers, 2014, 6(10), 2684-2719. doi: 10.3390/polym6102684
- Rezaei-Ghaleh, N.; Blackledge, M.; Zweckstetter, M. Intrinsically disordered proteins: From sequence and conformational properties toward drug discovery. ChemBioChem, 2012, 13(7), 930-950. doi: 10.1002/cbic.201200093 PMID: 22505141
- Trivedi, R.; Nagarajaram, H.A. Intrinsically disordered proteins: An overview. Int. J. Mol. Sci., 2022, 23(22), 14050. doi: 10.3390/ijms232214050 PMID: 36430530
- Gibbs, E.B.; Showalter, S.A. Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry, 2015, 54(6), 1314-1326. doi: 10.1021/bi501460a PMID: 25631161
- Oldfield, C.J.; Uversky, V.N.; Dunker, A.K.; Kurgan, L. Introduction to intrinsically disordered proteins and regions. In: Intrinsically Disordered Proteins; Elsevier, 2019; pp. 1-34. doi: 10.1016/B978-0-12-816348-1.00001-6
- Tompa, P.; Schad, E.; Tantos, A.; Kalmar, L. Intrinsically disordered proteins: Emerging interaction specialists. Curr. Opin. Struct. Biol., 2015, 35, 49-59. doi: 10.1016/j.sbi.2015.08.009 PMID: 26402567
- Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem., 2014, 83(1), 553-584. doi: 10.1146/annurev-biochem-072711-164947 PMID: 24606139
- Uversky, V.N. A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci., 2013, 22(6), 693-724. doi: 10.1002/pro.2261 PMID: 23553817
- Zanotti, G. Intrinsic disorder and flexibility in proteins: A challenge for structural biology and drug design. Crystallogr. Rev., 2023, 29(2), 48-75. doi: 10.1080/0889311X.2023.2208518
- Uversky, V.N. Intrinsically disordered proteins and their "Mysterious" (Meta)physics. Front. Phys., 2019, 7, 10. doi: 10.3389/fphy.2019.00010
- Wei, G.; Xi, W.; Nussinov, R.; Ma, B. Protein ensembles: How does nature harness thermodynamic fluctuations for life? the diverse functional roles of conformational ensembles in the cell. Chem. Rev., 2016, 116(11), 6516-6551. doi: 10.1021/acs.chemrev.5b00562 PMID: 26807783
- Siltberg-Liberles, J.; Grahnen, J.A.; Liberles, D.A. The evolution of protein structures and structural ensembles under functional constraint. Genes, 2011, 2(4), 748-762. doi: 10.3390/genes2040748 PMID: 24710290
- Akbayrak, I.Y.; Caglayan, S.I.; Ozcan, Z.; Uversky, V.N.; Coskuner-Weber, O. Current challenges and limitations in the studies of intrinsically disordered proteins in neurodegenerative diseases by computer simulations. Curr. Alzheimer Res., 2021, 17(9), 805-818. doi: 10.2174/1567205017666201109094908 PMID: 33167839
- Na, J.H.; Lee, W.K.; Yu, Y. How do we study the dynamic structure of unstructured proteins: A case study on Nopp140 as an example of a large, intrinsically disordered protein. Int. J. Mol. Sci., 2018, 19(2), 381. doi: 10.3390/ijms19020381 PMID: 29382046
- Bourne, P.E.; Weissig, H. Structural Bioinformatics. In: Methods of Biochemical Analysis, 1st ed.; Wiley, 2003; p. 44.
- Wallner, B.; Elofsson, A. All are not equal: A benchmark of different homology modeling programs. Protein Sci., 2005, 14(5), 1315-1327. doi: 10.1110/ps.041253405 PMID: 15840834
- Kopp, J.; Schwede, T. Automated protein structure homology modeling: A progress report. Pharmacogenomics, 2004, 5(4), 405-416. doi: 10.1517/14622416.5.4.405 PMID: 15165176
- Alexandrov, N.N.; Luethy, R. Alignment algorithm for homology modeling and threading. Protein Sci., 1998, 7(2), 254-258. doi: 10.1002/pro.5560070204 PMID: 9521100
- Annalora, A.J.; Bobrovnikov-Marjon, E.; Serda, R.; Pastuszyn, A.; Graham, S.E.; Marcus, C.B.; Omdahl, J.L. Hybrid homology modeling and mutational analysis of cytochrome P450C24A1 (CYP24A1) of the Vitamin D pathway: Insights into substrate specificity and membrane bound structurefunction. Arch. Biochem. Biophys., 2007, 460(2), 262-273. doi: 10.1016/j.abb.2006.11.018 PMID: 17207766
- Taverner, T.; Hernández, H.; Sharon, M.; Ruotolo, B.T.; Matak-Vinković, D.; Devos, D.; Russell, R.B.; Robinson, C.V. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res., 2008, 41(5), 617-627. doi: 10.1021/ar700218q PMID: 18314965
- Hameduh, T.; Haddad, Y.; Adam, V.; Heger, Z. Homology modeling in the time of collective and artificial intelligence. Comput. Struct. Biotechnol. J., 2020, 18, 3494-3506. doi: 10.1016/j.csbj.2020.11.007 PMID: 33304450
- Park, H.; Ovchinnikov, S.; Kim, D.E.; DiMaio, F.; Baker, D. Protein homology model refinement by large-scale energy optimization. Proc. Natl. Acad. Sci., 2018, 115(12), 3054-3059. doi: 10.1073/pnas.1719115115 PMID: 29507254
- Ranganathan, A.; Stoddart, L.A.; Hill, S.J.; Carlsson, J. Fragment-based discovery of subtype-selective adenosine receptor ligands from homology models. J. Med. Chem., 2015, 58(24), 9578-9590. doi: 10.1021/acs.jmedchem.5b01120 PMID: 26592528
- Oshiro, C.; Bradley, E.K.; Eksterowicz, J.; Evensen, E.; Lamb, M.L.; Lanctot, J.K.; Putta, S.; Stanton, R.; Grootenhuis, P.D.J. Performance of 3D-database molecular docking studies into homology models. J. Med. Chem., 2004, 47(3), 764-767. doi: 10.1021/jm0300781 PMID: 14736258
- Sunuwar, J.; Azad, R.K. Identification of novel antimicrobial resistance genes using machine learning, homology modeling, and molecular docking. Microorganisms, 2022, 10(11), 2102. doi: 10.3390/microorganisms10112102 PMID: 36363694
- Advances in bioinformatics and computational biology. In: Bazzan, A.L.C.; Craven, M.; Martins, N.F.; Eds.; Third International Brazilian Symposium on Bioinformatics, BSB 2008; Santo André, Brazil, August 28-30, 2008, 978-3-540-85556-9
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8. doi: 10.1038/nmeth.3213 PMID: 25549265
- Cramer, P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol., 2021, 28(9), 704-705. doi: 10.1038/s41594-021-00650-1 PMID: 34376855
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40. doi: 10.1186/1471-2105-9-40 PMID: 18215316
- Yang, J.; Zhang, Y. Protein structure and function prediction using I-TASSER. Curr. Protoc. Bioinformatics, 2015, 52(1), 8.1-, 15. doi: 10.1002/0471250953.bi0508s52 PMID: 26678386
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Bell, E.W.; Zhang, Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 2021, 1(3), 100014. doi: 10.1016/j.crmeth.2021.100014 PMID: 34355210
- Bryant, P.; Pozzati, G.; Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun., 2022, 13(1), 1265. doi: 10.1038/s41467-022-28865-w PMID: 35273146
- Jones, D.T.; Thornton, J.M. The impact of AlphaFold2 one year on. Nat. Methods, 2022, 19(1), 15-20. doi: 10.1038/s41592-021-01365-3 PMID: 35017725
- Alici, H.; Uversky, V.N.; Kang, D.E.; Woo, J.A.; Coskuner-Weber, O. Effects of the Jokela type of spinal muscular atrophy-related G66V mutation on the structural ensemble characteristics of CHCHD10. Proteins, 2023, 91(6), 739-749. doi: 10.1002/prot.26463 PMID: 36625206
- Ait-El-Mkadem Saadi, S.; Chaussenot, A.; Bannwarth, S.; Rouzier, C.; Paquis-Flucklinger, V. CHCHD10-Related Disorders. In: GeneReviews; Adam, M.P.; Ardinger, H.H; Pagon, R.A.; Wallace, S.E.; Bean, L.J.; Mirzaa, G.; Amemiya, A., Eds.; University of Washington, Seattle: Seattle (WA), 1993.
- Aras, S.; Bai, M.; Lee, I.; Springett, R.; Hüttemann, M.; Grossman, L.I. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion, 2015, 20, 43-51. doi: 10.1016/j.mito.2014.10.003 PMID: 25315652
- Alici, H.; Uversky, V.N.; Kang, D.E.; Woo, J.A.; Coskuner-Weber, O. Structures of the wild-type and S59L mutant CHCHD10 proteins important in amyotrophic lateral sclerosisfrontotemporal dementia. ACS Chem. Neurosci., 2022, 13(8), 1273-1280. doi: 10.1021/acschemneuro.2c00011 PMID: 35349255
- Metallic Systems: A Quantum Chemists Perspective; Allison, T.C.; Coskuner, O.; Gonzalez, C.A., Eds.; CRC Press, 2011.
- Hansson, T.; Oostenbrink, C.; van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol., 2002, 12(2), 190-196. doi: 10.1016/S0959-440X(02)00308-1 PMID: 11959496
- Coskuner-Weber, O.; Habiboglu, M.G.; Teplow, D.; Uversky, V.N. From quantum mechanics, classical mechanics, and bioinformatics to artificial intelligence studies in neurodegenerative diseases. Methods Mol. Biol., 2022, 2340, 139-173. doi: 10.1007/978-1-0716-1546-1_8 PMID: 35167074
- Alici, H.; Hasekioglu, O.; Uversky, V.N.; Coskuner-Weber, O. Methods to study the effect of solution variables on the conformational dynamics of intrinsically disordered proteins. In: Advances in Protein Molecular and Structural Biology Methods; Elsevier, 2022; pp. 551-563. doi: 10.1016/B978-0-323-90264-9.00033-7
- Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(5), 872-877. doi: 10.1016/j.bbagen.2014.10.019 PMID: 25450171
- Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(6), 932-942. doi: 10.1002/wcms.66
- Abrams, C.; Bussi, G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy, 2013, 16(1), 163-199. doi: 10.3390/e16010163
- Zheng, S.; Pfaendtner, J. Enhanced sampling of chemical and biochemical reactions with metadynamics. Mol. Simul., 2015, 41(1-3), 55-72. doi: 10.1080/08927022.2014.923574
- Fatafta, H.; Samantray, S.; Sayyed-Ahmad, A.; Coskuner-Weber, O.; Strodel, B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. Progress in Molecular Biology and Translational Science; Elsevier, 2021, Vol. 183, pp. 135-185.
- Strodel, B.; Coskuner-Weber, O. Transition metal ion interactions with disordered amyloid-β peptides in the pathogenesis of alzheimers disease: Insights from computational chemistry studies. J. Chem. Inf. Model., 2019, 59(5), 1782-1805. doi: 10.1021/acs.jcim.8b00983 PMID: 30933519
- Perez, D.; Uberuaga, B.P.; Shim, Y.; Amar, J.G.; Voter, A.F. Accelerated molecular dynamics methods: Introduction and recent developments. In: Annual Reports in Computational Chemistry; Elsevier, 2009; Vol. 5, pp. 79-98.
- Do, T.N.; Choy, W.Y.; Karttunen, M. Accelerating the conformational sampling of intrinsically disordered proteins. J. Chem. Theory Comput., 2014, 10(11), 5081-5094. doi: 10.1021/ct5004803 PMID: 26584388
- Weber, O.C.; Uversky, V.N. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β 42 in water. Intrinsically Disord. Proteins, 2017, 5(1), e1377813. doi: 10.1080/21690707.2017.1377813 PMID: 30250773
- Wang, Y.; Lamim Ribeiro, J.M.; Tiwary, P. Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol., 2020, 61, 139-145. doi: 10.1016/j.sbi.2019.12.016 PMID: 31972477
- Glazer, D.S.; Radmer, R.J.; Altman, R.B. Combining molecular dynamics and machine learning to improve protein function recognition. Proceedings of the Biocomputing, 2008, , pp. 332-343.
- Noé, F.; Tkatchenko, A.; Müller, K.R.; Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem., 2020, 71(1), 361-390. doi: 10.1146/annurev-physchem-042018-052331 PMID: 32092281
- Bai, Q.; Liu, S.; Tian, Y.; Xu, T.; Banegas-Luna, A.J.; Pérez-Sánchez, H.; Huang, J.; Liu, H.; Yao, X. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(3), e1581. doi: 10.1002/wcms.1581
- Shin, K.; Tran, D.P.; Takemura, K.; Kitao, A.; Terayama, K.; Tsuda, K. Enhancing biomolecular sampling with reinforcement learning: A tree search molecular dynamics simulation method. ACS Omega, 2019, 4(9), 13853-13862. doi: 10.1021/acsomega.9b01480 PMID: 31497702
- Shmilovich, K.; Mansbach, R.A.; Sidky, H.; Dunne, O.E.; Panda, S.S.; Tovar, J.D.; Ferguson, A.L. Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained molecular simulation. J. Phys. Chem. B, 2020, 124(19), 3873-3891. doi: 10.1021/acs.jpcb.0c00708 PMID: 32180410
- Pratt, L.R.; Haan, S.W. Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. I. Theory. J. Chem. Phys., 1981, 74(3), 1864-1872. doi: 10.1063/1.441276
- Demerdash, O.; Shrestha, U.R.; Petridis, L.; Smith, J.C.; Mitchell, J.C.; Ramanathan, A. Using small-angle scattering data and parametric machine learning to optimize force field parameters for intrinsically disordered proteins. Front. Mol. Biosci., 2019, 6, 64. doi: 10.3389/fmolb.2019.00064 PMID: 31475155
- Ahmed, S.S.; Rifat, Z.T.; Lohia, R.; Campbell, A.J.; Dunker, A.K.; Rahman, M.S.; Iqbal, S. Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLOS Comput. Biol., 2022, 18(3), e1009911. doi: 10.1371/journal.pcbi.1009911 PMID: 35275927
- Morgunov, A.S.; Saar, K.L.; Vendruscolo, M.; Knowles, T.P.J. New frontiers for machine learning in protein science. J. Mol. Biol., 2021, 433(20), 167232. doi: 10.1016/j.jmb.2021.167232 PMID: 34499920
- Baiardi, A.; Christandl, M.; Reiher, M. Quantum computing for molecular biology. arXiv:2212.12220, 2022. doi: 10.48550/ARXIV.2212.12220
- Sood, V.; Chauhan, R.P. Archives of Quantum Computing: Research Progress and Challenges; Arch Computat Methods Eng, 2023. doi: 10.1007/s11831-023-09973-2
- Verstraete, F.; Porras, D.; Cirac, J.I. Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys. Rev. Lett., 2004, 93(22), 227205. doi: 10.1103/PhysRevLett.93.227205 PMID: 15601115
- Ajagekar, A.; You, F. New frontiers of quantum computing in chemical engineering. Korean J. Chem. Eng., 2022, 39(4), 811-820. doi: 10.1007/s11814-021-1027-6
- Shepherd, D.J. On the role of hadamard gates in quantum circuits. Quantum Inform. Process., 2006, 5(3), 161-177. doi: 10.1007/s11128-006-0023-4
- Sarfaraj, M.N.; Mukhopadhyay, S. All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett., 2021, 17(12), 746-750. doi: 10.1007/s11801-021-1037-y
- Monz, T.; Nigg, D.; Martinez, E.A.; Brandl, M.F.; Schindler, P.; Rines, R.; Wang, S.X.; Chuang, I.L.; Blatt, R. Realization of a scalable Shor algorithm. Science, 2016, 351(6277), 1068-1070. doi: 10.1126/science.aad9480 PMID: 26941315
- Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2001, 64(2), 022307. doi: 10.1103/PhysRevA.64.022307
- Hauke, P.; Katzgraber, H.G.; Lechner, W.; Nishimori, H.; Oliver, W.D. Perspectives of quantum annealing: Methods and implementations. Rep. Prog. Phys., 2020, 83(5), 054401. doi: 10.1088/1361-6633/ab85b8 PMID: 32235066
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13), 130503. doi: 10.1103/PhysRevLett.113.130503 PMID: 25302877
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2), 172-185. doi: 10.1080/00107514.2014.964942
Supplementary files
