Bioconjugation Techniques for Enhancing Stability and Targeting Efficiency of Protein and Peptide Therapeutics
- Авторлар: Bisht T.1, Adhikari A.1, Patil S.1, Dhoundiyal S.2
-
Мекемелер:
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
- Шығарылым: Том 25, № 3 (2024)
- Беттер: 226-243
- Бөлім: Life Sciences
- URL: https://permmedjournal.ru/1389-2037/article/view/645581
- DOI: https://doi.org/10.2174/0113892037268777231013154850
- ID: 645581
Дәйексөз келтіру
Толық мәтін
Аннотация
Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.
Негізгі сөздер
Авторлар туралы
Tanuja Bisht
Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University
Email: info@benthamscience.net
Anupriya Adhikari
Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University
Email: info@benthamscience.net
Shivanand Patil
Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University
Email: info@benthamscience.net
Shivang Dhoundiyal
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Stevens, C.A.; Kaur, K.; Klok, H.A. Self-assembly of protein-polymer conjugates for drug delivery. Adv. Drug Deliv. Rev., 2021, 174, 447-460. doi: 10.1016/j.addr.2021.05.002 PMID: 33984408
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. doi: 10.1016/j.ejmech.2016.07.056 PMID: 27484512
- Lieser, R.M.; Yur, D.; Sullivan, M.O.; Chen, W. Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjug. Chem., 2020, 31(10), 2272-2282. doi: 10.1021/acs.bioconjchem.0c00456 PMID: 32931255
- Banerjee, A.; Onyuksel, H. Peptide delivery using phospholipid micelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(5), 562-574. doi: 10.1002/wnan.1185 PMID: 22847908
- Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764. doi: 10.1039/C3CS60273G PMID: 24220322
- Fishburn, C.S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183. doi: 10.1002/jps.21278 PMID: 18200508
- Singh, S.; Narang, A.S.; Mahato, R.I. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res., 2011, 28(12), 2996-3015. doi: 10.1007/s11095-011-0608-1 PMID: 22033880
- Dua, P.; Kim, S.; Lee, D. Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54(2), 215-225. doi: 10.1016/j.ymeth.2011.02.002 PMID: 21300154
- Vance, N.; Zacharias, N.; Ultsch, M.; Li, G.; Fourie, A.; Liu, P.; LaFrance-Vanasse, J.; Ernst, J.A.; Sandoval, W.; Kozak, K.R.; Phillips, G.; Wang, W.; Sadowsky, J. Development, optimization, and structural characterization of an efficient peptide-based photoaffinity cross-linking reaction for generation of homogeneous conjugates from wild-type antibodies. Bioconjug. Chem., 2019, 30(1), 148-160. doi: 10.1021/acs.bioconjchem.8b00809 PMID: 30566343
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibod-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol., 2021, 18(6), 327-344. doi: 10.1038/s41571-021-00470-8 PMID: 33558752
- Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci., 2016, 17(4), 561. doi: 10.3390/ijms17040561 PMID: 27089329
- Wang, L.; Zhao, W.; Tan, W. Bioconjugated silica nanoparticles: Development and applications. Nano Res., 2008, 1(2), 99-115. doi: 10.1007/s12274-008-8018-3
- Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551. doi: 10.1039/C5CS00048C PMID: 26000775
- Walper, S.A.; Turner, K.B.; Medintz, I.L. Enzymatic bioconjugation of nanoparticles: Developing specificity and control. Curr. Opin. Biotechnol., 2015, 34, 232-241. doi: 10.1016/j.copbio.2015.04.003 PMID: 25955793
- de Graaf, A.J.; Kooijman, M.; Hennink, W.E.; Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug. Chem., 2009, 20(7), 1281-1295. doi: 10.1021/bc800294a PMID: 19191567
- Lu, Y.; Huang, F.; Wang, J.; Xia, J. Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions. Bioconjug. Chem., 2014, 25(5), 989-999. doi: 10.1021/bc500134w PMID: 24738859
- Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res., 2012, 45(7), 1048-1056. doi: 10.1021/ar2002304 PMID: 22455499
- Sulaiman, S.; Mokhtar, M.N.; Naim, M.N.; Baharuddin, A.S.; Sulaiman, A. A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization Via covalent interactions. Appl. Biochem. Biotechnol., 2015, 175(4), 1817-1842. doi: 10.1007/s12010-014-1417-x PMID: 25427594
- Bellucci, J.J.; Bhattacharyya, J.; Chilkoti, A. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. Angew. Chem. Int. Ed., 2015, 54(2), 441-445. doi: 10.1002/anie.201408126 PMID: 25363491
- Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. doi: 10.1016/j.tet.2005.08.031
- Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry. Chem. Mater., 2014, 26(1), 724-744. doi: 10.1021/cm402180t
- Sletten, E.M.; Bertozzi, C.R. From mechanism to mouse: A tale of two bioorthogonal reactions. Acc. Chem. Res., 2011, 44(9), 666-676. doi: 10.1021/ar200148z PMID: 21838330
- Li, F.; Mahato, R.I. Bioconjugate therapeutics: Current progress and future perspective. Mol. Pharm., 2017, 14(5), 1321-1324. doi: 10.1021/acs.molpharmaceut.7b00263 PMID: 28457140
- Cooper, B.M.; Iegre, J.; O Donovan, D.H.; Ölwegård Halvarsson, M.; Spring, D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem. Soc. Rev., 2021, 50(3), 1480-1494. doi: 10.1039/D0CS00556H PMID: 33346298
- Rashidian, M.; Dozier, J.K.; Distefano, M.D. Enzymatic labeling of proteins: Techniques and approaches. Bioconjug. Chem., 2013, 24(8), 1277-1294. doi: 10.1021/bc400102w PMID: 23837885
- Zhang, C.; Vinogradova, E.V.; Spokoyny, A.M.; Buchwald, S.L.; Pentelute, B.L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed., 2019, 58(15), 4810-4839. doi: 10.1002/anie.201806009 PMID: 30399206
- Maleević M.; Migge, A.; Hertel, T.C.; Pietzsch, M. A fluorescence-based array screen for transglutaminase substrates. ChemBioChem, 2015, 16(8), 1169-1174. doi: 10.1002/cbic.201402709 PMID: 25940638
- Proft, T. Sortase-mediated protein ligation: An emerging biotechnology tool for protein modification and immobilisation. Biotechnol. Lett., 2010, 32(1), 1-10. doi: 10.1007/s10529-009-0116-0 PMID: 19728105
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J.S.; Carroll, J.S.; Spring, D.R. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev., 2021, 50(2), 1305-1353. doi: 10.1039/D0CS00310G PMID: 33290462
- Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem., 2011, 22(5), 825-858. doi: 10.1021/bc200065z PMID: 21585205
- Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
- Chen, F.; Nielsen, S.; Zenobi, R. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents. J. Mass Spectrom., 2013, 48(7), 807-812. doi: 10.1002/jms.3224 PMID: 23832936
- Pan, S.; Zhang, H.; Wang, C.; Yao, S.C.L.; Yao, S.Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep., 2016, 33(5), 612-620. doi: 10.1039/C5NP00101C PMID: 26580476
- Mayer, G.; Heckel, A. Biologically active molecules with a "light switch". Angew. Chem. Int. Ed., 2006, 45(30), 4900-4921. doi: 10.1002/anie.200600387 PMID: 16826610
- Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 2009, 30(20), 3371-3377. doi: 10.1016/j.biomaterials.2009.03.030 PMID: 19345991
- Chen, C.; Ng, D.Y.W.; Weil, T. Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Prog. Polym. Sci., 2020, 105, 101241. doi: 10.1016/j.progpolymsci.2020.101241
- Girotti, A.; Fernández-Colino, A.; López, I.M.; Rodríguez-Cabello, J.C.; Arias, F.J. Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnol. J., 2011, 6(10), 1174-1186. doi: 10.1002/biot.201100116 PMID: 21932251
- Ozer, I.; Chilkoti, A. Site-specific and stoichiometric stealth polymer conjugates of therapeutic peptides and proteins. Bioconjug. Chem., 2017, 28(3), 713-723. doi: 10.1021/acs.bioconjchem.6b00652 PMID: 27998056
- Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: The nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192. doi: 10.1021/bc5004982 PMID: 25494884
- Rabuka, D. Chemoenzymatic methods for site-specific protein modification. Curr. Opin. Chem. Biol., 2010, 14(6), 790-796. doi: 10.1016/j.cbpa.2010.09.020 PMID: 21030291
- Shadish, J.A.; DeForest, C.A. Site-selective protein modification: From functionalized proteins to functional biomaterials. Matter, 2020, 2(1), 50-77. doi: 10.1016/j.matt.2019.11.011
- Fominaya, J.; Bravo, J.; Rebollo, A. Strategies to stabilize cell penetrating peptides for in vivo applications. Ther. Deliv., 2015, 6(10), 1171-1194. doi: 10.4155/tde.15.51 PMID: 26448473
- Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926. doi: 10.1021/cr400031z PMID: 24446748
- Vyas, SP; Singh, A; Sihorkar, V Ligand-receptor-mediated drug delivery: An emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug. Carrier. Syst., 2001, 18(1), 1-76. doi: 10.1615/CritRevTherDrugCarrierSyst.v18.i1.10
- Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
- Zhang, T.; Huang, S.; Lin, H.; An, N.; Tong, R.; Chen, Y.; Wang, Y.; Qu, F. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J. Chem., 2017, 41(6), 2468-2478. doi: 10.1039/C6NJ02357F
- Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818. doi: 10.1016/j.drudis.2006.07.005 PMID: 16935749
- Singh, R.; Singh, S.; Lillard, J.W. Jr Past, present, and future technologies for oral delivery of therapeutic proteins. J. Pharm. Sci., 2008, 97(7), 2497-2523. doi: 10.1002/jps.21183 PMID: 17918721
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458. doi: 10.1016/S1359-6446(05)03575-0 PMID: 16243265
- Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45. doi: 10.1016/j.jconrel.2012.06.002 PMID: 22698939
- Shakya, A.K.; Sami, H.; Srivastava, A.; Kumar, A. Stability of responsive polymer-protein bioconjugates. Prog. Polym. Sci., 2010, 35(4), 459-486. doi: 10.1016/j.progpolymsci.2010.01.003
- Pawar, V.K.; Meher, J.G.; Singh, Y.; Chaurasia, M.; Surendar Reddy, B.; Chourasia, M.K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J. Control. Release, 2014, 196, 168-183. doi: 10.1016/j.jconrel.2014.09.031 PMID: 25305562
- Gunnoo, S.B.; Madder, A. Bioconjugation using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org. Biomol. Chem., 2016, 14(34), 8002-8013. doi: 10.1039/C6OB00808A PMID: 27461374
- Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptidedrug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 112-126. doi: 10.1016/j.addr.2016.06.015 PMID: 27370248
- Parkins, D.A.; Lashmar, U.T. The formulation of biopharmaceutical products. Pharm. Sci. Technol. Today, 2000, 3(4), 129-137. doi: 10.1016/S1461-5347(00)00248-0 PMID: 10754542
- Gebauer, M.; Skerra, A. Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg. Med. Chem., 2018, 26(10), 2882-2887. doi: 10.1016/j.bmc.2017.09.016 PMID: 29102080
- Elliott, S.; Pham, E.; Macdougall, I.C. Erythropoietins: A common mechanism of action. Exp. Hematol., 2008, 36(12), 1573-1584. doi: 10.1016/j.exphem.2008.08.003 PMID: 18922615
- Zhao, H.L.; Yao, X.Q.; Xue, C.; Wang, Y.; Xiong, X.H.; Liu, Z.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expr. Purif., 2008, 61(1), 73-77. doi: 10.1016/j.pep.2008.04.013 PMID: 18541441
- Kishimoto, S.; Nakashimada, Y.; Yokota, R.; Hatanaka, T.; Adachi, M.; Ito, Y. Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format. Bioconjug. Chem., 2019, 30(3), 698-702. doi: 10.1021/acs.bioconjchem.8b00865 PMID: 30606013
- Huang, Y.Y.; Wang, C.H. Pulmonary delivery of insulin by liposomal carriers. J. Control. Release, 2006, 113(1), 9-14. doi: 10.1016/j.jconrel.2006.03.014 PMID: 16730838
- Huang, L.C.; Wang, H.C.; Chen, L.H.; Ho, C.Y.; Hsieh, P.H.; Huang, M.Y.; Wu, H.C.; Wang, T.W. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics, 2019, 9(23), 7072-7087. doi: 10.7150/thno.35803 PMID: 31660087
- Coad, B.R.; Jasieniak, M.; Griesser, S.S.; Griesser, H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Tech., 2013, 233, 169-177. doi: 10.1016/j.surfcoat.2013.05.019
- Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476. doi: 10.1016/S0169-409X(02)00022-4 PMID: 12052709
- Béduneau, A.; Saulnier, P.; Benoit, J.P. Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28(33), 4947-4967. doi: 10.1016/j.biomaterials.2007.06.011 PMID: 17716726
- Lee, J.C.; Donahue, N.D.; Mao, A.S.; Karim, A.; Komarneni, M.; Thomas, E.E.; Francek, E.R.; Yang, W.; Wilhelm, S. Exploring maleimide-based nanoparticle surface engineering to control cellular interactions. ACS Appl. Nano Mater., 2020, 3(3), 2421-2429. doi: 10.1021/acsanm.9b02541
- Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009, 48(38), 6974-6998. doi: 10.1002/anie.200900942 PMID: 19714693
- Scinto, S.L.; Bilodeau, D.A.; Hincapie, R.; Lee, W.; Nguyen, S.S.; Xu, M. am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; Pezacki, J.P.; Prescher, J.A.; Robillard, M.S.; Fox, J.M. Bioorthogonal chemistry. Nat. Rev. Methods Primers, 2021, 1(1), 30. doi: 10.1038/s43586-021-00028-z PMID: 34585143
- Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51. doi: 10.1517/14728222.2011.538682 PMID: 21142802
- Patel, K.G.; Swartz, J.R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 2011, 22(3), 376-387. doi: 10.1021/bc100367u PMID: 21355575
- Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81. doi: 10.1016/j.jconrel.2014.06.046 PMID: 24997275
- Tamura, T.; Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: From test tubes to complex biological systems. J. Am. Chem. Soc., 2019, 141(7), 2782-2799. doi: 10.1021/jacs.8b11747 PMID: 30592612
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290. doi: 10.1158/0008-5472.CAN-08-1776 PMID: 19010901
- Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res. Bull., 2018, 142, 384-393. doi: 10.1016/j.brainresbull.2018.08.003 PMID: 30086350
- Chae, S.Y.; Choi, Y.G.; Son, S.; Jung, S.Y.; Lee, D.S.; Lee, K.C. The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics. J. Control. Release, 2010, 144(1), 10-16. doi: 10.1016/j.jconrel.2010.01.024 PMID: 20093159
- Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 2002, 22(2), 143-152. doi: 10.1097/00006982-200204000-00002 PMID: 11927845
- Ishihara, H. Current status and prospects of polyethyleneglycol-modified medicines. Biol. Pharm. Bull., 2013, 36(6), 883-888. doi: 10.1248/bpb.b13-00087 PMID: 23727910
- Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine, 2013, 9(4), 474-491. doi: 10.1016/j.nano.2012.11.010 PMID: 23261500
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663. doi: 10.1021/acs.chemrev.5b00346 PMID: 26854975
- Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev., 2002, 54(4), 531-545. doi: 10.1016/S0169-409X(02)00026-1 PMID: 12052713
- Zorzi, A.; Linciano, S.; Angelini, A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm, 2019, 10(7), 1068-1081. doi: 10.1039/C9MD00018F PMID: 31391879
- Schellenberger, V.; Wang, C.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; Cleland, J.L.; Silverman, J.; Stemmer, W.P.C. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol., 2009, 27(12), 1186-1190. doi: 10.1038/nbt.1588 PMID: 19915550
- Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203. doi: 10.2174/138161210793292555 PMID: 20687878
- Wang, Y.; Wu, C. Site-specific conjugation of polymers to proteins. Biomacromolecules, 2018, 19(6), 1804-1825. doi: 10.1021/acs.biomac.8b00248 PMID: 29722971
- AlQahtani, A.D.; OConnor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750. doi: 10.1016/j.biopha.2019.108750 PMID: 30849643
- Luk, B.T.; Zhang, L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release, 2015, 220(Pt B), 600-607. doi: 10.1016/j.jconrel.2015.07.019 PMID: 26210440
- Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166. doi: 10.1016/j.nano.2011.05.016 PMID: 21703993
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release, 2005, 109(1-3), 256-274. doi: 10.1016/j.jconrel.2005.09.023 PMID: 16266768
- Zegota, M.M.; Müller, M.A.; Lantzberg, B.; Kizilsavas, G.; Coelho, J.A.S.; Moscariello, P.; Martínez-Negro, M.; Morsbach, S.; Gois, P.M.P.; Wagner, M.; Ng, D.Y.W.; Kuan, S.L.; Weil, T. Dual stimuli-responsive dynamic covalent peptide tags: Toward sequence-controlled release in tumor-like microenvironments. J. Am. Chem. Soc., 2021, 143(41), 17047-17058. doi: 10.1021/jacs.1c06559 PMID: 34632780
- Shi, Z.; Li, Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett., 2020, 31(6), 1345-1356. doi: 10.1016/j.cclet.2020.03.001
- Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater., 2019, 10(3), 34. doi: 10.3390/jfb10030034 PMID: 31370252
- Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374. doi: 10.1039/C8CS00676H PMID: 31294429
- Andresen, T.L.; Thompson, D.H.; Kaasgaard, T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy. Mol. Membr. Biol., 2010, 27(7), 353-363. doi: 10.3109/09687688.2010.515950 PMID: 20939771
- Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304. doi: 10.1517/17425240902780166 PMID: 19327045
- Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450. doi: 10.1002/wnan.1450 PMID: 28198148
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem., 2011, 83(12), 4453-4488. doi: 10.1021/ac200853a PMID: 21545140
- Hermanson, G.T. Bioconjugate techniques; Academic press, 2013.
- Liu, D.Q.; Hop, C.E.C.A. Strategies for characterization of drug metabolites using liquid chromatographytandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal., 2005, 37(1), 1-18. doi: 10.1016/j.jpba.2004.09.003 PMID: 15664738
- Plesner, B.; Fee, C.J.; Westh, P.; Nielsen, A.D. Effects of PEG size on structure, function and stability of PEGylated BSA. Eur. J. Pharm. Biopharm., 2011, 79(2), 399-405. doi: 10.1016/j.ejpb.2011.05.003 PMID: 21620970
- Meager, A. Biological assays for interferons. J. Immunol. Methods, 2002, 261(1-2), 21-36. doi: 10.1016/S0022-1759(01)00570-1 PMID: 11861063
- Beck, A.; DAtri, V.; Ehkirch, A.; Fekete, S.; Hernandez-Alba, O.; Gahoual, R.; Leize-Wagner, E.; François, Y.; Guillarme, D.; Cianférani, S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: Present and future. Expert Rev. Proteomics, 2019, 16(4), 337-362. doi: 10.1080/14789450.2019.1578215 PMID: 30706723
- Lin, C.A.J.; Yang, T.Y.; Lee, C.H.; Huang, S.H.; Sperling, R.A.; Zanella, M.; Li, J.K.; Shen, J.L.; Wang, H.H.; Yeh, H.I.; Parak, W.J.; Chang, W.H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009, 3(2), 395-401. doi: 10.1021/nn800632j PMID: 19236077
- López-Lorente, A.I.; Simonet, B.M.; Valcárcel, M. Electrophoretic methods for the analysis of nanoparticles. Trends Analyt. Chem., 2011, 30(1), 58-71. doi: 10.1016/j.trac.2010.10.006
- Azizi, A.; Ranjbar, B.; Moghadam, T.T.; Bagheri, Z. Plasmonic circular dichroism study of DNA-gold nanoparticles bioconjugates. Plasmonics, 2014, 9(2), 273-281. doi: 10.1007/s11468-013-9620-0
- Zaghmi, A.; Greschner, A.A.; Mendez-Villuendas, E.; Liu, J.Y.; de Haan, H.W.; Gauthier, M.A. Determination of the degree of PEGylation of protein bioconjugates using data from proton nuclear magnetic resonance spectroscopy. Data Brief, 2019, 25, 104037. doi: 10.1016/j.dib.2019.104037 PMID: 31223640
- Schwarz, G.; Mueller, L.; Beck, S.; Linscheid, M.W. DOTA based metal labels for protein quantification: A review. J. Anal. At. Spectrom., 2014, 29(2), 221-233. doi: 10.1039/C3JA50277E
- Mero, A.; Spolaore, B.; Veronese, F.M.; Fontana, A. Transglutaminase-mediated PEGylation of proteins: Direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug. Chem., 2009, 20(2), 384-389. doi: 10.1021/bc800427n PMID: 19186937
- Beck, J.L.; Colgrave, M.L.; Ralph, S.F.; Sheil, M.M. Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev., 2001, 20(2), 61-87. doi: 10.1002/mas.1003 PMID: 11455562
- Gabrielli, V.; Baretta, R.; Pilot, R.; Ferrarini, A.; Frasconi, M. Insights into the gelation mechanism of metal-coordinated hydrogels by paramagnetic NMR spectroscopy and molecular dynamics. Macromolecules, 2022, 55(2), 450-461. doi: 10.1021/acs.macromol.1c01756
- Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187. doi: 10.1016/j.ijbiomac.2022.02.104 PMID: 35217087
- Holm, L.S.; Mcumber, A.; Rasmussen, J.E.; Obiols-Rabasa, M.; Thulstrup, P.W.; Kasimova, M.R.; Randolph, T.W.; van de Weert, M. The effect of protein PEGylation on physical stability in liquid formulation. J. Pharm. Sci., 2014, 103(10), 3043-3054. doi: 10.1002/jps.24094 PMID: 25139193
- Moreira-Alvarez, B.; Cid-Barrio, L.; Ferreira, H.S.; Costa-Fernández, J.M.; Encinar, J.R. Integrated analytical platforms for the comprehensive characterization of bioconjugated inorganic nanomaterials aiming at biological applications. J. Anal. At. Spectrom., 2020, 35(8), 1518-1529. doi: 10.1039/D0JA00147C
- Kaliyaperumal, A.; Jing, S. Immunogenicity assessment of therapeutic proteins and peptides. Curr. Pharm. Biotechnol., 2009, 10(4), 352-358. doi: 10.2174/138920109788488860 PMID: 19519410
- Mu, R.; Yuan, J.; Huang, Y.; Meissen, J.K.; Mou, S.; Liang, M.; Rosenbaum, A.I. Bioanalytical methods and strategic perspectives addressing the rising complexity of novel bioconjugates and delivery routes for biotherapeutics. BioDrugs, 2022, 36(2), 181-196. doi: 10.1007/s40259-022-00518-w PMID: 35362869
- Yao, V.J.; DAngelo, S.; Butler, K.S.; Theron, C.; Smith, T.L.; Marchiò, S.; Gelovani, J.G.; Sidman, R.L.; Dobroff, A.S.; Brinker, C.J.; Bradbury, A.R.M.; Arap, W.; Pasqualini, R. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release, 2016, 240, 267-286. doi: 10.1016/j.jconrel.2016.01.002 PMID: 26772878
- Lazar, A.C.; Wang, L.; Blättler, W.A.; Amphlett, G.; Lambert, J.M.; Zhang, W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(13), 1806-1814. doi: 10.1002/rcm.1987 PMID: 15945030
- Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug. Chem., 2018, 29(3), 686-701. doi: 10.1021/acs.bioconjchem.7b00633 PMID: 29287474
- Jadhav, P.D.; Shim, Y.Y.; Reaney, M.J.T. Synthesis and characterization of site-selective orbitide-BSA conjugate to produce antibodies. Bioconjug. Chem., 2016, 27(10), 2346-2358. doi: 10.1021/acs.bioconjchem.6b00357 PMID: 27626291
- Pagar, R.R.; Musale, S.R.; Pawar, G.; Kulkarni, D.; Giram, P.S. Comprehensive review on the degradation chemistry and toxicity studies of functional materials. ACS Biomater. Sci. Eng., 2022, 8(6), 2161-2195. doi: 10.1021/acsbiomaterials.1c01304 PMID: 35522605
- Ghosh, S.; Ghosh, T.; Bhowmik, S.; Patidar, M.K.; Das, A.K. Nucleopeptide-coupled injectable bioconjugated guanosine-quadruplex hydrogel with inherent antibacterial activity. ACS Appl. Bio Mater., 2023, 6(2), 640-651. doi: 10.1021/acsabm.2c00912 PMID: 36706228
- Kuan, S.L.; Wang, T.; Weil, T. Site-selective disulfide modification of proteins: Expanding diversity beyond the proteome. Chemistry, 2016, 22(48), 17112-17129. doi: 10.1002/chem.201602298 PMID: 27778400
- Wu, G.; Barth, R.F.; Yang, W.; Kawabata, S.; Zhang, L.; Green-Church, K. Targeted delivery of methotrexate to epidermal growth factor receptorpositive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol. Cancer Ther., 2006, 5(1), 52-59. doi: 10.1158/1535-7163.MCT-05-0325 PMID: 16432162
- Wolfe, B.J.; Ghomashchi, F.; Kim, T.; Abam, C.A.; Sadilek, M.; Jack, R.; Thompson, J.N.; Scott, C.R.; Gelb, M.H.; Turecek, F. New substrates and enzyme assays for the detection of mucopolysaccharidosis III (Sanfilippo Syndrome) types A, B, C, and D by tandem mass spectrometry. Bioconjug. Chem., 2012, 23(3), 557-564. doi: 10.1021/bc200609x PMID: 22372747
- Liu, X.; Zheng, W.; Jiang, X. Cell-based assays on microfluidics for drug screening. ACS Sens., 2019, 4(6), 1465-1475. doi: 10.1021/acssensors.9b00479 PMID: 31074263
- Das, M.; Duan, W.; Sahoo, S.K. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine, 2015, 11(2), 379-389. doi: 10.1016/j.nano.2014.09.002 PMID: 25240596
- Yang, S.B.; Banik, N.; Han, B.; Lee, D.N.; Park, J. Peptide-based bioconjugates and therapeutics for targeted anticancer therapy. Pharmaceutics, 2022, 14(7), 1378. doi: 10.3390/pharmaceutics14071378 PMID: 35890274
- Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: Efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236. doi: 10.1002/smll.201301417 PMID: 23873835
- Tao, W.; Zeng, X.; Wu, J.; Zhu, X.; Yu, X.; Zhang, X.; Zhang, J.; Liu, G.; Mei, L. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016, 6(4), 470-484. doi: 10.7150/thno.14184 PMID: 26941841
- Liu, H.; Bolleddula, J.; Nichols, A.; Tang, L.; Zhao, Z.; Prakash, C. Metabolism of bioconjugate therapeutics: Why, when, and how? Drug Metab. Rev., 2020, 52(1), 66-124. doi: 10.1080/03602532.2020.1716784 PMID: 32045530
- Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557. doi: 10.1080/10717544.2016.1276232 PMID: 28181831
- Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed., 2007, 2(4), 715-733. PMID: 18203438
- van den Dobbelsteen, G.P.J.M.; Faé, K.C.; Serroyen, J.; van den Nieuwenhof, I.M.; Braun, M.; Haeuptle, M.A.; Sirena, D.; Schneider, J.; Alaimo, C.; Lipowsky, G.; Gambillara-Fonck, V.; Wacker, M.; Poolman, J.T. Immunogenicity and safety of a tetravalent E. Coli O-antigen bioconjugate vaccine in animal models. Vaccine, 2016, 34(35), 4152-4160. doi: 10.1016/j.vaccine.2016.06.067 PMID: 27395567
- Sau, S.; Alsaab, H.O.; Kashaw, S.K.; Tatiparti, K.; Iyer, A.K. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today, 2017, 22(10), 1547-1556. doi: 10.1016/j.drudis.2017.05.011 PMID: 28627385
- Ibeanu, N.; Egbu, R.; Onyekuru, L.; Javaheri, H.; Khaw, P.T.; Williams, G.R.; Brocchini, S.; Awwad, S. Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics, 2020, 12(10), 999. doi: 10.3390/pharmaceutics12100999 PMID: 33096803
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7. doi: 10.1038/s41392-017-0004-3 PMID: 29560283
- Nairn, N.W.; Shanebeck, K.D.; Wang, A.; Graddis, T.J.; VanBrunt, M.P.; Thornton, K.C.; Grabstein, K. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation. Bioconjug. Chem., 2012, 23(10), 2087-2097. doi: 10.1021/bc300295x PMID: 22988919
- Kobayashi, H.; Turkbey, B.; Watanabe, R.; Choyke, P.L. Cancer drug delivery: Considerations in the rational design of nanosized bioconjugates. Bioconjug. Chem., 2014, 25(12), 2093-2100. doi: 10.1021/bc500481x PMID: 25385142
- Mahon, E.; Salvati, A.; Baldelli Bombelli, F.; Lynch, I.; Dawson, K.A. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". J. Control. Release, 2012, 161(2), 164-174. doi: 10.1016/j.jconrel.2012.04.009 PMID: 22516097
- Szijj, P.A.; Bahou, C.; Chudasama, V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov. Today. Technol., 2018, 30, 27-34. doi: 10.1016/j.ddtec.2018.07.002 PMID: 30553517
- Zhang, M.M.; Bahal, R.; Rasmussen, T.P.; Manautou, J.E.; Zhong, X. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem. Pharmacol., 2021, 189, 114432. doi: 10.1016/j.bcp.2021.114432 PMID: 33513339
- Geho, D.H.; Petricoin, E.F.; Liotta, L.A.; Araujo, R.P. Modeling of protein signaling networks in clinical proteomics.Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2005, 70, pp. 517-524. doi: 10.1101/sqb.2005.70.022
- Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63. doi: 10.1016/j.actbio.2019.05.022 PMID: 31082570
- Jurgielewicz, B.; Stice, S.; Yao, Y. Therapeutic potential of nucleic acids when combined with extracellular vesicles. Aging Dis., 2021, 12(6), 1476-1493. doi: 10.14336/AD.2021.0708 PMID: 34527423
- Lee, S.; Xie, J.; Chen, X. Peptide-based probes for targeted molecular imaging. Biochemistry, 2010, 49(7), 1364-1376. doi: 10.1021/bi901135x PMID: 20102226
- Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010. doi: 10.1039/c2cs15344k PMID: 22388185
- Benizri, S.; Gissot, A.; Martin, A.; Vialet, B.; Grinstaff, M.W.; Barthélémy, P. Bioconjugated oligonucleotides: Recent developments and therapeutic applications. Bioconjug. Chem., 2019, 30(2), 366-383. doi: 10.1021/acs.bioconjchem.8b00761 PMID: 30608140
- Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34. doi: 10.1016/j.actbio.2019.11.027 PMID: 31759124
- Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomed., 2010, 5, 37-49. PMID: 20161986
- Gombotz, W.R.; Pettit, D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem., 1995, 6(4), 332-351. doi: 10.1021/bc00034a002 PMID: 7578352
Қосымша файлдар
