Bioconjugation Techniques for Enhancing Stability and Targeting Efficiency of Protein and Peptide Therapeutics


Дәйексөз келтіру

Толық мәтін

Аннотация

Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.

Авторлар туралы

Tanuja Bisht

Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University

Email: info@benthamscience.net

Anupriya Adhikari

Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University

Email: info@benthamscience.net

Shivanand Patil

Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University

Email: info@benthamscience.net

Shivang Dhoundiyal

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Stevens, C.A.; Kaur, K.; Klok, H.A. Self-assembly of protein-polymer conjugates for drug delivery. Adv. Drug Deliv. Rev., 2021, 174, 447-460. doi: 10.1016/j.addr.2021.05.002 PMID: 33984408
  2. Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. doi: 10.1016/j.ejmech.2016.07.056 PMID: 27484512
  3. Lieser, R.M.; Yur, D.; Sullivan, M.O.; Chen, W. Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjug. Chem., 2020, 31(10), 2272-2282. doi: 10.1021/acs.bioconjchem.0c00456 PMID: 32931255
  4. Banerjee, A.; Onyuksel, H. Peptide delivery using phospholipid micelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(5), 562-574. doi: 10.1002/wnan.1185 PMID: 22847908
  5. Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764. doi: 10.1039/C3CS60273G PMID: 24220322
  6. Fishburn, C.S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183. doi: 10.1002/jps.21278 PMID: 18200508
  7. Singh, S.; Narang, A.S.; Mahato, R.I. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res., 2011, 28(12), 2996-3015. doi: 10.1007/s11095-011-0608-1 PMID: 22033880
  8. Dua, P.; Kim, S.; Lee, D. Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54(2), 215-225. doi: 10.1016/j.ymeth.2011.02.002 PMID: 21300154
  9. Vance, N.; Zacharias, N.; Ultsch, M.; Li, G.; Fourie, A.; Liu, P.; LaFrance-Vanasse, J.; Ernst, J.A.; Sandoval, W.; Kozak, K.R.; Phillips, G.; Wang, W.; Sadowsky, J. Development, optimization, and structural characterization of an efficient peptide-based photoaffinity cross-linking reaction for generation of homogeneous conjugates from wild-type antibodies. Bioconjug. Chem., 2019, 30(1), 148-160. doi: 10.1021/acs.bioconjchem.8b00809 PMID: 30566343
  10. Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibod-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol., 2021, 18(6), 327-344. doi: 10.1038/s41571-021-00470-8 PMID: 33558752
  11. Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci., 2016, 17(4), 561. doi: 10.3390/ijms17040561 PMID: 27089329
  12. Wang, L.; Zhao, W.; Tan, W. Bioconjugated silica nanoparticles: Development and applications. Nano Res., 2008, 1(2), 99-115. doi: 10.1007/s12274-008-8018-3
  13. Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551. doi: 10.1039/C5CS00048C PMID: 26000775
  14. Walper, S.A.; Turner, K.B.; Medintz, I.L. Enzymatic bioconjugation of nanoparticles: Developing specificity and control. Curr. Opin. Biotechnol., 2015, 34, 232-241. doi: 10.1016/j.copbio.2015.04.003 PMID: 25955793
  15. de Graaf, A.J.; Kooijman, M.; Hennink, W.E.; Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug. Chem., 2009, 20(7), 1281-1295. doi: 10.1021/bc800294a PMID: 19191567
  16. Lu, Y.; Huang, F.; Wang, J.; Xia, J. Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions. Bioconjug. Chem., 2014, 25(5), 989-999. doi: 10.1021/bc500134w PMID: 24738859
  17. Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res., 2012, 45(7), 1048-1056. doi: 10.1021/ar2002304 PMID: 22455499
  18. Sulaiman, S.; Mokhtar, M.N.; Naim, M.N.; Baharuddin, A.S.; Sulaiman, A. A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization Via covalent interactions. Appl. Biochem. Biotechnol., 2015, 175(4), 1817-1842. doi: 10.1007/s12010-014-1417-x PMID: 25427594
  19. Bellucci, J.J.; Bhattacharyya, J.; Chilkoti, A. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. Angew. Chem. Int. Ed., 2015, 54(2), 441-445. doi: 10.1002/anie.201408126 PMID: 25363491
  20. Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. doi: 10.1016/j.tet.2005.08.031
  21. Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry. Chem. Mater., 2014, 26(1), 724-744. doi: 10.1021/cm402180t
  22. Sletten, E.M.; Bertozzi, C.R. From mechanism to mouse: A tale of two bioorthogonal reactions. Acc. Chem. Res., 2011, 44(9), 666-676. doi: 10.1021/ar200148z PMID: 21838330
  23. Li, F.; Mahato, R.I. Bioconjugate therapeutics: Current progress and future perspective. Mol. Pharm., 2017, 14(5), 1321-1324. doi: 10.1021/acs.molpharmaceut.7b00263 PMID: 28457140
  24. Cooper, B.M.; Iegre, J.; O’ Donovan, D.H.; Ölwegård Halvarsson, M.; Spring, D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem. Soc. Rev., 2021, 50(3), 1480-1494. doi: 10.1039/D0CS00556H PMID: 33346298
  25. Rashidian, M.; Dozier, J.K.; Distefano, M.D. Enzymatic labeling of proteins: Techniques and approaches. Bioconjug. Chem., 2013, 24(8), 1277-1294. doi: 10.1021/bc400102w PMID: 23837885
  26. Zhang, C.; Vinogradova, E.V.; Spokoyny, A.M.; Buchwald, S.L.; Pentelute, B.L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed., 2019, 58(15), 4810-4839. doi: 10.1002/anie.201806009 PMID: 30399206
  27. Malešević M.; Migge, A.; Hertel, T.C.; Pietzsch, M. A fluorescence-based array screen for transglutaminase substrates. ChemBioChem, 2015, 16(8), 1169-1174. doi: 10.1002/cbic.201402709 PMID: 25940638
  28. Proft, T. Sortase-mediated protein ligation: An emerging biotechnology tool for protein modification and immobilisation. Biotechnol. Lett., 2010, 32(1), 1-10. doi: 10.1007/s10529-009-0116-0 PMID: 19728105
  29. Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J.S.; Carroll, J.S.; Spring, D.R. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev., 2021, 50(2), 1305-1353. doi: 10.1039/D0CS00310G PMID: 33290462
  30. Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem., 2011, 22(5), 825-858. doi: 10.1021/bc200065z PMID: 21585205
  31. Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
  32. Chen, F.; Nielsen, S.; Zenobi, R. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents. J. Mass Spectrom., 2013, 48(7), 807-812. doi: 10.1002/jms.3224 PMID: 23832936
  33. Pan, S.; Zhang, H.; Wang, C.; Yao, S.C.L.; Yao, S.Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep., 2016, 33(5), 612-620. doi: 10.1039/C5NP00101C PMID: 26580476
  34. Mayer, G.; Heckel, A. Biologically active molecules with a "light switch". Angew. Chem. Int. Ed., 2006, 45(30), 4900-4921. doi: 10.1002/anie.200600387 PMID: 16826610
  35. Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 2009, 30(20), 3371-3377. doi: 10.1016/j.biomaterials.2009.03.030 PMID: 19345991
  36. Chen, C.; Ng, D.Y.W.; Weil, T. Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Prog. Polym. Sci., 2020, 105, 101241. doi: 10.1016/j.progpolymsci.2020.101241
  37. Girotti, A.; Fernández-Colino, A.; López, I.M.; Rodríguez-Cabello, J.C.; Arias, F.J. Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnol. J., 2011, 6(10), 1174-1186. doi: 10.1002/biot.201100116 PMID: 21932251
  38. Ozer, I.; Chilkoti, A. Site-specific and stoichiometric stealth polymer conjugates of therapeutic peptides and proteins. Bioconjug. Chem., 2017, 28(3), 713-723. doi: 10.1021/acs.bioconjchem.6b00652 PMID: 27998056
  39. Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: The nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192. doi: 10.1021/bc5004982 PMID: 25494884
  40. Rabuka, D. Chemoenzymatic methods for site-specific protein modification. Curr. Opin. Chem. Biol., 2010, 14(6), 790-796. doi: 10.1016/j.cbpa.2010.09.020 PMID: 21030291
  41. Shadish, J.A.; DeForest, C.A. Site-selective protein modification: From functionalized proteins to functional biomaterials. Matter, 2020, 2(1), 50-77. doi: 10.1016/j.matt.2019.11.011
  42. Fominaya, J.; Bravo, J.; Rebollo, A. Strategies to stabilize cell penetrating peptides for in vivo applications. Ther. Deliv., 2015, 6(10), 1171-1194. doi: 10.4155/tde.15.51 PMID: 26448473
  43. Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926. doi: 10.1021/cr400031z PMID: 24446748
  44. Vyas, SP; Singh, A; Sihorkar, V Ligand-receptor-mediated drug delivery: An emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug. Carrier. Syst., 2001, 18(1), 1-76. doi: 10.1615/CritRevTherDrugCarrierSyst.v18.i1.10
  45. Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
  46. Zhang, T.; Huang, S.; Lin, H.; An, N.; Tong, R.; Chen, Y.; Wang, Y.; Qu, F. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J. Chem., 2017, 41(6), 2468-2478. doi: 10.1039/C6NJ02357F
  47. Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818. doi: 10.1016/j.drudis.2006.07.005 PMID: 16935749
  48. Singh, R.; Singh, S.; Lillard, J.W. Jr Past, present, and future technologies for oral delivery of therapeutic proteins. J. Pharm. Sci., 2008, 97(7), 2497-2523. doi: 10.1002/jps.21183 PMID: 17918721
  49. Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458. doi: 10.1016/S1359-6446(05)03575-0 PMID: 16243265
  50. Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45. doi: 10.1016/j.jconrel.2012.06.002 PMID: 22698939
  51. Shakya, A.K.; Sami, H.; Srivastava, A.; Kumar, A. Stability of responsive polymer-protein bioconjugates. Prog. Polym. Sci., 2010, 35(4), 459-486. doi: 10.1016/j.progpolymsci.2010.01.003
  52. Pawar, V.K.; Meher, J.G.; Singh, Y.; Chaurasia, M.; Surendar Reddy, B.; Chourasia, M.K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J. Control. Release, 2014, 196, 168-183. doi: 10.1016/j.jconrel.2014.09.031 PMID: 25305562
  53. Gunnoo, S.B.; Madder, A. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org. Biomol. Chem., 2016, 14(34), 8002-8013. doi: 10.1039/C6OB00808A PMID: 27461374
  54. Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 112-126. doi: 10.1016/j.addr.2016.06.015 PMID: 27370248
  55. Parkins, D.A.; Lashmar, U.T. The formulation of biopharmaceutical products. Pharm. Sci. Technol. Today, 2000, 3(4), 129-137. doi: 10.1016/S1461-5347(00)00248-0 PMID: 10754542
  56. Gebauer, M.; Skerra, A. Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg. Med. Chem., 2018, 26(10), 2882-2887. doi: 10.1016/j.bmc.2017.09.016 PMID: 29102080
  57. Elliott, S.; Pham, E.; Macdougall, I.C. Erythropoietins: A common mechanism of action. Exp. Hematol., 2008, 36(12), 1573-1584. doi: 10.1016/j.exphem.2008.08.003 PMID: 18922615
  58. Zhao, H.L.; Yao, X.Q.; Xue, C.; Wang, Y.; Xiong, X.H.; Liu, Z.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expr. Purif., 2008, 61(1), 73-77. doi: 10.1016/j.pep.2008.04.013 PMID: 18541441
  59. Kishimoto, S.; Nakashimada, Y.; Yokota, R.; Hatanaka, T.; Adachi, M.; Ito, Y. Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format. Bioconjug. Chem., 2019, 30(3), 698-702. doi: 10.1021/acs.bioconjchem.8b00865 PMID: 30606013
  60. Huang, Y.Y.; Wang, C.H. Pulmonary delivery of insulin by liposomal carriers. J. Control. Release, 2006, 113(1), 9-14. doi: 10.1016/j.jconrel.2006.03.014 PMID: 16730838
  61. Huang, L.C.; Wang, H.C.; Chen, L.H.; Ho, C.Y.; Hsieh, P.H.; Huang, M.Y.; Wu, H.C.; Wang, T.W. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics, 2019, 9(23), 7072-7087. doi: 10.7150/thno.35803 PMID: 31660087
  62. Coad, B.R.; Jasieniak, M.; Griesser, S.S.; Griesser, H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Tech., 2013, 233, 169-177. doi: 10.1016/j.surfcoat.2013.05.019
  63. Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476. doi: 10.1016/S0169-409X(02)00022-4 PMID: 12052709
  64. Béduneau, A.; Saulnier, P.; Benoit, J.P. Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28(33), 4947-4967. doi: 10.1016/j.biomaterials.2007.06.011 PMID: 17716726
  65. Lee, J.C.; Donahue, N.D.; Mao, A.S.; Karim, A.; Komarneni, M.; Thomas, E.E.; Francek, E.R.; Yang, W.; Wilhelm, S. Exploring maleimide-based nanoparticle surface engineering to control cellular interactions. ACS Appl. Nano Mater., 2020, 3(3), 2421-2429. doi: 10.1021/acsanm.9b02541
  66. Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009, 48(38), 6974-6998. doi: 10.1002/anie.200900942 PMID: 19714693
  67. Scinto, S.L.; Bilodeau, D.A.; Hincapie, R.; Lee, W.; Nguyen, S.S.; Xu, M. am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; Pezacki, J.P.; Prescher, J.A.; Robillard, M.S.; Fox, J.M. Bioorthogonal chemistry. Nat. Rev. Methods Primers, 2021, 1(1), 30. doi: 10.1038/s43586-021-00028-z PMID: 34585143
  68. Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51. doi: 10.1517/14728222.2011.538682 PMID: 21142802
  69. Patel, K.G.; Swartz, J.R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 2011, 22(3), 376-387. doi: 10.1021/bc100367u PMID: 21355575
  70. Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG — A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81. doi: 10.1016/j.jconrel.2014.06.046 PMID: 24997275
  71. Tamura, T.; Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: From test tubes to complex biological systems. J. Am. Chem. Soc., 2019, 141(7), 2782-2799. doi: 10.1021/jacs.8b11747 PMID: 30592612
  72. Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290. doi: 10.1158/0008-5472.CAN-08-1776 PMID: 19010901
  73. Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res. Bull., 2018, 142, 384-393. doi: 10.1016/j.brainresbull.2018.08.003 PMID: 30086350
  74. Chae, S.Y.; Choi, Y.G.; Son, S.; Jung, S.Y.; Lee, D.S.; Lee, K.C. The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics. J. Control. Release, 2010, 144(1), 10-16. doi: 10.1016/j.jconrel.2010.01.024 PMID: 20093159
  75. Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 2002, 22(2), 143-152. doi: 10.1097/00006982-200204000-00002 PMID: 11927845
  76. Ishihara, H. Current status and prospects of polyethyleneglycol-modified medicines. Biol. Pharm. Bull., 2013, 36(6), 883-888. doi: 10.1248/bpb.b13-00087 PMID: 23727910
  77. Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine, 2013, 9(4), 474-491. doi: 10.1016/j.nano.2012.11.010 PMID: 23261500
  78. Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663. doi: 10.1021/acs.chemrev.5b00346 PMID: 26854975
  79. Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev., 2002, 54(4), 531-545. doi: 10.1016/S0169-409X(02)00026-1 PMID: 12052713
  80. Zorzi, A.; Linciano, S.; Angelini, A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm, 2019, 10(7), 1068-1081. doi: 10.1039/C9MD00018F PMID: 31391879
  81. Schellenberger, V.; Wang, C.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; Cleland, J.L.; Silverman, J.; Stemmer, W.P.C. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol., 2009, 27(12), 1186-1190. doi: 10.1038/nbt.1588 PMID: 19915550
  82. Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203. doi: 10.2174/138161210793292555 PMID: 20687878
  83. Wang, Y.; Wu, C. Site-specific conjugation of polymers to proteins. Biomacromolecules, 2018, 19(6), 1804-1825. doi: 10.1021/acs.biomac.8b00248 PMID: 29722971
  84. AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750. doi: 10.1016/j.biopha.2019.108750 PMID: 30849643
  85. Luk, B.T.; Zhang, L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release, 2015, 220(Pt B), 600-607. doi: 10.1016/j.jconrel.2015.07.019 PMID: 26210440
  86. Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166. doi: 10.1016/j.nano.2011.05.016 PMID: 21703993
  87. Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release, 2005, 109(1-3), 256-274. doi: 10.1016/j.jconrel.2005.09.023 PMID: 16266768
  88. Zegota, M.M.; Müller, M.A.; Lantzberg, B.; Kizilsavas, G.; Coelho, J.A.S.; Moscariello, P.; Martínez-Negro, M.; Morsbach, S.; Gois, P.M.P.; Wagner, M.; Ng, D.Y.W.; Kuan, S.L.; Weil, T. Dual stimuli-responsive dynamic covalent peptide tags: Toward sequence-controlled release in tumor-like microenvironments. J. Am. Chem. Soc., 2021, 143(41), 17047-17058. doi: 10.1021/jacs.1c06559 PMID: 34632780
  89. Shi, Z.; Li, Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett., 2020, 31(6), 1345-1356. doi: 10.1016/j.cclet.2020.03.001
  90. Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater., 2019, 10(3), 34. doi: 10.3390/jfb10030034 PMID: 31370252
  91. Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374. doi: 10.1039/C8CS00676H PMID: 31294429
  92. Andresen, T.L.; Thompson, D.H.; Kaasgaard, T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy. Mol. Membr. Biol., 2010, 27(7), 353-363. doi: 10.3109/09687688.2010.515950 PMID: 20939771
  93. Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304. doi: 10.1517/17425240902780166 PMID: 19327045
  94. Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450. doi: 10.1002/wnan.1450 PMID: 28198148
  95. Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem., 2011, 83(12), 4453-4488. doi: 10.1021/ac200853a PMID: 21545140
  96. Hermanson, G.T. Bioconjugate techniques; Academic press, 2013.
  97. Liu, D.Q.; Hop, C.E.C.A. Strategies for characterization of drug metabolites using liquid chromatography–tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal., 2005, 37(1), 1-18. doi: 10.1016/j.jpba.2004.09.003 PMID: 15664738
  98. Plesner, B.; Fee, C.J.; Westh, P.; Nielsen, A.D. Effects of PEG size on structure, function and stability of PEGylated BSA. Eur. J. Pharm. Biopharm., 2011, 79(2), 399-405. doi: 10.1016/j.ejpb.2011.05.003 PMID: 21620970
  99. Meager, A. Biological assays for interferons. J. Immunol. Methods, 2002, 261(1-2), 21-36. doi: 10.1016/S0022-1759(01)00570-1 PMID: 11861063
  100. Beck, A.; D’Atri, V.; Ehkirch, A.; Fekete, S.; Hernandez-Alba, O.; Gahoual, R.; Leize-Wagner, E.; François, Y.; Guillarme, D.; Cianférani, S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: Present and future. Expert Rev. Proteomics, 2019, 16(4), 337-362. doi: 10.1080/14789450.2019.1578215 PMID: 30706723
  101. Lin, C.A.J.; Yang, T.Y.; Lee, C.H.; Huang, S.H.; Sperling, R.A.; Zanella, M.; Li, J.K.; Shen, J.L.; Wang, H.H.; Yeh, H.I.; Parak, W.J.; Chang, W.H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009, 3(2), 395-401. doi: 10.1021/nn800632j PMID: 19236077
  102. López-Lorente, A.I.; Simonet, B.M.; Valcárcel, M. Electrophoretic methods for the analysis of nanoparticles. Trends Analyt. Chem., 2011, 30(1), 58-71. doi: 10.1016/j.trac.2010.10.006
  103. Azizi, A.; Ranjbar, B.; Moghadam, T.T.; Bagheri, Z. Plasmonic circular dichroism study of DNA-gold nanoparticles bioconjugates. Plasmonics, 2014, 9(2), 273-281. doi: 10.1007/s11468-013-9620-0
  104. Zaghmi, A.; Greschner, A.A.; Mendez-Villuendas, E.; Liu, J.Y.; de Haan, H.W.; Gauthier, M.A. Determination of the degree of PEGylation of protein bioconjugates using data from proton nuclear magnetic resonance spectroscopy. Data Brief, 2019, 25, 104037. doi: 10.1016/j.dib.2019.104037 PMID: 31223640
  105. Schwarz, G.; Mueller, L.; Beck, S.; Linscheid, M.W. DOTA based metal labels for protein quantification: A review. J. Anal. At. Spectrom., 2014, 29(2), 221-233. doi: 10.1039/C3JA50277E
  106. Mero, A.; Spolaore, B.; Veronese, F.M.; Fontana, A. Transglutaminase-mediated PEGylation of proteins: Direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug. Chem., 2009, 20(2), 384-389. doi: 10.1021/bc800427n PMID: 19186937
  107. Beck, J.L.; Colgrave, M.L.; Ralph, S.F.; Sheil, M.M. Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev., 2001, 20(2), 61-87. doi: 10.1002/mas.1003 PMID: 11455562
  108. Gabrielli, V.; Baretta, R.; Pilot, R.; Ferrarini, A.; Frasconi, M. Insights into the gelation mechanism of metal-coordinated hydrogels by paramagnetic NMR spectroscopy and molecular dynamics. Macromolecules, 2022, 55(2), 450-461. doi: 10.1021/acs.macromol.1c01756
  109. Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187. doi: 10.1016/j.ijbiomac.2022.02.104 PMID: 35217087
  110. Holm, L.S.; Mcumber, A.; Rasmussen, J.E.; Obiols-Rabasa, M.; Thulstrup, P.W.; Kasimova, M.R.; Randolph, T.W.; van de Weert, M. The effect of protein PEGylation on physical stability in liquid formulation. J. Pharm. Sci., 2014, 103(10), 3043-3054. doi: 10.1002/jps.24094 PMID: 25139193
  111. Moreira-Alvarez, B.; Cid-Barrio, L.; Ferreira, H.S.; Costa-Fernández, J.M.; Encinar, J.R. Integrated analytical platforms for the comprehensive characterization of bioconjugated inorganic nanomaterials aiming at biological applications. J. Anal. At. Spectrom., 2020, 35(8), 1518-1529. doi: 10.1039/D0JA00147C
  112. Kaliyaperumal, A.; Jing, S. Immunogenicity assessment of therapeutic proteins and peptides. Curr. Pharm. Biotechnol., 2009, 10(4), 352-358. doi: 10.2174/138920109788488860 PMID: 19519410
  113. Mu, R.; Yuan, J.; Huang, Y.; Meissen, J.K.; Mou, S.; Liang, M.; Rosenbaum, A.I. Bioanalytical methods and strategic perspectives addressing the rising complexity of novel bioconjugates and delivery routes for biotherapeutics. BioDrugs, 2022, 36(2), 181-196. doi: 10.1007/s40259-022-00518-w PMID: 35362869
  114. Yao, V.J.; D’Angelo, S.; Butler, K.S.; Theron, C.; Smith, T.L.; Marchiò, S.; Gelovani, J.G.; Sidman, R.L.; Dobroff, A.S.; Brinker, C.J.; Bradbury, A.R.M.; Arap, W.; Pasqualini, R. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release, 2016, 240, 267-286. doi: 10.1016/j.jconrel.2016.01.002 PMID: 26772878
  115. Lazar, A.C.; Wang, L.; Blättler, W.A.; Amphlett, G.; Lambert, J.M.; Zhang, W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(13), 1806-1814. doi: 10.1002/rcm.1987 PMID: 15945030
  116. Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug. Chem., 2018, 29(3), 686-701. doi: 10.1021/acs.bioconjchem.7b00633 PMID: 29287474
  117. Jadhav, P.D.; Shim, Y.Y.; Reaney, M.J.T. Synthesis and characterization of site-selective orbitide-BSA conjugate to produce antibodies. Bioconjug. Chem., 2016, 27(10), 2346-2358. doi: 10.1021/acs.bioconjchem.6b00357 PMID: 27626291
  118. Pagar, R.R.; Musale, S.R.; Pawar, G.; Kulkarni, D.; Giram, P.S. Comprehensive review on the degradation chemistry and toxicity studies of functional materials. ACS Biomater. Sci. Eng., 2022, 8(6), 2161-2195. doi: 10.1021/acsbiomaterials.1c01304 PMID: 35522605
  119. Ghosh, S.; Ghosh, T.; Bhowmik, S.; Patidar, M.K.; Das, A.K. Nucleopeptide-coupled injectable bioconjugated guanosine-quadruplex hydrogel with inherent antibacterial activity. ACS Appl. Bio Mater., 2023, 6(2), 640-651. doi: 10.1021/acsabm.2c00912 PMID: 36706228
  120. Kuan, S.L.; Wang, T.; Weil, T. Site-selective disulfide modification of proteins: Expanding diversity beyond the proteome. Chemistry, 2016, 22(48), 17112-17129. doi: 10.1002/chem.201602298 PMID: 27778400
  121. Wu, G.; Barth, R.F.; Yang, W.; Kawabata, S.; Zhang, L.; Green-Church, K. Targeted delivery of methotrexate to epidermal growth factor receptor–positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol. Cancer Ther., 2006, 5(1), 52-59. doi: 10.1158/1535-7163.MCT-05-0325 PMID: 16432162
  122. Wolfe, B.J.; Ghomashchi, F.; Kim, T.; Abam, C.A.; Sadilek, M.; Jack, R.; Thompson, J.N.; Scott, C.R.; Gelb, M.H.; Turecek, F. New substrates and enzyme assays for the detection of mucopolysaccharidosis III (Sanfilippo Syndrome) types A, B, C, and D by tandem mass spectrometry. Bioconjug. Chem., 2012, 23(3), 557-564. doi: 10.1021/bc200609x PMID: 22372747
  123. Liu, X.; Zheng, W.; Jiang, X. Cell-based assays on microfluidics for drug screening. ACS Sens., 2019, 4(6), 1465-1475. doi: 10.1021/acssensors.9b00479 PMID: 31074263
  124. Das, M.; Duan, W.; Sahoo, S.K. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine, 2015, 11(2), 379-389. doi: 10.1016/j.nano.2014.09.002 PMID: 25240596
  125. Yang, S.B.; Banik, N.; Han, B.; Lee, D.N.; Park, J. Peptide-based bioconjugates and therapeutics for targeted anticancer therapy. Pharmaceutics, 2022, 14(7), 1378. doi: 10.3390/pharmaceutics14071378 PMID: 35890274
  126. Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: Efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236. doi: 10.1002/smll.201301417 PMID: 23873835
  127. Tao, W.; Zeng, X.; Wu, J.; Zhu, X.; Yu, X.; Zhang, X.; Zhang, J.; Liu, G.; Mei, L. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016, 6(4), 470-484. doi: 10.7150/thno.14184 PMID: 26941841
  128. Liu, H.; Bolleddula, J.; Nichols, A.; Tang, L.; Zhao, Z.; Prakash, C. Metabolism of bioconjugate therapeutics: Why, when, and how? Drug Metab. Rev., 2020, 52(1), 66-124. doi: 10.1080/03602532.2020.1716784 PMID: 32045530
  129. Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557. doi: 10.1080/10717544.2016.1276232 PMID: 28181831
  130. Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed., 2007, 2(4), 715-733. PMID: 18203438
  131. van den Dobbelsteen, G.P.J.M.; Faé, K.C.; Serroyen, J.; van den Nieuwenhof, I.M.; Braun, M.; Haeuptle, M.A.; Sirena, D.; Schneider, J.; Alaimo, C.; Lipowsky, G.; Gambillara-Fonck, V.; Wacker, M.; Poolman, J.T. Immunogenicity and safety of a tetravalent E. Coli O-antigen bioconjugate vaccine in animal models. Vaccine, 2016, 34(35), 4152-4160. doi: 10.1016/j.vaccine.2016.06.067 PMID: 27395567
  132. Sau, S.; Alsaab, H.O.; Kashaw, S.K.; Tatiparti, K.; Iyer, A.K. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today, 2017, 22(10), 1547-1556. doi: 10.1016/j.drudis.2017.05.011 PMID: 28627385
  133. Ibeanu, N.; Egbu, R.; Onyekuru, L.; Javaheri, H.; Khaw, P.T.; Williams, G.R.; Brocchini, S.; Awwad, S. Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics, 2020, 12(10), 999. doi: 10.3390/pharmaceutics12100999 PMID: 33096803
  134. Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7. doi: 10.1038/s41392-017-0004-3 PMID: 29560283
  135. Nairn, N.W.; Shanebeck, K.D.; Wang, A.; Graddis, T.J.; VanBrunt, M.P.; Thornton, K.C.; Grabstein, K. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation. Bioconjug. Chem., 2012, 23(10), 2087-2097. doi: 10.1021/bc300295x PMID: 22988919
  136. Kobayashi, H.; Turkbey, B.; Watanabe, R.; Choyke, P.L. Cancer drug delivery: Considerations in the rational design of nanosized bioconjugates. Bioconjug. Chem., 2014, 25(12), 2093-2100. doi: 10.1021/bc500481x PMID: 25385142
  137. Mahon, E.; Salvati, A.; Baldelli Bombelli, F.; Lynch, I.; Dawson, K.A. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". J. Control. Release, 2012, 161(2), 164-174. doi: 10.1016/j.jconrel.2012.04.009 PMID: 22516097
  138. Szijj, P.A.; Bahou, C.; Chudasama, V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov. Today. Technol., 2018, 30, 27-34. doi: 10.1016/j.ddtec.2018.07.002 PMID: 30553517
  139. Zhang, M.M.; Bahal, R.; Rasmussen, T.P.; Manautou, J.E.; Zhong, X. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem. Pharmacol., 2021, 189, 114432. doi: 10.1016/j.bcp.2021.114432 PMID: 33513339
  140. Geho, D.H.; Petricoin, E.F.; Liotta, L.A.; Araujo, R.P. Modeling of protein signaling networks in clinical proteomics.Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2005, 70, pp. 517-524. doi: 10.1101/sqb.2005.70.022
  141. Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63. doi: 10.1016/j.actbio.2019.05.022 PMID: 31082570
  142. Jurgielewicz, B.; Stice, S.; Yao, Y. Therapeutic potential of nucleic acids when combined with extracellular vesicles. Aging Dis., 2021, 12(6), 1476-1493. doi: 10.14336/AD.2021.0708 PMID: 34527423
  143. Lee, S.; Xie, J.; Chen, X. Peptide-based probes for targeted molecular imaging. Biochemistry, 2010, 49(7), 1364-1376. doi: 10.1021/bi901135x PMID: 20102226
  144. Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010. doi: 10.1039/c2cs15344k PMID: 22388185
  145. Benizri, S.; Gissot, A.; Martin, A.; Vialet, B.; Grinstaff, M.W.; Barthélémy, P. Bioconjugated oligonucleotides: Recent developments and therapeutic applications. Bioconjug. Chem., 2019, 30(2), 366-383. doi: 10.1021/acs.bioconjchem.8b00761 PMID: 30608140
  146. Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34. doi: 10.1016/j.actbio.2019.11.027 PMID: 31759124
  147. Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomed., 2010, 5, 37-49. PMID: 20161986
  148. Gombotz, W.R.; Pettit, D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem., 1995, 6(4), 332-351. doi: 10.1021/bc00034a002 PMID: 7578352

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024